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Abstract. Hydropower is a low-carbon emission renewable energy source that

provides competitive and flexible electricity generation and is essential to the evolving

power grid in the context of decarbonization. Assessing hydropower availability in a

changing climate is technically challenging because there is a lack of consensus in the

modeling representation of key dynamics across scales and processes. The SECURE

Water Act requires a periodic assessment of the impact of climate change on the

United States federal hydropower. The uncertainties associated with the structure of

the tools in the previous assessment was limited to an ensemble of climate models.

We leverage the second assessment to evaluate the compounded impact of climate

and reservoir-hydropower models’ structural uncertainties on monthly hydropower

projections. While the second assessment relies on a mostly-statistical regression-based

hydropower model, we introduce a mostly-conceptual reservoir operations-hydropower

model. Using two different types of hydropower model allows us to provide the first

hydropower assessment with uncertainty partitioning associated with both climate and

hydropower models. We also update the second assessment, performed initially at an

annual time scale, to a seasonal time scale. Results suggest that at least 50% of the

uncertainties, both at annual and seasonal scales, are attributed to the climate models.

The annual predictions are consistent between hydropower models which marginally

contribute to the variability in annual projections. However, up to 50% of seasonal

variability can be attributed to the choice of the hydropower model in regions over

the western US where the reservoir storage is substantial. The analysis identifies

regions where multi-model assessments are needed and presents a novel approach

to partition uncertainties in hydropower projections. Another outcome includes an

updated evaluation of CMIP5-based federal hydropower projection, at the monthly

scale and with a larger ensemble, which can provide a baseline for understanding the

upcoming 3rd assessment based on CMIP6 projections.

Submitted to: Environ. Res. Lett.
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1. Introduction

Hydropower provides low-carbon electricity with fast and high ramping capabilities,

which are essential to integrating variable renewable energy such as wind and solar

into the grid, among other contributions like energy storage [Key et al., 2012]. As new

generations of climate model projections have become available, regular assessments

of the effects of climate change on water availability for hydropower generation have

been carried out using a combination of downscaled climate projections, hydrology

models, and reservoir operation models (referred to as modeling toolchains hereafter)

[e.g., Low et al., 2011, Christensen et al., 2004, Forrest et al., 2018, Hidalgo et al.,

2020, Kao et al., 2015, Schaefli et al., 2007]. Evaluating the impacts of climate change

on hydropower generation over large areas across disconnected river basins can provide

the opportunity to inform long-term planning of electric grids, but so far no single

modeling toolchain can be applied across all relevant temporal and spatial scales. The

scale challenge requires different techniques that vary according to the overall science

questions, such as questions related to general knowledge, interactions with other sectors

of activities, specific applications to long-term energy planning, and of course, data

availability [Turner and Voisin, 2022].

Leveraging Turner and Voisin [2022]’s review of modeling toolchains for the purpose

of large-scale hydroclimate-hydropower assessments, we simplify the typology into

three types with (1) Type-1: reservoir-based toolchains that links climate, hydrology,

river routing and reservoir management models to simulate hydropower; (2) Type-

2: hydrology-based toolchains that link climate and hydrology models to simulate

hydropower directly (i.e., Type-1 without river routing, and reservoir management

models); and (3) Type-3: statistical or machine learning-based toolchains where

hydropower is computed directly from climate model information, or from regulated flow

derived statistically from a climate model with or without a generalized reservoir model.

An evaluation of Type-1 toolchains was performed by Haddeland et al. [2014], in which

seven reservoir-based toolchains were compared using an ensemble of climate projections

with an emphasis on agriculture rather than hydropower. Since then, evaluation of

multi-model uncertainty has evolved from quantifying the spread of climate projections

to partitioning uncertainties [Lehner et al., 2020].

