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Abstract  20 

Machine learning algorithm is applied to shear wave velocity (Vs) inversion in surface wave 21 

tomography, where a set of 1-D Vs profiles and the corresponding synthetic dispersion curves 22 

are used in network training. Previous studies showed that performances of a trained network 23 

depend on the input training dataset with limited diversity and therefore lack generalizability. 24 

Here, we present an improved semi-supervised algorithm-based network that takes both model-25 

generated and observed surface wave dispersion data in the training process. The algorithm is 26 

termed Wasserstein cycle-consistent generative adversarial networks (Wcycle-GAN). Different 27 

from conventional supervised approaches, the GAN architecture extracts feature from the 28 

observed surface wave dispersion data that can compensate the limited diversity of the training 29 

dataset generated synthetically. The cycle-consistency enforces the reconstruction ability of input 30 

data from predicted model using a separate data generating network, while Wasserstein metric 31 

provides improved training stability and enhanced spatial smoothness of the output Vs model. 32 

We demonstrate improvements by applying the Wcycle-GAN method to 4076 pairs of 33 

fundamental mode Rayleigh wave phase and group velocity dispersion curves obtained in 34 

Southern California. The final 3-D Vs model from the best trained network shows large-scale 35 

features that are consistent with the surface geology. Our Vs model has smaller data misfits, 36 

yields better spatial smoothing, and provides sharper images of structures near faults in the top 37 

15 km, suggesting the proposed Wcycle-GAN algorithm has stronger training stability and 38 

generalization abilities compared to conventional machine learning methods. 39 

1. Introduction 40 

Machine learning, particularly deep learning (LeCun et al., 2015), has attracted great 41 

attentions in geophysical fields, both in active- and passive-source seismology, such as 42 

automated seismic image segmentation (e.g., Wu et al., 2019), acoustic impedance inversion 43 

(e.g., Das et al., 2019), seismic phase picking (e.g., Ross and Ben-Zion, 2014; Ross et al., 2018; 44 

Zhu and Beroza, 2019), and event detection (e.g., Mousavi et al., 2020). The supervised learning 45 

such as convolutional neural networks (CNN) based methods have been widely utilized in 46 

geophysical studies. The neural networks approach has been proven to be promising in surface 47 

wave studies, for instance, extraction of crustal thickness (Devilee et al., 1999; Meier et al., 48 
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2007; Cheng et al., 2019) from surface wave data, and automatic surface wave travel time 49 

dispersion picking (e.g., Zhang et al., 2020).  50 

The shear wave velocity (Vs) inversion problem in surface wave tomography, i.e., mapping 51 

from surface wave velocity dispersion curves to 1-D Vs depth profiles, is highly nonlinear and 52 

underdetermined (e.g., Qiu et al., 2019). Conventional methods, such as linearized inversion 53 

(e.g., Herrmann et al., 2013), near-neighbor algorithm (e.g., Wathelet, 2008), and nonlinear 54 

Bayesian Markov Chain Monte Carlo method (MCMC; e.g., Roy & Romanowicz, 2017; Shen et 55 

al., 2013), are able to provide reliable results in previous studies if an initial model with 56 

sufficient accuracy is available. Hu et al. (2020) applied CNN based Vs inversion to Rayleigh 57 

wave dispersion data in China and the southern California (SC) plate boundary regions. The 58 

results show the effectiveness of the CNN technique and demonstrate the quality of the training 59 

dataset can affect accuracy of the output Vs model. In this study, we develop a deep-learning-60 

based method that has the potential to alleviate the dependency on the accuracy of the initial Vs 61 

model while preserving the speed of the inversion as demonstrated in Hu et al. (2020). 62 

The workflow of CNN based Vs inversion is shown in Figure 1a. A labeled dataset is split 63 

into a training set and a validation set. The “labeled data” usually consists of a known Vs model 64 

and its corresponding theoretical dispersion curves (e.g., Hu et al., 2020), and provides learnable 65 

examples to supervise the training of networks. The neural network stops updating when the 66 

prediction accuracy of the validation set reaches its optimum. The trained network is then 67 

applied to the observed dispersion data, later referred to as “unlabeled data”, to output the best 68 

fitting Vs model. Since only labeled dataset is used in the training process, quality of the Vs 69 

model generated from the CNN is dependent on the similarity of the initial model and the true 70 

structures (Hu et al., 2020).  71 

In comparison, generative adversarial networks (GAN; Goodfellow et al., 2014) introduce an 72 

adversarial network (discriminator) that incorporates both the labeled and unlabeled datasets into 73 

the training process (i.e., semi-supervised; Figure 1b), in an effort to alleviate the strong labeled 74 

dataset dependency of the CNN. In addition, we introduce Cycle-consistent GAN (Cycle-GAN; 75 

Zhu et al., 2017; Yi et al., 2017), in which a data generative network that learns to reconstruct the 76 

input data from its predicted model is added. It enforces the model and data generative subnets to 77 

be self-consistent and penalizes the reconstruction misfit, consequently reducing the variance of 78 

both the forward and backward generative networks. Compared to CNN or GAN, Cycle-GAN 79 

Figure 1 
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has been proven to generate predictions for seismic trace interpolation (e.g., Kaur and Fomel, 80 

2019) and impedance inversion (e.g., Wang et al., 2019) with better accuracy under the same 81 

setup. To further improve training stability (Arjovsky and Bottou, 2017) of the GAN algorithm, 82 

we adopt the structure of WGAN-GP, i.e., using Wasserstein distance and adding a gradient 83 

penalty (GP; Gulrajani et al., 2017) in the adversarial loss function (Arjovsky et al., 2017). The 84 

state-of-the-art hybrid method (hereinafter, Wcycle-GAN) combines the structures of Cycle-85 

GAN and WGAN-GP, and outperforms conventional machine learning algorithms in biomedical 86 

translation (McDermott et al., 2018) and seismic impedance inversion (Cai et al., 2020). 87 

