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Abstract 12 

The Anthropocene has been framed around humanity’s impact on atmospheric, 13 

biologic, and near-surface processes, such as land use and vegetation change, greenhouse gas 14 

emissions, and the above-ground hydrologic cycle. Groundwater extraction has lowered water 15 

tables in many key aquifers but comparatively little attention has been given to the impacts in 16 

the deeper subsurface. Here, we show that fluid fluxes from the extraction and injection of 17 

fluids associated with oil and gas production and inflow of water into mines likely exceed 18 

background flow rates in deep (>500 m) groundwater systems at a global scale. Projected 19 

carbon capture and sequestration (CCS), geothermal energy production, and lithium extraction 20 

to facilitate the energy transition will require fluid production rates exceeding current oil and 21 

co-produced water extraction. Natural analogs and geochemical modeling indicate that 22 
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subsurface fluid manipulation in the Anthropocene will likely appear in the rock record. The 23 

magnitude and importance of these changes are unclear, due to a lack of understanding of how 24 

deep subsurface hydrologic and geochemical cycles and associated microbial life interact with 25 

the rest of the Earth system. 26 

Key Points 27 

● Current anthropogenic fluid fluxes in the deep subsurface likely exceed background 28 

fluxes. 29 

● Anthropogenic fluid fluxes in the deep subsurface are expected to accelerate with the 30 

energy transition. 31 

● Injection and production of fluids from the deep subsurface is expected to leave a mark 32 

on the geologic record. 33 

Plain Language Summary 34 

The Anthropocene is often framed in terms of changes in climate, ecosystems and land 35 

use. These have been accompanied by changes in the Earth’s water cycle, including depleted 36 

groundwater storage due to pumping in many regions. The scale of anthropogenic change in 37 

the subsurface at depths beyond typical water wells has received less attention. Fluid flow rates 38 

associated with oil and gas production likely exceed natural groundwater flow rates at depths 39 

greater than 500 m. Anthropogenic impacts to this deeper zone of the Earth’s subsurface are 40 

expected to increase dramatically as we look to store carbon, mine lithium from deep brines 41 

and produce geothermal energy as part of the ongoing energy transition. 42 

Introduction 43 
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The Anthropocene is often thought of in terms of land use change, greenhouse gas 44 

emissions and climate change, biodiversity and the appearance of distinctive physical and 45 

chemical features in the stratigraphic record (Crutzen, 2002; Lewis & Maslin, 2015; McCarthy et 46 

al., 2023; Seddon et al., 2016). The atmosphere has changed dramatically since the Industrial 47 

Revolution with rising carbon dioxide and methane concentrations (Crutzen, 2002). Land use 48 

change has resulted in substantial increases in erosion (Borrelli et al., 2017). Excavations and 49 

boreholes are widespread (Zalasiewicz et al., 2014), particularly in urban environments (Melo 50 

Zurita et al., 2018). Combined with aggregate extraction for building materials, humans are the 51 

largest geomorphologic agent on Earth (Syvitski et al., 2022). The hydrologic cycle has also been 52 

profoundly altered at a global scale, with changes in soil moisture, surface water, the 53 

cryosphere and groundwater at scales impacting the Earth system (Gleeson et al., 2020). How 54 

the Anthropocene is manifested in the deeper subsurface, below typical depths of current 55 

groundwater extraction (>~500 m), has received less attention(Melo Zurita et al., 2018). Pores 56 

and fractures at these depths contain the largest volume of water aside from the ocean 57 

(Ferguson et al., 2021) and may contain ~15% of the Earth’s biomass (Bar-On et al., 2018).  58 

Groundwater residence times exceeding one million years have been found in a variety of 59 

geological settings (Ferguson et al., 2023; Warr et al., 2018), indicating that these deep 60 

subsurface ecosystems have been isolated for prolonged periods of geologic time in this 61 

“hidden” part of the Earth system that has minimal interaction with the rest of the hydrologic 62 

cycle (Warr et al., 2018). Continental to global scale studies tend to treat the subsurface as a 63 

black box that is capable of storing or producing fluids without considering how fluxes and 64 

microbial communities might change within the subsurface.  65 
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Anthropogenic impacts in the deeper subsurface are and will likely continue to be 66 

dominated by the production and injection of fluids; extraction of groundwater (Konikow, 2011; 67 

Rodell et al., 2018) and oil and gas (BP, 2022; C. Clark & Veil, 2009; McIntosh & Ferguson, 2019) 68 

already account for a substantial fraction of deep subsurface fluid fluxes. Subsurface fluid 69 

extraction and injection will accelerate with rapidly growing production of lithium (Kumar et al., 70 

2019), helium (Cao et al., 2022), geothermal energy (Nardini, 2022), and storage and 71 

production of hydrogen (Miocic et al., 2023)  and compressed air (Olabi et al., 2021), as well as, 72 

and likely most important, carbon capture and sequestration (CCS) (Benson & Cole, 2008; 73 

Krevor et al., 2023; Zoback & Smit, 2023) (Figure 1). Here, we evaluate how fluid fluxes in the 74 