In the United States, the SECURE Water Act of 2009 requires periodic assessment

of climate change risks on water availability for federal hydropower marketing and

generation. Federal hydropower differs from other public utilities and privately owned

entities because the dams were built primarily for other purposes than hydropower, such

as water supply and flood control, and the sales of federal power are given preference to

public bodies such as electric cooperatives and municipalities (also known as preference

customers) at the lowest possible rates. While optimization models are used for short-

term hydropower scheduling, long-term hydropower planning is driven by seasonal water

operations for all competing uses [Helseth et al., submitted, Low et al., 2011]. The first

round of assessment [Sale et al., 2012] comprehensively evaluated all federal hydropower
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plants located in various geographical regions in the US using a Type-2 hydrology-based

toolchain. A strong linear relationship between regional runoff and historical hydropower

generation was identified and applied in conjunction with a series of hydroclimate

projections to project annual hydropower across federal marketing regions for both

near-term and mid-term future periods. In the second round of assessment [Kao et al.,

2016], the modeling toolchain was enhanced with a dynamically downscaled ensemble

of climate predictions, higher spatial resolution hydrologic projections, and a monthly

regression-based hydropower model, but remained as a Type-2 toolchain. Also, while

regression-based hydropower models have demonstrated accuracy, they have limited

abilities to propagate non-stationarity in flow in hydropower projections [Zhou et al.,

2018], and do not allow for coordination with evolving water uses and operations.

In this study, we expand the application of Kao et al. [2016] by adding a Type-

1 representation of hydropower where reservoir storage and release operations are

explicitly represented, complementing climate, hydrology and river routing models to

demonstrate how a Type 1 representation may complement the assessments. Instead

of a simple comparison, we propose to facilitate the adoption of a multi-model

framework by extending the uncertainty analysis and specifically the partitioning of

uncertainties associated with climate projections and hydropower model structures

through the analysis of variance (ANOVA). The outcome is an updated multi-model

projection of future federal hydropower generation based on downscaled Coupled Model

Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs). To the

best of our knowledge, this is the first conterminous US (CONUS)-scale climate

impact assessment of hydropower that evaluates the annual and seasonal partitioning

of hydropower projections relative to the diversity of models included in the toolchain,

in this case, climate and hydropower models. The outcome will provide insight into

how hydropower model structures contribute to uncertainty in the assessment and

consistency of the overall projections. This insight is critical for future large-scale and

also watershed-scale assessments where utilities should enhance assessment by including

uncertainties in water demands and other water uses. The findings are also intended

to inform regional multi-sectoral planning and improve toolchains required to support

long-term electricity planning under evolving water and electricity demands as well as

water uses for river managements.

2. Methodology

2.1. Study Area and Modeling Strategy

The US federal hydropower plants analyzed in this study include 132 facilities that

were built and/or operated by US Army Corps of Engineers (USACE), Bureau of

Reclamation (Reclamation), and the International Boundary and Water Commission

(IBWC), with a combined 36.6 GW or about 40% of the total US hydropower capacity.

The electricity generated by these hydropower plants was marketed through four Power



Hydropower projection 4

Figure 1. Federal hydropower plants and power marketing regions in the United

States

Marketing Administrations (PMAs), including Bonneville Power Administration (BPA),

Southeastern Power Administration (SEPA), Southwestern Power Administration

(SWPA), and Western Area Power Administration (WAPA) (Figure 1). Given our

focus on PMA-marketed hydropower, we do not consider other US federal hydropower

plants such as the entire Tennessee Valley Authority (TVA) fleet, Saint Marys Falls

and St. Stephen projects managed by USACE, and also some non-federal hydropower

plants that are located at federal dams. For a detailed description of the US federal

hydropower refer to Kao et al. [2016].

GCM
Spatial resolution

(latitude/longitude)
Modeling center

ACCESS1-0 1.24◦/1.88◦ CSIRO, Australia

BCC-CSM1-1 2.81◦/2.81◦ BCC, China

CCSM4 0.94◦/1.25◦ NCAR, USA

CMCC-CM 0.75◦/0.75◦ CMCC, Italy

GFDL-ESM2M 2◦/2.5◦ GFDL, USA

MIROC5 1.41◦/1.41◦ JAMESTEC, U of Tokyo, Japan

MPI-ESM-MR 1.88◦/1.88◦ MPI, Germany

MRI-CGCM3 1.13◦/1.13◦ MRI, Japan

NorESM1-M 1.88◦/2.5◦ NCC, Norway

IPSL-CM5A-LR 1.88◦/3.75◦ IPSL, France

Table 1. GCMs used for global climate projections.
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Figure 2. Cascade of system-specific models (10 climate models, 1 hydrology model,

2 hydropower models) and resulting 20-member ensemble of hydropower projections.