In this paper, we demonstrate the application of the Wcycle-GAN method to Vs inversion 88 

using dispersion data derived for the SC plate boundary region, one of the most well-studied 89 

areas in the world. To better evaluate the seismic hazard in SC, several tomographic velocity 90 

models were developed using different datasets with various resolutions. The two Community 91 

Velocity Models (CVM), CVM-H15.1 (Shaw et al., 2015) and CVM-S4.26 (Lee et al., 2014), 92 

derived via full waveform tomography were widely used as the initial model in previous surface 93 

wave tomography studies of this area (e.g., Barak et al., 2015; Berg et al., 2018; Qiu et al., 2019). 94 

We first demonstrate the preparation of the training dataset as the combination of labeled dataset 95 

generated using the CVM-H15.1 and unlabeled data as the Rayleigh wave velocity dispersion 96 

maps from Qiu et al. (2019) in section 2. The network architecture of the Wcycle-GAN designed 97 

for this specific dataset and training process are presented in section 3. We then input the 98 

unlabeled data to the best trained Wcycle-GAN and obtain the final 3-D Vs model as the output. 99 

The final 3-D Vs model and the corresponding data misfits are presented in section 4. Compared 100 

to the models generated from conventional CNN algorithm and linearized inversion (Qiu et al., 101 

2019), our Vs model yields smaller data misfit and improved image of structures near major 102 

faults. It is important to note that this method is the first machine learning based Vs inversion 103 

study that incorporates unlabeled data in the training process, which has the potential to be 104 

applied to surface wave dispersion datasets collected at various scales and from regions where 105 

subsurface structures are poorly constrained from previous studies. 106 

2. Data   107 

2.1. Rayleigh Wave Phase and Group Velocities – Unlabeled Data 108 
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We use the isotropic phase and group velocity maps of fundamental mode Rayleigh waves 109 

from Qiu et al. (2019) as the unlabeled dataset, which is used in both the training process and 110 

generation of the final 3-D Vs model. Travel times of surface waves reconstructed from ambient 111 

noise cross correlations for a seismic network with 346 stations in SC (triangles in Figure 2) are 112 

first measured at each station pair over a period range of 2 to 20 s. Eikonal tomography is then 113 

applied to resolve isotropic phase and group velocity maps and corresponding uncertainties with 114 

a grid size of 0.05°×0.05° (grid lines in Figure 2) for periods between 2.5s and 16s. Details of the 115 

Rayleigh wave velocity dispersion maps can be found in Qiu et al. (2019).  116 

In this study, we use velocity dispersions in the period range between 3 s and 16 s to 117 

construct the unlabeled data, as the velocity maps at 2.5 s are less robust (i.e., large uncertainties) 118 

and only cover a small part of the SC plate boundary region. Dispersion curve and its uncertainty 119 

at each grid cell are interpolated and discretized into 17 samples, an interval of 0.5 s from 3 to 6 s 120 

and 1 s from 6 to 16 s. Since the uncertainties are estimated from Eikonal tomography by 121 

analyzing velocity maps derived for different virtual sources (Section 4 of Qiu et al., 2019), 122 

uncertainty values less than 0.05 km/s are set to 0.05 km/s to account for errors from other 123 

sources (e.g., dispersion picking, accuracy of the trained network, etc.). Grid cells with a phase 124 

or group velocity dispersion curve that has less than 8 sample points are excluded. In total, the 125 

unlabeled data consists of 4076 pairs of Rayleigh wave phase (Figure S1) and group velocity 126 

(Figure S2) dispersion curves, and the corresponding uncertainties are utilized to calculate the 127 

data misfit distribution in section 4. 128 

2.2. Community Velocity Model and Synthetic Dispersion Curves – Labeled Data 129 

We take advantage of the CVM resolved from full waveform tomography in constructing the 130 

labeled dataset for training the network. The CVM-H15.1 (later referred to as “CVM-H”) is 131 

preferred to CVM-S4.26 in the network training because of its inclusion of topography, smaller 132 

misfit to observed dispersion data, and model simplicity, as discussed in Qiu et al. (2019). 16480 133 

1-D profiles of Vs, Vp, and density are extracted from the CVM-H with a grid spacing of 134 

0.03º×0.03º for the region covered by the unlabeled data (Figure 2). These 1-D profiles are 135 

discretized into 98 layers with a thickness of 0.5 km from 0 km to 49 km (relative to the earth 136 

surface) and a half space below 49 km. The study area is confined to a longitude range from 137 

120.2⁰W to 114.9⁰W and a latitude range from 32.6⁰N to 36.0⁰N. Each 1-D Vs profile (Figure 138 

Figure 2 
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S3a) is labeled by the synthetic Rayleigh wave phase and group velocity dispersion curves 139 

(Figure S3b). The synthetic velocity dispersion curve is calculated using the Computer Programs 140 

in Seismology (CPS) software package (Herrmann, 2013), in which 1-D profiles of Vs, Vp, and 141 

density at the target location are inputted.  142 

3. Methodology 143 

In contrast to the conventional CNN, GAN incorporates a discriminative network that 144 

enables the use of unlabeled data. In CNN applications (Figure 3a), we train a model generative 145 

network (𝐺𝑚) using labeled data only, by iteratively minimizing the point-wise misfit between 146 

the translated model (i.e., 𝐺𝑚 predictions) and the real Vs model. The misfit is also known as the 147 

estimation loss (ℒ𝑒𝑠𝑡) and can be measured in cross-entropy or least-square format. GAN runs 148 

updates of generative and discriminative networks separately in a single iteration (Figure 3b left 149 

column). In the first step, the trainable parameters are fixed in 𝐺𝑚 and model discriminator (𝐷𝑚) 150 

is updated. The discriminator is renewed to separate the real Vs models and the outputs from 151 

model generator. Numerically, this is implemented by forcing 𝐷𝑚  to output binary 152 

discrimination, where “1” stands for real model samples in the labeled dataset and “0” represents 153 

the outputs from 𝐺𝑚. Next, the model discriminator is fixed, and the generator is updated to 154 