Earth’s deep subsurface have been affected to date, along with how they are expected to 75 

change over the coming century and how this might affect geochemical cycles and microbial 76 

communities. 77 
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 78 

Figure 1: Approximate depths of subsurface activities. Median (31 m) and 95th (130 m) 79 

percentile of water wells (Jasechko & Perrone, 2021); minimum depth of CCS in sedimentary 80 

basins (800 m) (Benson & Cole, 2008); shallow limit of oil and gas development (including 81 

injection and disposal; 600 m) (Lemay, 2008); geothermal (>2,000 m) (Nardini, 2022). The upper 82 

temperature limit for life (80-121 °C) (Bar-On et al., 2018; Magnabosco et al., 2018) 83 
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approximately corresponds to the lowest temperatures required for geothermal power 84 

generation (Nardini, 2022; Tester et al., 2021). Circulation of meteoric water occurs up to depths 85 

of a few km (McIntosh & Ferguson, 2021) but fluxes are small below 500 m (Ferguson et al., 86 

2023).  87 

Current Uses of the Subsurface 88 

Groundwater systems have been profoundly affected during the Anthropocene.  89 

Approximately 1,000 km3/yr of groundwater is extracted each year (Wada et al., 2010). While 90 

this volume is only  ~5 to 17% of global groundwater recharge, where fluxes of 6,000 to 20,000 91 

km3/yr have been estimated (Döll & Fiedler, 2007; Gleeson et al., 2016; Wada et al., 2010), it 92 

has resulted in widespread and substantial losses of groundwater storage, which can now be 93 

tracked at monthly scales with remote sensing such as the GRACE satellite project (Rodell et al., 94 

2018). Approximately 3,500 km3 of groundwater depletion occurred globally between 1900 and 95 

2008 (Konikow, 2011). The extracted groundwater in excess of depletion has largely been 96 

balanced by loss of streamflow (Konikow & Leake, 2014).  Most extracted groundwater is from 97 

wells less than ~35 m deep (Jasechko & Perrone, 2021). Pumping appears to be causing an 98 

acceleration of the shallow subsurface hydrologic cycle through increases in hydraulic 99 

gradients, as modern water (i.e. containing 3H from nuclear weapons testing (Gleeson et al., 100 

2016)) is reaching greater depths in areas where large volumes of groundwater have been 101 

extracted (Thaw et al., 2022).  The corollary of this is that groundwaters that were recharged 102 

several millennia ago or longer (GebreEgziabher et al., 2022) are being reconnected with the 103 

rest of the hydrologic cycle. 104 
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 The deeper subsurface (defined here as >500 m) has been more profoundly affected 105 

than shallower realms when background conditions are compared to anthropogenic activities. 106 

Fluid volumes deeper than 500 m likely exceed 30 million km3 (Ferguson et al., 2021) but these 107 

fluids are weakly connected to the rest of the hydrologic cycle under natural conditions, with 108 

estimated fluxes of  <13 km3/yr (Ferguson et al., 2023) (Figure 2). Between 1970 and 2020, 109 

approximately 200 km3 of oil was produced globally (IEA, 2021b). For every 1 m3 of oil extracted 110 

from the subsurface, approximately 3-5 m3 of water is co-produced (C. Clark & Veil, 2009), 111 

resulting in a total fluid volume of 1,000 km3.  The approximately 20 km3/yr of fluid produced 112 

by the oil industry during that 50 year time period likely exceeds any background fluid fluxes at 113 

depths between 500 m and a few km in sedimentary basins. Overall fluid budgets in these 114 

environments are often near zero because the co-produced water and additional water for 115 

reservoir pressure maintenance (i.e. waterflooding) or hydraulic fracturing is injected into the 116 

subsurface. However, at subregional scales the production and injection of fluids often results 117 

in large changes in hydraulic gradients (Jellicoe et al., 2022).  118 

Environmental concerns surrounding fluids in the deep subsurface have focused on 119 

upward leakage into the rest of the hydrologic cycle and the atmosphere (Dusseault & Jackson, 120 

2014; Kang et al., 2014; Lacombe et al., 1995; Perra et al., 2022). However, impacts to the deep 121 

subsurface itself will also occur because the chemical and microbial composition of injected 122 

fluids differ from in situ fluids. Water injected for hydraulic fracturing and secondary recovery 123 

(waterflooding) is often seawater, surface water, or shallow groundwater (Bayona, 1993; 124 

Kondash & Vengosh, 2015; Scanlon et al., 2019) with various additives (e.g. biocides, corrosion 125 

inhibitors) (Elsner & Hoelzer, 2016). Produced and flowback water are often injected into other 126 
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strata with different original fluid chemistries and this reinjection strategy has become 127 

increasingly common in unconventional oil and gas developments. For example, flowback and 128 

produced water from the Bakken Formation are routinely injected into the shallower 129 