A cascading modeling toolchain was designed to project monthly hydropower

generation from each US federal hydropower region. The modeling toolchain employed

a series of models and approaches with different spatial resolutions to transfer

global climate change signals to watershed-scale hydrologic projections to support the

predictions for hydropower generation (Figure 2). The modeling framework starts with

global climate projections made by 10 CMIP5 GCMs (Table 1). The GCMs were

selected based on the availability of sub-daily three-dimensional atmospheric data for

the dynamical downscaling in thenext step. The future greenhouse gas (GHG) emission

scenario is representative concentration pathway (RCP) 8.5, which reflects the highest

level of global warming and the upper bound for hydrological changes, with a radiative

forcing reaching 8.5 Wm−2 by the end of the 21st century. Each GCM consists of a

historical period from 1966 to 2005, and a future period from 2011 to 2050.

Next, the Abdus Salam International Centre for Theoretical Physics Regional

Climate Model, version4 (RegCM4) [Pal et al., 2007, Giorgi et al., 2012] was used

to dynamically downscale GCM projections from the native spatial resolution (around

150 km) to 18 km resolution over the Continental US. The downscaling resulted in 10

sets of meteorological variables (e.g., precipitation, temperature, and wind), one for

each climate model. After bias-correction by historic observations, the widely used

semi-distributed Variable Infiltration Capacity (VIC) model [Liang et al., 1994, Nijssen

et al., 1997, Cherkauer et al., 2003, Zhou et al., 2016] was used to translate the projected

meteorological signals into hydrological responses such as surface runoff and baseflow.

To study the large-scale climate change effects on various river systems across the US,

in this study the VIC model was implemented for the entire CONUS at a refined 1/24 ◦

(about 4 km) grid resolution. A computationally intensive calibration for the VIC model

was performed to increase the model accuracy. Readers are referred to Oubeidillah et al.
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[2014] and Naz et al. [2016] for more technical details about the hydrology model setup,

and Ashfaq et al. [2016] for the dynamical downscaling.

Figure 3. Scatter plots of annual and seasonal precipitation and runoff changes (1966-

2005 to 2011-2050) for 10 GCM projections over the four PMAs.

Given that this study focuses on a regional assessment at the PMA level rather

than at individual reservoirs or power plants, it enables comprehensive evaluation of

climate change impacts across a large number of hydropower plants along distinct river

systems. An overview analysis of the GCM projected future precipitation and VIC-

simulated runoff changes across the PMAs (Figure 3) suggested that both precipitation

and runoff will increase in annual and seasonal time scales when taking all four PMAs

into account. However, the PMAs lie in distinct climate and hydrological regions leading

to distinct seasonal sensitivity to climate change signals.

2.2. Regional Hydropower Models

The spatially distributed runoff generated by the VIC model informed river routing (and

water management) models that have a regional hydropower component for hydropower

generation projections. Two reservoir operations and hydropower models with different

mechanisms were applied. They included a regression-based Watershed Runoff-Energy

Storage (WRES) model and a process-based Water Management Hydropower (WMP)

model.
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2.2.1. Watershed Runoff-Energy Storage Model

The WRES model was developed by Kao et al. [2016] to examine how seasonal and

annual hydropower generation may change under the projected future climate and

hydrologic conditions. WRES is a lumped regional hydropower model used to simulate

the total hydropower generation from multiple hydropower plants in a region. To

account for the diverse hydrologic conditions and operational objectives associated with

various types of federal hydropower systems, WRES was designed with minimum site-

specific restrictions to maintain an internally consistent modeling approach that isolated

the effects of climate change on runoff availability and hydropower generation. Based

on the discussion in Section 1, WRES can be considered a Type-2 modeling toolchain

component.

There are two main steps in WRES: (1) monthly generation prediction based

on regression, and (2) watershed runoff storage calculation. The first step of WRES

simulation determines an initial estimate of monthly watershed runoff release and

hydropower generation based on hydrologic inflow/outflow conditions (e.g., the amount

of precipitation and runoff inputs) and hydropower generation from previous time

steps. After testing several combinations of variables and lag times using historical

monthly rainfall, runoff, and hydropower generation data from 1980 to 2009, generalized

multivariate regression formula are developed for each hydropower region.