“fake” the discriminator and score “1” with the translated model. Similar process is conducted 155 

for unlabeled data (Figure 3b right column) except when we do not have real Vs models to feed 156 

into model generator in the first step. In this way, the discriminative network searches for a 157 

transformation to maximize the difference between real and translated models while the 158 

generator seeks to minimize it. The corresponding loss function is named adversarial loss (ℒ𝑎𝑑𝑣), 159 

which can be calculated in cross-entropy (Goodfellow et al., 2014), least-square (Mao et al., 160 

2017) and Wasserstein distance (Arjovsky et al., 2017). 161 

Cycle-GAN (Figure 3c) further extends the GAN algorithm with the concept of “cycle-162 

consistency”, by introducing an extra data generative (𝐺𝑑) and discriminative network (𝐷𝑑). For 163 

simplicity, we separate the algorithm into data cycle (green arrows in Figure 3c) and model cycle 164 

(purple arrows in Figure 3c). In the data cycle for the labeled data, besides computation of the 165 

adversarial loss, the translated model (i.e., output from 𝐺𝑚) is fed into 𝐺𝑑  to reconstruct the 166 

original dispersion data (i.e., the input to 𝐺𝑚 ). The point-wise reconstruction misfit (cycle-167 

consistent loss, ℒ𝑐𝑦𝑐) is minimized during the iterations. Similar to the linearized Vs inversion 168 

Figure 3 
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where we compute the predicted data from the current best model using known physical 169 

relations, in the Cycle-GAN, we compute the reconstructed data but replace the physical 170 

modeling with a data generative network. In the model cycle (bottom left of Figure 3c), we 171 

generate the translated data from the real Vs model and estimate the adversarial loss using the 172 

data discriminator 𝐷𝑑. The translated data is then fed into 𝐺𝑚 to generate reconstructed model, 173 

and the cycle-consistent loss of the model reconstruction is penalized (Figure 3c left column). 174 

The unlabeled data go through similar process in the data cycle (Figure 3c right column). 175 

However, since their corresponding Vs models are unknown, there is no model cycle for the 176 

unlabeled data. 177 

Our approach to resolve Vs structures from Rayleigh wave velocity dispersion curves is 178 

based on a specific Cycle-GAN algorithm that utilizes Wasserstein adversarial loss. We present 179 

the details of Wcycle-GAN algorithm-based surface wave tomography as follows.  180 

3.1. Sub Neural Network Structures 181 

The architecture of the proposed Wcycle-GAN consists of four sub neural networks (Figures 182 

S3c-S3f) – two generative subnets (𝐺𝑚 and 𝐺𝑑) and two discriminative subnets (𝐷𝑚 and 𝐷𝑑). 183 

Different from Hu et al. (2020), for all the subnets, a 1-D rather than 2-D neural network is 184 

implemented for network simplicity. Unlike image translation (Isola et al., 2017) or seismic 185 

impedance inversion (Cai et al., 2020) problems, surface wave dispersion curves and Vs models 186 

have different ranges of values and dimensions. In this study, the input dimension of dispersion 187 

data to the neural networks is 17x2 with the phase and group velocities as two separate channels, 188 

while the Vs model is 99x1 (Section 2). Considering the difference in Vs model and dispersion 189 

data dimensions, we design specific architectures for model and data generative subnets (Figures 190 

S3d and S3e). In the model generator, we double the number of filters at each convolutional 191 

layer similar to the VGG16 network (Simonyan and Zisserman, 2014). The number of filters at 192 

each convolutional layer from shallow to deep is 32, 64, 128, and 256 (Figures S3c-S3f), 193 

respectively. Accordingly, in the data generative subnet (𝐺𝑑), we first upsample the Vs model to 194 

the dense feature map with a dimension of 17x256, and sequentially half the number of filters in 195 

the following convolutional layers. For both the model and data discriminative subnets (Figures 196 

S3c and S3f), we double the number of filters in the convolutional layers and apply a sigmoid 197 

activation function in the fully connected layer to output probability values between 0 and 1.  198 
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In all the subnets, the convolutional layer uses 1D convolution with kernel size 3x1 and zero 199 

padding on the boundary. The stride equals to 1 except in the 𝐷𝑚, where the stride value of 2 is 200 

used to reduce trainable parameters. To accelerate the training process, at each convolutional 201 

layer, we apply the batch normalization (Ioffe and Szegedy, 2015) after the ReLU (Nair and 202 

Hinton, 2010) activation and initialize the weight parameters in the convolutional layers using 203 

the He initialization (He et al., 2015). In addition, as suggested by Gulrajani et al. (2017), we 204 

replace the batch normalization in the adversarial subnets with the layer normalization (Ba et al., 205 

2016). 206 

3.2. Loss Function 207 

To optimize both the generative and adversarial subnets, the loss function in the Wcycle-208 

GAN is calculated by a combination of the estimation loss, cycle-consistent loss, and adversarial 209 

loss, and can be written as  210 

ℒ = ℒ𝑎𝑑𝑣 + 𝜆1ℒ𝑐𝑦𝑐 + 𝜆2ℒ𝑒𝑠𝑡,        (1) 211 

where ℒ𝑎𝑑𝑣, ℒ𝑐𝑦𝑐, and ℒ𝑒𝑠𝑡 stand for the Wasserstein adversarial loss, the cycle-consistent loss, 212 

and the estimation loss, respectively. The hyperparameters 𝜆1 and 𝜆2 are the weighting factors. 213 