The second step of WRES is to ensure that the initial estimates of monthly runoff

release and hydropower generation will not yield physically unreasonable conditions. In

particular, although the regression formula can provide a good first estimate, it can

be unreasonable during extremely wet or dry conditions. Most of the reservoirs follow

the established operation curves in which seasonal maximum/minimum pool elevations

are specified. During drought conditions, the storage in the system may be close to

the minimum so that the water release and generation would be reduced for water

conservation. Conversely, during wet conditions, the storage may approach a maximum

capacity for flood-risk management. Water release and hydropower generation will

increase during wet conditions, and sometimes water may be spilled (i.e., not pass

through hydropower turbines) during flood conditions. To account for these constraints,

a runoff mass balance calculation procedure was developed to revise the initial estimates

of runoff release and hydropower generation based on the maximum and minimum

runoff storage capacity of each hydropower region. For each PMA region, the WRES

model used the monthly precipitation and natural runoff as inputs, performed a water

mass balance calculation for the total monthly storage in all reservoirs and retention

facilities in the watershed, and simulated the monthly regulated release and hydropower

generation through the system. Details of the WRES model are described by Kao et al.

[2016].

2.2.2. Water Management Power Model

The WMP model is a process-based (Type-1) model that was first introduced by

Zhou et al. [2018]. It consists of two parts: (1) a river-routing water management
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model to represent water managements and dam operations, and (2) a process-

based hydropower generation module to estimate energy produced through turbines

at individual hydropower plants. The first part of WMP includes the large-scale river

routing and water management using MOSART-WM, which consists of a grid-based

river routing Model for Scale Adaptive River Transport (MOSART) [Li et al., 2013] and

a water management component [Voisin et al., 2013] used to simulate water withdrawals

and distribution and associated reservoir storage, release, and spatially distributed

regulated flow. Based on the discussion in Section 1, WMP can be considered a Type-3

modeling toolchain component for hydropower projects that have substantial storage.

In this study, the VIC-simulated runoff at an original 4 km resolution was

aggregated to 1/8th degree (about 12km) resolution (approximately 65,000 grid cells

in the CONUS domain). To address the lack of available information about individual

reservoir operating rules and the computational tradeoffs associated with the spatially

distributed nature of the model, each reservoir uses generic operating rules [Hanasaki

et al., 2006, Voisin et al., 2013] based on their main operating purposes (e.g., irrigation,

flood control). The daily gridded water demand data is required for MOSART-WM

to guide the irrigation and non-irrigation water withdrawals from the streamflow and

upstream reservoirs [Voisin et al., 2017]. The data was derived from the integrated

Global Change Assessment Model [Hejazi et al., 2015], which considers multiple

water demand sectors and several socioeconomic variables, such as population, labor

productivity, and technology [Edmonds and Reilly, 1985, Edmonds et al., 1997, Kim

et al., 2006]. In this study, the water demands for MOSART-WM were set to be fixed

at 2010 level. The MOSART-WM model was run at daily time steps from 1966 to 2050

after a five-year spin-up with the 1966 runoff.

The regulated streamflow time series at each federal hydropower plants simulated

by MOSART-WM was then used as input for the hydropower generation module.

The hydropower module processes storage-based and Run-of-the-River (RoR) plants

differently. For hydropower plants associated with reservoirs, the MOSART-WM-

simulated storage time series was also extracted to derive the hydraulic heads. For

RoR dams, the hydraulic heads (h, m) were obtained from the National Inventory of

Dams (NID) database and were assumed to be fixed. For reservoir-associated dams, the

time series of hydraulic heads were estimated based on the simulated monthly reservoir

storage in the first step through a simple empirical relationship. Fourteen parameters

were introduced into the power model to adjust the streamflow passing through the dam

and to constrain the generation of power. The parameters include a bias correction factor

accounting for the annual bias at the US hydrologic subregion level (HUC4), 12 monthly

spill correction factors for monthly ecological purposes and spinning reserve at the plant

level, and a penstock intake adjustment factor to account the actual maximum intake

of the penstock relative to the reported penstock capacity at the plant level.
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2.3. Model Calibration and Analysis

The WRES and WMP models were calibrated against the observed monthly hydropower

generation data provided by the U.S. Energy Information Administration (EIA). The

WRES model parameters, including initial, maximum / minimum monthly storage,

and maximum hydropower capacity, were estimated for the historical period from 1980-

2008. The calibrated parameters were then be used for validation over 2009-2012 period.

For WMP, the 14 parameters were estimated through a two-step multiscale calibration

process, which applied Shuffled Complex Evolution (SCE-UA) method to minimize the

mean absolute error of the annual generation at the regional level (first step) and the

Kling-Gupta Efficiency (KGE) of the monthly generation at the plant level (second

step). The calibration was performed from 1980-2004. While the initial validation

was performed from 2005-2012, the validation is presented here over 2009-2012 to be

consistent with WRES.