We introduce the notations which will be used in the following discussions: 𝒎 and 𝒅 stand for 214 

the labeled Vs model and synthetic dispersion data pairs, respectively; 𝒅∗ is the unlabeled real 215 

dispersion data; 𝑾∗  represents the trainable parameters in the networks; 𝑓𝑾∗
(∗) is the neural 216 

network operator that generates translated samples using Vs model as input. For instance, 𝑾𝐺𝑚
 217 

is the trainable parameters in the model generative subnet; 𝑓𝑾𝐺𝑚
(𝒎) is the output translated 218 

dispersion data generated by 𝐺𝑚.  219 

The calculation of Wasserstein adversarial loss can be described as two steps. First, we fix 220 

the trainable parameters in the generator 𝐺𝑚 and update discriminator 𝐷𝑚 using the formula 221 

m𝑖𝑛𝑾𝐷𝑚
ℒ𝑎𝑑𝑣 = −𝑓𝑾𝐷𝑚

(𝒅) −  𝑓𝑾𝐷𝑚
(𝒅∗) + 𝑓𝑾𝐷𝑚

(𝑓𝑾𝐺𝑚
(𝒎)) +  𝜆 ℒ𝑔𝑝  (2) 222 

The gradient penalty loss ℒ𝑔𝑝 enforces the discriminator to be 1-Lipschitz continuous, which is 223 

the assumed to optimize the Wasserstein GAN (Arjovsky et al., 2017). Detailed implementation 224 

of ℒ𝑔𝑝 can be found in Gulrajani et al. (2017). In practice, the weighting factor 𝜆 should be large 225 

enough to avoid exploding gradient (Gulrajani et al., 2017). In this study, we set 𝜆 = 100 to 226 
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ensure good numerical stabilities (Cai et al., 2020). In the second step, the 𝐷𝑚 is fixed and 𝐺𝑚 is 227 

updated via 228 

m𝑖𝑛𝑾𝐺𝑚
ℒ𝑎𝑑𝑣 = 𝑓𝑾𝐷𝑚

(𝒅) +  𝑓𝑾𝐷𝑚
(𝒅∗) − 𝑓𝑾𝐷𝑚

(𝑓𝑾𝐺𝑚
(𝒎)) .               229 

 (3) 230 

Note that the computation of Wasserstein adversarial loss is slightly different from that of the 231 

conventional adversarial loss. Corresponding mathematical derivations of Wasserstein 232 

adversarial loss can be found in Arjovsky et al. (2017). 233 

The cycle consistency loss (Zhu et al., 2017) measures the reconstruction errors with the 234 

expression 235 

ℒ𝑐𝑦𝑐(𝑾𝐺𝑚
,  𝑾𝐺𝑑

) = 𝐸 (𝒅∗, 𝑓𝑾𝐺𝑑
(𝑓𝑾𝐺𝑚

(𝒅∗))) + 𝐸 (𝒅, 𝑓𝑾𝐺𝑑
(𝑓𝑾𝐺𝑚

(𝒅))) , (4)  236 

for the data cycle and 237 

ℒ𝑐𝑦𝑐(𝑾𝐺𝑚
,  𝑾𝐺𝑑

) = 𝐸 (𝒎, 𝑓𝑾𝐺𝑚
(𝑓𝑾𝐺𝑑

(𝒎))) ,     (5)  238 

for the model cycle. 𝐸(∗,∗) stands for a measurement of the difference between two samples, and 239 

in this proposed method it is computed by mean-square error (MSE). Using the labeled data as 240 

an example, the ℒ𝑐𝑦𝑐  is computed as the difference between the input data 𝒅  and the 241 

reconstructed data 𝑓𝑾𝐺𝑑
(𝑓𝑾𝐺𝑚

(𝒅)). The reconstructed data is the output after the original data 242 

consequently passed through the model (𝐺𝑚) and data (𝐺𝑑) generative subnets. We also penalize 243 

the estimation loss in the Wcycle-GAN algorithm to constrain the fitting in the labeled dataset, 244 

by computing the MSE between the translated samples and ground truth in the model and data 245 

domain, 246 

ℒ𝑒𝑠𝑡(𝑾𝐺𝑚
,  𝑾𝐺𝑑

) = 𝐸 (𝒎, 𝑓𝑾𝐺𝑚
(𝒅)) +  𝐸 (𝒅, 𝑓𝑾𝐺𝑑

(𝒎)) .    (6)  247 

The complete loss functions can be found in the supplementary materials.  248 

3.3. Training Neural Networks and Evaluation 249 

Before feeding the dispersion data and Vs model into the neural network, we apply linear 250 

transformations (see supplementary materials) to normalize them into the interval range of [-1, 1] 251 

to speed up the convergence of the training process. Outputs of the neural network in the data 252 

and model domains are transformed back to its original amplitude according to their linear 253 

transformation relations before computing misfits. For a comparative study, we apply both the 254 
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conventional 1-D CNN and the proposed Wcycle-GAN method to the Vs inversion at SC region, 255 

and the structure of CNN is the same as the model generative subnet (𝐺𝑚) in the Wcycle-GAN. 256 

For the training process of both CNN and Wcycle-GAN (Figure S4), the iteration stops when the 257 

root-mean-square (RMS) misfit between the predicted and true shear velocities in the labeled 258 

data is below 0.07 km/s, 259 

𝐸𝑅𝑀𝑆 = √
1

𝑁𝑏𝑎𝑡𝑐ℎ
∑ ‖𝑉𝑠_𝑖

𝑝𝑟𝑒𝑑
− 𝑉𝑠_𝑖

𝑙𝑎𝑏𝑒𝑙‖
2

2𝑁𝑏𝑎𝑡𝑐ℎ

𝑖=1      ,                          (7)  260 

where 𝑁𝑏𝑎𝑡𝑐ℎ is the number of Vs models in a batch, 𝑉𝑠_𝑖
𝑝𝑟𝑒𝑑

 and 𝑉𝑠_𝑖
𝑙𝑎𝑏𝑒𝑙 are the predicted Vs and 261 

true models in the labeled data,  respectively. For the hyperparameter selection, we choose 262 

𝜆1 = 5 and 𝜆2 = 3 for training the Wcycle-GAN. The training batch size is 160 for the labeled 263 

data and 80 for the unlabeled data. We use Adam (Kingma and Ba, 2014) for optimization with a 264 

learning rate of 5 × 10−5  and other parameters as default. For the CNN training, the neural 265 

networks could further lower its RMS misfit of the labeled data at later epochs, which may result 266 

in overfitting. 267 

Finally, we apply the trained generative networks (𝐺𝑚) to the observed dispersion data and 268 

output the final Vs model. To evaluate the performance of models obtained from different 269 

methods, we compute the chi-square misfit between the predict data calculated using the final Vs 270 

model and the observed dispersion data at every grid point: 271 

𝜒 = √1

𝑁
∑ [

𝑑𝑖
𝑝𝑟𝑒𝑑

−𝑑𝑖
𝑜𝑏𝑠

𝜎𝑖
𝑜𝑏𝑠 ]