2.4. Uncertainty Partitioning

We use ANOVA to assess the impacts of climate models and hydropower models on

the spread of future annual and seasonal hydropower projections at each PMA region.

ANOVA was used to partition the total ensemble variance to contributions from different

sources of variation and the interaction between them. In our application, there are two

variables (climate model and hydropower model), and each combination provides one

unique projection of change. To diminish the effects of unequal numbers of climate (10)

and hydropower (2) models in traditional ANOVA, we used a sub-sampling technique

proposed by Bosshard et al. [2013] to sample two climate models and their respective

hydropower model combinations to evaluate the variance contribution. The unexplained

variance is labeled as residual. The results are presented at the PMA level for annual

and seasonal scales.

3. Results

3.1. Hydropower Model Performance

(Figure 4) shows the regional monthly hydropower generation simulations and

observation. Despite the fundamental differences in modeling approaches, both models

were able to reasonably simulate the monthly hydropower generations with correlation

coefficients over 0.8 during the validation periods. The models also performed reasonably

well in other metrics (e.g., Nash–Sutcliffe efficiency [NSE] and mean annual bias). The

metrics during the validation period are comparable to those during the calibration

period, and are satisfactory for the purpose of this study (Table 2). Note that the

performance of WRES is slightly better than that of WMP, which might be attributed

to the different nature of the models and the longer calibration period for the WRES

model.
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Figure 4. Monthly hydropower generation time series - comparison between

simulations and observation

period
RMSE

(TWh/month)

correlation

coefficient
NSE

mean

annual bias

WMP training 1980-2004 1.31 0.84 0.62 -3.1%

WMP validating 2009-2012 1.41 0.80 0.61 -1.5%

WRES training 1980-2008 0.75 0.95 0.88 -2.5%

WRES validating 2009-2012 1.07 0.89 0.78 3.2%

Table 2. Error statistics for hydropower generation over all PMAs.

3.2. Multi-Model Hydropower Projections

The projected annual and seasonal hydropower generation from all and each PMA region

is summarized in Figure 5 for near-term (NT, 2011-2030) and mid-term (MT, 2031-

2050) future periods. Each panel of Figure 5 shows the single-model projection from

Kao et al. [2016] using WRES and the updated multi-model ensemble projection using

WRES and WMP. Each box defines the 25th to 75th percentile and the whiskers define

the 5th to 95th percentile of all ensemble members. The historical baseline (thicker
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black line) are the mean values over 1966-2005.

3.2.1. Annual and Seasonal Projections

By comparing the median projections (the thin line in each box) and the baseline

generations over the historical period, we note that for the annual generation by all

PMAs as a whole, despite minor differences in the spread of the predictions, the WRES

and ensemble project a 1 TWh decrease in the NT median and an increase of about 6

TWh or 4-5% in the MT median. Despite the choice of climate models and the overall

modeling framework, the NT projection is consistent with the estimate from previous

assessment [Sale et al., 2012] in which the median federal projects is projected to be -2

TWh over the 2000-2039 future period, based on a 1960-1999 historical baseline period.

BPA has the largest generation across all PMAs, and the PMA total overall follows

BPA’s annual trends and seasonal patterns. Note that BPA does experience a 5 TWh

decrease in annual projection during the NT and a 2-3 TWh increase in MT. This

opposite change direction might be attributed to the changes in hydrological regimes

with the projected decrease in average April 1st snow water equivalent (SWE) and

the reduction in snow-covered days, as well as the projected increase in winter liquid

precipitation in the western US regions, driven by an increase in the projected winter

temperature in these regions. These changes in runoff generation mechanisms suggest

higher streamflow conditions earlier in the spring and lower streamflow conditions in the

summer, which might further reshape the overall hydropower generations in the BPA

areas due to limited seasonal storage. For WAPA, the median ensemble projection is

close to the baseline in the NT and about 8% higher in the MT. For SWPA, both NT and

MT are projected to increase with MT being higher than NT. It is noted that WRES

generally has a higher projection and slightly larger uncertainties (longer boxes) across

the GCMs, compared to the ensemble projection. Divergence between the WRES and

the ensemble is also noticed in SEPA, where the median generation projected by WRES

is slightly lower than the ensemble projection in both terms. Given that the hydropower

projects in SWPA and SEPA have much less storage capacity than other PMAs, the

projections of hydropower generation more closely follow the change in runoff, albeit

with higher sensitivity to assumptions in storage management.