2
𝑁
𝑖=1 ,                 (8) 272 

where N=17x2 is the number of observed dispersion data points, 𝑑𝑖
𝑝𝑟𝑒𝑑

and 𝑑𝑖
𝑜𝑏𝑠  are the 273 

theoretical and observed dispersion wave speed (i.e., phase and group velocities) at the 𝑖𝑡ℎ data 274 

point, and 𝜎𝑖
𝑜𝑏𝑠 is the corresponding data uncertainty. A good data fitting is achieved when the 275 

normalized 𝜒2 misfit is close to 1 (Bevington, 1969; Zelt et al., 2003). 276 

4. Results 277 

The advantages of the proposed Wcycle-GAN method are demonstrated using surface wave 278 

dispersion data obtained from the SC plate boundary region. We first present the 3-D Vs model 279 

obtained from Wcycle-GAN method and compare it with that of Qiu et al. (2019) and the surface 280 

geology (section 4.1). Then, models derived from different machine learning algorithms (e.g., 281 
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CNN) are compared to illustrate the advantages of incorporating unlabeled data into the network 282 

training process (section 4.2). 283 

4.1. Output 3-D Vs Model 284 

For training the Wcycle-GAN, the results converge after 1700 epochs. The trained network is 285 

applied to the observed dispersion data and generate the final 3-D Vs model by assembling all 286 

the 1-D Vs predictions. Because of the limited period range (i.e., 3-16s) of the input Rayleigh 287 

wave dispersion curves, the Vs model resolved beyond the 3-20 km depth range are not well 288 

constrained (Qiu et al., 2019). Therefore, we only focus on the Vs models at depths of 3-15 km. 289 

Depth slices at the depth of 5 km and 10 km for the initial model (CVM-H) and differences 290 

between the initial and final models are presented in Figure S5. The largest differences between 291 

our final model and the CVM-H are found underneath the basins and near the Salton Trough in 292 

the top 3-10 km, consistent with that in Qiu et al. (2019).  293 

Figure 4 shows the depth slices of the Vs model resolved at 5 km and 10 km from various 294 

methods (Figure S6 for depth slices at 3 km and 15 km). At shallow depths (e.g., in the top 3-7 295 

km; Figures 4c and S6a-b), we can clearly see a good agreement between our final model 296 

(Figures 4c and 4g) and the surface geology, such as low velocity anomalies at Southern Central 297 

valley, LA Basin, Ventura Basin, and the Salton Trough; areas with high velocity in the 298 

Peninsular Ranges (e.g., Berg et al., 2018; Lee et al., 2014; Tape et al., 2010). It is important to 299 

note that our model shows the low velocity zone better within the junction between the San 300 

Jacinto Fault (SJF) and San Andreas Fault (SAF) compared to the CVM-H (Figure S5a-b).  301 

At greater depths (e.g., below 10 km; Figures 4g and S6c-d), a sharp velocity contrast from 302 

west to east in the Peninsular Ranges is observed, which is related to the Hemet stepover 303 

(Marliyani et al., 2013). Clearer velocity contrasts across major fault systems, such as Elsinore 304 

Fault (EF), SJF and SAF are depicted in the map views of the final Vs model (Figures 4g and 305 

S6c-d), suggesting the derived Vs model yields higher resolutions compared to the CVM-H. 306 

These observations agree well with the large-scale features found in the Vs model of Qiu et al. 307 

(2019). In addition, the differences between the two models at different depth slices, which are 308 

shown in Figure S7, are rather small. The consistent observation of largest velocity updates 309 

beneath basin, coherent large-scale velocity structures, together with small model differences 310 

suggest a cross-validation of both the Wcycle-GAN and the Eikonal tomography model. 311 

Figure 4 
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Unlike the conventional linearized Vs inversion (e.g., Qiu et al., 2019), in which an extra 312 

spatial filtering is applied to achieve a smoothed 3-D Vs model, our final Vs model in map view 313 

suggests that the Wcycle-GAN method inherently guarantees a spatial smoothness that is similar 314 

to those of the surface wave velocity dispersion maps (Figure S1). The proposed Wcycle-GAN 315 

method shows potential to improve lateral consistency of the neighboring 1-D models, which is a 316 

significant drawback in current dispersion-curve based 1-D Vs inversion. We note that, while 317 

presenting the Vs model in map view better shows the large-scale features that are consistent 318 

with the surface geology, it is hard to demonstrate variations in structures at depth, such as 319 

geometry of the major fault systems (e.g., width of low-velocity zone and dipping fault). Thus, in 320 

section 5, we further illustrate three depth cross sections (blue lines in Figure 2) of our final Vs 321 

model for a detailed discussion of the resolved fault structures. 322 

Figure 5 shows histograms of the chi-square misfit of the dispersion data computed following 323 

equation 8 for Vs models obtained from different methods. To calculate the misfit, the 324 

compressional velocity (Vp) model by assuming the same Vp/Vs ratio as the CVM-H and the 325 

density model same as the CVM-H are used. Map views of 𝜒 misfits are depicted in Figure S8. 326 

The misfits are lower using the Wcycle-GAN model than using the Vs model of Qiu et al. (2019) 327 

in the Salton Trough region, suggesting our final Vs model is more reasonable in the area. The 328 

average misfit of the Wcycle-GAN based model (0.949; Figure 5c) is slightly smaller than 1, 329 

suggesting the final Vs model is of good fit to the observed dispersion data. Although the 330 

average misfit value of our model is a bit higher than that (0.864; Figure 5d) of Qiu et al. (2019), 331 

we note the misfit values are also sensitive to the input Vp and density models, which might not 332 

be accurate as we assume the Vp/Vs ratio and density to the same as those of CVM-H. 333 

4.2. Comparison with the Conventional CNN Algorithm 334 

In this section, we compare the Vs model from the Wcycle-GAN method with that derived 335 

from the conventional CNN algorithm. The training parameters (e.g., batch size, learning rate) 336 

and stopping criteria are the same as illustrated in section 3.3. For the CNN case, 120 epochs are 337 

needed to achieve a convergent training. Training the Wcycle-GAN takes longer time than the 338 

CNN method due to extra efforts on training the adversarial networks. But the Wcycle-GAN 339 

method still provides sufficient efficiency as the 1700 epochs only took ~12 hours using a single 340 

NVIDIA GeForce RTX 2080 graphic card. After the training process, for both the CNN and 341 

Figure 5 
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Wcycle-GAN, it only takes ~30 s to generate the 3-D Vs model using 4076 pairs of group and 342 

phase velocity dispersion curves, demonstrating their efficiencies in model predictions.  343 

Figures 4a and 4e present depth slices of the Vs model derived from the CNN method at 5 344 

km and 10 km, respectively, while the data misfit histogram is shown in Figure 5a. Compared 345 

with results from the proposed Wcycle-GAN method (Figures 4c, 4g, and 5c), the Vs model 346 

from CNN is less smooth and continuous, and shows much higher average misfit values, 347 

suggesting results from the CNN method are less stable and robust. This is likely due to the 348 

limited diversity provided in the labeled dataset generated synthetically. In addition, the 349 

Wasserstein metric used in the Wcycle-GAN improves the long-wavelength features recovery in 350 

the network training, resulting in an enhanced spatial smoothness of the output 3-D Vs model. 351 

Similar property of Wasserstein metric has been observed in near surface seismic velocity 352 

estimation using full-waveform inversion (Yang et al., 2018). The better accuracy in fitting the 353 

observed dispersion data and spatial continuity of the Vs model from the Wcycle-GAN method 354 

demonstrates the effectiveness of the proposed method by incorporating advanced loss function, 355 

cycle consistency, and unlabeled data into the training process. 356 

5. Discussions 357 

We suggest the proposed Wasserstein Cycle-GAN to be a robust data-driven method. On one 358 

hand, the Wasserstein adversarial loss with gradient penalty provides good training stability and 359 

convergence characteristic comparing with cross-entropy or least-squares. Figure S9 shows the 360 

comparative study of using different metrics for adversarial loss. Using the least square loss may 361 

result in underfitting to the labeled data as the incorrect prediction of the velocity jump at Moho 362 

depth. Both cross-entropy and least-square adversarial loss can result in strong artifacts and 363 

negative velocity gradient in the Vs predictions using unlabeled data. In comparison, Wasserstein 364 

loss results in high model prediction quality using either labeled or unlabeled data. The Vs model 365 

from the Wcycle-GAN method is smoother and laterally more continuous, compared to models 366 

derived from supervised method (Section 4.2). On the other hand, the proposed method 367 

incorporates the observed dispersion data into the training process that improves the 368 

generalization ability of the trained network. In addition, for the weighting factors in the loss 369 

function, changes in hyperparameter 𝜆1 and 𝜆2 has relatively small effects on the final derived 370 
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Vs model, but a future study of the effects of the two hyperparameters would be beneficial for 371 

optimizing the Wcycle-GAN method. 372 

To further discuss the importance of incorporating unlabeled data in the training process, we 373 

perform a third experiment, in which the same Wcycle-GAN structure is used but trained without 374 

the unlabeled data. The weighting factor 𝜆2 of the loss function (equation 1) is set to 10, different 375 

from section 3.2, since only the labeled data is used for training. Figures 4b and 4f present map 376 

views of the output Vs model from such experiment. Strong local velocity jumps and artificial 377 

lateral heterogeneities are seen in the model, comparing with the Vs model map views in Figures 378 

4c and 4g. Training the Wcycle-GAN without unlabeled data results in larger data misfits (~2.3 379 

in average) that are shown clearly both in histogram (Figure 5b) and map view (Figure S8), 380 

compared to those of the proposed Wcycle-GAN method (0.949). Therefore, incorporating the 381 

unlabeled data into the training process is essential for providing robust and reliable Vs model 382 

when using machine learning based methods to solve the Vs inversion problem. 383 

We also note that our Wcycle-GAN method requires less amount of labeled data in the 384 

training. To demonstrate this, we reduce the amount of labeled data by down sampling with a 385 

grid spacing of 0.1ºx0.1º (originally 0.03ºx0.03º). This results in a selection of 1890 out of the 386 

originally 16480 labeled data, which is even much less than the number (4076) of observed 387 

dispersion curves. Figures 6a and 6c show the depth slices of the Vs model from the Wcycle-388 

GAN method trained with down sampled labeled data. The resulting Vs models are similar 389 

between the methods trained using a reduced and the full labeled datasets. Figure 5e shows the 390 

data misfit of the Vs model from the network trained with reduced labeled dataset. There is only 391 

a small increase in the mean misfit, i.e., from 0.949 to 1.10, compared to that of results trained 392 

with the full labeled dataset. It is important to note that the average misfit value 1.1 is still much 393 

smaller than those of the supervised methods (Figures 5a and 5b). The result suggests the 394 

redundancy in the labeled data and further demonstrates the strength of the proposed Wcycle-395 

GAN method in resolving high accuracy Vs model using small amount of labeled data. This can 396 

also save time spent on training as it takes only ~4 hours after reducing the amount of the labeled 397 

dataset by almost a factor of 10. 398 

An extension to the proposed Wcycle-GAN algorithm is incorporating the location (i.e., 399 

longitude and latitude) as prior information in the training process, which can further enhance the 400 

accuracy in the application of Vs inversion. Map views of the Vs model, derived from the 401 

Figure 6 
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proposed method after incorporating the latitude and longitude of both the labeled and unlabeled 402 

data in the training process, at 5 km and 10 km are presented in Figures 6b and 6d, respectively. 403 