Seasonal projections suggest greater variations than annual changes and larger

differences between WRES-only and ensemble projections. The overall PMA seasonal

MT projections are higher than NT in all seasons for both WRES and ensemble

projections. The winter and spring projections tend to be close between the single

model and the multi-model ensemble with a slight increase in NT and an increase

in MT. Summer is the season when both NT and MT are projected to be lower

than the baselines. Note that the ensemble projection is constantly higher than the

WRES-only projection in most of the regions except SWPA. In the fall, the differences

between the single model and the multi-model ensemble include both the spread of

uncertainty and the predictions. Ensemble projections are lower than WRES-only

projections with NT lower than and MT close to the baseline. As expected, there
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Figure 5. Annual and seasonal hydropower generation compared between near-term

(NT, 2011-2030), mid-term (MT, 2031-2050) from WRES model only and multi-model

ensemble (WRES and WMP). The baselines (1966-2005) are derived from the ensemble

mean.

are more seasonal differencesin the hydropower models across the PMAs. A relative

change comparison between WRES and WMP (Figure S1) hightlights a few regions

with relatively large differences in terms of trend and the range of uncertainty. For

instance, the two models projected different directions of change in MT over BPA in the

fall and in NT over WAPA in the spring. In SEPA, the NT-projected fall generation

has noticeably greater uncertainty in WRES than in WMP. These differences could

lead to systematic uncertainty with different choices of model. To further investigate

the seasonal differences between models, we focus next on the projection consistency

analyses.

3.2.2. Projection Consistency

Projection consistency between two hydropower models was investigated using the

relative projection changes normalized by the baseline projections from each model. To

simplify the comparisons, we combined the NT and MT into one single future period

and compare the projections across GCMs at annual and seasonal scales (Figure 6).
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Figure 6. Scatter plots of annual and seasonal generation changes (1966-2005 to

2011-2050) from two hydropower models for 10 GCM projections over the four PMAs.

The results indicate that there is a hydropower model agreement at the annual scale for

a +3% in WRES and a +1% in WMP across all PMAs and GCMs. The projections are

close to the 1:1 line, reflecting consistent agreement across all PMAs as well and across

wet and dry GCMs. At the seasonal scale, the projections from two hydropower models

are consistent in terms of the direction of change. However, the difference in changing

rate could be as high as about 8% in the spring, due to the large difference in historical

predictions.

A comparison of cumulative distribution function (CDF) curves generated from

seasonal median projections (Figure 7) provides an overview of the distribution of the

projections. Generally speaking, the same hydropower models tend to follow the same

distribution shapes with different median values responding to the climate signal in

different projection periods. Different hydropower model, on the other hand, may

project different distribution shape with close median values (e.g. BPA-summer, SEPA-

summer), or different distribution shape with different median values (e.g. WAPA-fall,

WAPA-winter, SWAP-fall), or even similar distribution shapes with different median

values (e.g., WAPA-summer, SEPA-winter). The different climate-signal-responding-

mechanisms of the hydropower models enrich the spectrum of the projections in extreme

values but also raise a question about the contribution of the uncertainty from the choice

of hydropower model, which is analyzed in the next subsection.
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3.3. Uncertainty Contributions

Figure 7. 1966-2005 and 2011-2050 seasonal median generation cumulative

distribution function (CDF) compared between WRES and WMP over the four PMAs

The ANOVA technique is employed to understand and quantify the contributions

to systematic uncertainty from different modeling structures (i.e., multi-hydropower

models versus multi-GCMs) for annual and seasonal hydropower projections (Figure

8). The bars shown on each panel in the figure consist of three components (climate

model, hydropower model, and residual), indicating their contributions to the total

variance of future hydropower projections. The results reveal that at the annual time

scale, the climate model can explain nearly 70% of the variance across the PMAs, while

the contribution from hydropower model remains in the range of 11-17% . However,

at the seasonal scale, the contribution of hydropower model starts to become more

prominent. The contribution of uncertainties can go as high as 48% for BPA in spring

and summer, and 50% in WAPA in spring. These results indicate that the choice of

hydropower model could have large impacts on the overall modeling results, especially

at the seasonal time scale.