Details of how to incorporate location information into a machine learning network training can 404 

be found in supplementary materials. The Vs models resolved from networks trained with and 405 

without the input of location information are nearly identical to each other at a large scale (e.g., 406 

tens of kilometers; Figures 4c, 4f, 6b, and 6d). The data misfits (~0.9 in Figure 5f) are slightly 407 

smaller after incorporating the location information into the training process. Therefore, we show 408 

the cross sections of the Vs model resolved from the network trained with location information 409 

incorporated in Figure 7 to infer structures of the major fault systems. We note that the 410 

incorporation of location information for both the labeled and unlabeled data will have greater 411 

impact on the results when applying to the Vs inversion at regional or global scales. 412 

We show the cross sections DD’, EE’ and FF’ (blue lines in Figure 2), the same as those 413 

shown in Figure 1 of Qiu et al. (2019), of the final Vs model between 3 km and 20 km to infer 414 

the structures of EF, SJF, and SAF at depth. In the profile DD’, the low velocity zone indicates 415 

both the SJF and SAF are nearly vertical. This is consistent with the fault geometry near San 416 

Gorgonio Pass (SGP) from the Community fault model in SC (CFMv5; Plesch et al., 2007). 417 

Besides, we observe a pronounced low-velocity body (dashed circle, Figure 7) between depths of 418 

15-20 km, which is consistent with the results of Qiu et al. (2019) (Figure S10c). This low 419 

velocity anomaly at great depth, with ~5-7% lower velocities compared to the surrounding 420 

media, is likely related to the large damage volume beneath the SGP estimated in Ben-Zion and 421 

Zaliapin (2019).  422 

In profile EE’, we observe a broad (~5-km-wide) flower-shaped (i.e., width decreases with 423 

depth) fault damage zone with ~2-3% average velocity reduction for the SAF in the top 8-10 km 424 

that is clearly dipping towards the northeast. The estimated dipping angle of SAF in profile EE’ 425 

is ~60⁰. This dipping angle is consistent with the observation in Qiu et al. (2019), but the flower-426 

shaped fault damage zone is less clear in their results (Figure S10g). Besides, the low velocity 427 

anomaly beneath the Eastern California Shear Zone (ECSZ) is slightly deeper than that in Qiu et 428 

al. (2019). Similarly, the SAF is highlighted by a flower-shaped low-velocity zone that is dipping 429 

towards the northeast with a similar angle (~60⁰) in the top 10 km. Different from EE’, the low 430 

velocity zone is more pronounced (~4-5%) in FF’, likely indicating the rocks inside the fault 431 

zone are more damaged in the southwest.  432 

Figure 7 
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The flower-shaped fault zone structures in EE’ and FF’ are consistent with the model of Fuis 433 

et al. (2016) derived for the southern section of the SAF by jointly inverting gravity and 434 

magnetic data. In addition, the observed ~60⁰ dipping angle in both EE’ and FF’ agrees well with 435 

the previous the estimation from magnetic data (~65⁰; Fuis et al., 2012). It is important to note 436 

that the model of Qiu et al. (2019) is subject to the choice of damping parameter in and spatial 437 

smoothing after the Vs inversion. Therefore, through the cross section comparisons, we again 438 

demonstrate the robustness of our Vs model from the Wcycle-GAN model and confirm with a 439 

different method that the flower-shaped damage zone and fault dipping towards northeast 440 

observed for the southern section of the SAF in Qiu et al. (2019) are reliable. These features have 441 

important implications, such as a better understanding of strong ground motions produced by 442 

earthquakes that will occur on the SAF.  443 

6. Conclusions 444 

We implement the Wcycle-GAN method to the Vs inversion in surface wave tomography, by 445 

incorporating unlabeled data into the network training process. The proposed method shows an 446 

improved prediction accuracy, better training stability, and only requires a small amount of 447 

labeled data, compared to CNN-based method. We demonstrate these improvements by using the 448 

fundamental mode Rayleigh wave velocity dispersion data derived in the Southern California 449 

plate boundary region. The final Vs model obtained from the proposed method show clearer 450 

images of structures near faults in the top 15 km, specifically the low velocity damage zone 451 

centered on the southern section of the San Andreas fault that is dipping ~60⁰ to the northeast. In 452 

addition, integrating longitude and latitude information into the Wcycle-GAN algorithm further 453 

improves the prediction accuracy as well as the spatial continuity of the final Vs model, 454 

particularly in the cross sections. For future studies, we would like to investigate the potential of 455 

this method by reducing the amount of labeled data through leveraging random sampling or 456 

sampling strategy based on clustering analysis (Eymold & Jordan, 2019).  457 
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Figure captions 623 

Figure 1. The flowchart for (a) convolutional neural network (CNN) and (b) generative 624 

adversarial network (GAN) algorithms. The part of chart outlined by the blue dashed 625 

rectangular is further explained in Figure 3. 626 

Figure 2. Map of the Southern California plate boundary region. The thick black lines 627 

depict surface traces of major faults, coastlines, and state boundaries. The yellow triangles 628 

are seismic stations used in Qiu et al. (2019) to derive the Rayleigh wave velocity dispersion 629 

maps with a grid size of 0.05°×0.05° (grid lines). Three cross sections (i.e., DD’ to FF’; blue 630 

lines) of the final Vs model are presented in Figure 7. The cross sections DD’ to FF’ are of 631 

the same locations as those in Qiu et al. (2019). SAF – San Andreas Fault; SJF – San Jacinto 632 

Fault; EF – Elsinore Fault; ECSZ – Eastern California Shear Zone. 633 

Figure 3. The algorithm comparison between convolutional neural network (CNN), 634 

generative adversarial network (GAN), and Wasserstein Cycle-GAN (Wcycle-GAN). The 635 

suffix 𝑚 and 𝑑 represents shear velocity model and dispersion data, respectively. CNN (a) 636 

computes point-wise misfit (estimation loss: ℒ𝑒𝑠𝑡 ) between real samples and translated 637 

samples generated by a model generative network ( 𝐺𝑚 ). The GAN (b) introduces an 638 

adversarial network (𝐷𝑚 ) and computes the difference between distributions of real and 639 

generated samples using adversarial loss (ℒ𝑎𝑑𝑣), by updating generator and discriminator 640 

separately in a single iteration. The Wcycle-GAN (c) uses Wasserstein metric for adversarial 641 

loss in (b). Besides, a data generative subnet (𝐺𝑑) is incorporated to learn the modeling of 642 

velocity model to dispersion data, together with a corresponding data discriminator (𝐷𝑑). The 643 

use of 𝐺𝑑 enables an extra constraint, the cycle consistent loss (ℒ𝑐𝑦𝑐), which is estimated by 644 

the misfit between the input real sample and reconstructed sample. The complete Wcycle-645 

GAN penalty function is a linear combination of three types of the loss function (ℒ𝑒𝑠𝑡, ℒ𝑎𝑑𝑣, 646 

and ℒ𝑐𝑦𝑐). 647 

Figure 4. Comparison of depth slices for the output 3-D Vs models from four different 648 

methods. Depth slices at 5 km (left column) and 10 km (right column) for (a), (e) CNN-based 649 

model; (b), (f) Wcycle-GAN (WCGAN) based model but without using the unlabeled data in 650 

training; (c), (g) the proposed Wcycle-GAN based model; (d), (h) the Eikonal tomography 651 
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model from Qiu et al., (2019), respectively. Black lines delineate the coastline and light grey 652 

lines depict the surface traces of the major faults in southern California.  653 

Figure 5. Chi-square misfit histograms for Vs models derived from six different methods: 654 

(a) CNN-based method; (b) Wcycle-GAN (WCGAN) based model but without using the 655 

unlabeled data in training; (c) Wcycle-GAN based model with full labeled data and unlabeled 656 

data; (d) model from Qiu et al. (2019); (e) Wcycle-GAN based model but using down 657 

sampled 1890 label data; (f) Wcycle-GAN based method with location information added as 658 

extra channels in the network training.  659 

Figure 6. Depth slices of shear velocity model at 5 km (left column) and 10 km (right 660 

column) for (a), (c) Wcycle-GAN (WCGAN) based model but using down sampled 1890 661 

unlabeled data and (b), (d) Wcycle-GAN based model with location information added as 662 

extra prior information in the network training (WCGAN + Position). 663 

Figure 7. Cross sections (blue lines in Figure 2) of the Vs model resolved from the 664 

Wcycle-GAN network trained with location information. Colors in panels on the left show 665 

the velocity values, whereas velocity perturbations, relative to the 1-D average Vs depth 666 

profile, in percentage are illustrated on the right. The black curve depicts an exaggerated 667 

topography variation.  The black dashed line in each profile represents the inferred fault 668 

planes for SJF in DD’ and SAF in EE’ and FF’. The dashed ellipse in DD’ outlines a low 669 

velocity anomaly that is likely associated with rock damaged inferred in Ben-Zion & 670 

Zaliapin (2019). EF = Elsinore Fault; SJF = San Jacinto Fault; ECSZ = Eastern California 671 

Shear Zone. 672 

 673 



Figure 1.





Figure 2.





Figure 3.





Figure 4.



3.0 3.3 3.6 3.9

-120˚ -118˚ -116˚ -114˚

 Vs at 10 km 

Vs at 5-km (km/s)

-120˚ -118˚ -116˚ -114˚

2.7 3.0 3.3 3.6

Vs at 5 km 

Vs at 10-km (km/s)

33˚

34˚

35˚

36˚

0 km 100 km0 km 100 km

(c) WCGAN (g) WCGAN

33˚

34˚

35˚

36˚

33˚

34˚

35˚

36˚

0 km 100 km0 km 100 km

(a) CNN (e) CNN

33˚

34˚

35˚

36˚

0 km 100 km0 km 100 km 33˚

34˚

35˚

36˚
(d) Qiu et al., 2019 (h) Qiu et al., 2019

33˚

34˚

35˚

36˚

0 km 100 km0 km 100 km 33˚

34˚

35˚

36˚(b) WCGAN
 wo unlabeled

(f) WCGAN
 wo unlabeled

33˚

34˚

35˚

36˚



Figure 5.





Figure 6.



3.0 3.3 3.6 3.9

-120˚ -118˚ -116˚ -114˚

 Vs at 10 km

Vs at 5-km (km/s)

-120˚ -118˚ -116˚ -114˚

2.7 3.0 3.3 3.6

Vs at 5 km

Vs at 10-km (km/s)

33˚

34˚

35˚

36˚

0 km 100 km0 km 100 km
33˚

34˚

35˚

36˚

33˚

34˚

35˚

36˚

0 km 100 km0 km 100 km33˚

34˚

35˚

36˚

0 km 100 km0 km 100 km 33˚

34˚

35˚

36˚

33˚

34˚

35˚

36˚

WCGAN with reduced labeled data

WCGAN + Position

WCGAN

(a)

(b)

(c)

(d)

(e)

(f)

WCGAN with reduced labeled data

WCGAN + Position

WCGAN3.0 3.3 3.6 3.9

-120˚ -118˚ -116˚ -114˚

 Vs at 10 km

Vs at 5-km (km/s)

-120˚ -118˚ -116˚ -114˚

2.7 3.0 3.3 3.6

Vs at 5 km

Vs at 10-km (km/s)

33˚

34˚

35˚

36˚

0 km 100 km0 km 100 km
33˚

34˚

35˚

36˚

33˚

34˚

35˚

36˚

0 km 100 km0 km 100 km33˚

34˚

35˚

36˚

0 km 100 km0 km 100 km 33˚

34˚

35˚

36˚

33˚

34˚

35˚

36˚

WCGAN with reduced labeled data

WCGAN + Position

WCGAN

(a)

(b)

(c)

(d)

(e)

(f)

WCGAN with reduced labeled data

WCGAN + Position

WCGAN

(c)

(d)



Figure 7.




	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7