4. Discussion

4.1. Additional Insights from Multi-Model Projections

Overall, the annual projections in near-term and mid-term future periods were consistent

between two hydropower models, with more nuances occurring by region at the seasonal

scale. The addition of WMP in the multi-model ensemble tends to increase the range

of the spread in projections, albeit in consistent directions. However, at an annual
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Figure 8. Major contributions to the variance in hydropower generation over the four

PMAs

time scale, diversity in GCMs explains most of the variance in the overall hydropower

projections.

The seasonal projections are more sensitive to the diversity in hydropower model

structure than the annual projections, especially in the Western US where reservoir

storage is greater. This result is expected because reservoir operations have an impact

on the seasonal timing of the streamflow, while the annual volume remains controlled

by water demand and overall runoff. The seasonal time scale complements the previous

assessment - which was limited to the annual scale - and supports actionable insight

into long-term planning by supporting the evaluation of seasonal coincidences between

hydropower and climate-sensitive electricity demand variations [Turner et al., 2019].

4.2. Potential Change in Future Operations

Zhou et al. [2018] demonstrated that updating the reservoir operations to future flow

rates would affect the seasonal hydropower projections - specifically the timing of

change even though in magnitude the difference was very small due to the regulated

nature of the flow. In this study, we focused on developing a multi-hydropower model

ensemble with as much consistency as possible. The process-based representation of

hydropower can represent non-stationarity and is thus critical for federal hydropower

where multiple water objectives take priority over hydropower, including seasonal water

supply operations. Other factors could change the operations and seasonal shape of

hydropower generation in non-federal facilities such as changes in markets, in electricity

demand seasonality, and the evolving generation portfolio.
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5. Summary and Conclusions

We extended a previous assessment of the effects of climate change on US federal

hydropower generation with a multi-model modeling approach and focused on seasonal

assessment with uncertainty partitioning. To the best of our knowledge, this is a first

CONUS-scale hydropower assessment that attempts to perform uncertainty partitioning

associated with both climate and hydropower models. The modeling toolchain consists

of an ensemble of downscaled climate projections, a high-resolution hydrology model,

and further informing two hydropower models (regression-based and process-based).

The regression-based model displays a lower mean absolute error over the historical

period than the process-based approach. While the overall projection range has

increased, the directions of projections are consistent. The seasonal analysis reveals

the importance of using a multi-hydropower model approach in the Western US regions

where storage is substantial, and where the hydropower model structure contributes

to the variance in seasonal projections. Overall, total federal hydropower generation

is projected to increase, with 8 out of 10 climate models showing an increase with

both hydropower models. Among all federal regions, the Northwest (BPA) average

hydropower generation is the only one projected to decrease in the near-term, while all

regions are projected to increase in the long-term. The value of using a multi-hydropower

model approach is demonstrated over the BPA and WAPA regions where up to 50% of

seasonal variability can be attributed to the structure of the hydropower model. Those

projections remain long-term trends that do not reflect ongoing droughts across the

US, and more research is needed to account for multi-year droughts in those long-term

assessments.

The emphasis of this work was to demonstrate the impact of hydropower

representations on overall hydropower projections. Specifically, the monthly regression-

based model currently has lower mean absolute errors, which is desired for informing

long-term electricity reliability studies [Voisin et al., 2020]. However, the process-based

approach allows to support climate change impact assessment consistently across a

range of water-dependent sectors such as agriculture toward understanding tradeoffs

and designing co-resilient adaptation strategies [Reed et al., 2022]. Future analysis could

also include multiple hydrology models and downscaling approaches. Nevertheless, the

current analysis allows for the identification of regions where multi-sectoral assessments

will need to address accuracy in representing hydropower representation for actionable

insights.

6. Data Availability

The monthly hydropower generation projections for the United States Fed-

eral Hydropower plants for the periods of 1966-2005 (historical period) and

2011-2050 (future period) from WRES and WMP are made available at

https://doi.org/10.5281/zenodo.6506089. The input runoff datasets of the hy-
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dropower models used in this study are prepared by the second 9505 Climate

Change Impact Assessments team, and are available upon reasonable request from

https://www.ornl.gov/project/effects-climate-hydropower.
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