Dakota/Mannville Group in the Williston Basin (Jellicoe et al., 2022; Scanlon et al., 2016) and 130 

produced water from the Mississippi Lime, a play relying on dewatering to drive gas exsolution, 131 

is injected into the deeper Arbuckle Group in Oklahoma and Kansas (Murray, 2013). However, 132 

even where produced water is injected back into its same source strata, the oxidation-133 

reduction (redox) states and microbial communities within these fluids are profoundly altered 134 

from their initial conditions. There have been no comprehensive studies examining how these 135 

changes affect solute transport, fluid chemistry and microbial activity at regional scales. 136 
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 137 

Figure 2: Current oil and gas production involves similar fluid fluxes to natural deep (>500 m) 138 

groundwater flow (Ferguson et al., 2023), while current geothermal projects are associated with 139 

smaller fluxes (C. E. Clark et al., 2010; IEA, 2021a). Projected fluxes for future CCS (Zoback & 140 

Smit, 2023) and geothermal power production (van der Zwaan & Dalla Longa, 2019) are similar 141 

to current fluxes from oil and gas production (IEA, 2021b). Scaling up Li extraction (Marza et al., 142 

2023) from sedimentary basins to current global production from all sources would also require 143 

a similar amount of fluid. 144 
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 Fluid injection can have notable effects on the subsurface biosphere, by introducing new 145 

microorganisms, fluids with different chemistries and redox conditions, and/or amendments 146 

that alter in situ microbial communities that have coevolved with fluid and host rock properties 147 

over long time periods, in some cases 10s of millions of years or more (Castro et al., 1998; 148 

Ferguson et al., 2018). Documentation of these anthropogenic changes to the deep biosphere 149 

has rarely been done along with tracking of produced and injected fluid volumes. One well 150 

known example is that of reservoir souring, resulting from the introduction of SO4 via fluid 151 

injection, which can stimulate sulfate reducing microbial populations, producing H2S and 152 

reducing fuel grade (Cord-Ruwisch et al., 1987). The common mechanisms of ameliorating this 153 

“souring,” such as NO3 injection, represent intentional modulation of the subsurface biosphere 154 

at industrial scales.  Another is the introduction of Halanaerobium in deep hydraulically 155 

fractured shale gas reservoirs, which were previously sterile or near sterile(Booker et al., 2019). 156 

In some cases, oil and gas companies have intentionally stimulated existing microbial 157 

populations to degrade hydrocarbons and produce methane by injecting amendments, such as 158 

yeast or algal extracts and nutrients (Barnhart et al., 2022; Ritter et al., 2015). Similarly, CO2 159 

injection for enhanced oil recovery or storage can enhance microbial methanogenesis in some 160 

settings (McIntosh et al., 2010; Tyne et al., 2021).  Preliminary research on H2 storage suggests 161 

that this may also promote microbial activity (Dopffel et al., 2021).  162 

The inflow of groundwater into mines and pumping to prevent these inflows also 163 

represents a substantial perturbation to deep groundwater flow. There is no comprehensive 164 

global database of inflow rates but values of 1 to 1,000 L/s have been documented (Dong et al., 165 

2021; Greene et al., 2008; Winter et al., 1983). If an inflow rate of 10 L/s is representative of the 166 
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globe’s 6,000 active mines (Maus et al., 2020), this would result in 1.9 km3/yr, which is similar 167 

to the current rate of global oil production. These waters are often released to surface waters 168 

as the lower permeability environment associated with many mines prevents subsurface 169 

disposal. Changes in hydrogeochemical conditions and microbial communities in the vicinity of 170 

mines will result from downwelling of meteoric water and upwelling of older, more saline water 171 

(Figure 1). 172 

The Future of the Subsurface  173 

Humanity’s use of the subsurface over the next century is expected to increase to 174 

address climate change and energy security. This will include production of lithium, helium, and 175 

geothermal energy, along with storage and production of hydrogen, storage of compressed air 176 

and geologic CCS. CCS is arguably the most important of these projected uses in terms of 177 

reducing greenhouse gas emissions, with many of the studies examining the capacity to 178 

sequester carbon in the subsurface focusing on estimation of the volume of porosity in 179 

sedimentary basins suited for this purpose (Benson & Cole, 2008; Krevor et al., 2023; Zoback & 180 

Smit, 2023). Additional capacity exists in mafic and ultramafic rocks(Gislason & Oelkers, 2014) 181 

but uncertainty exists around the ability to inject large volumes of fluid into these often low 182 

permeability environments (Fisher, 1998). Global capacity in sedimentary basins may exceed 183 

60,000 Gt (Kearns et al., 2017), which far exceeds the 220 to 2500 Gt that may need to be 184 

sequestered. Comparing this amount to historical fluid production and injection and fluid fluxes 185 

provides a different perspective.  186 

Although some of the injected CO2 may be quickly mineralized in rock or dissolved in 187 

fluids (Benson & Cole, 2008), if sequestered as a separate phase, 2,000 Gt of CO2 is equivalent 188 
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to a volume of ~3,300 km3, if a density of 600 kg/m3 is assumed for CO2. This volume of fluid is 189 

an order of magnitude larger than cumulative historical global oil production. A proposed 190 

annual sequestration rate of 6 Gt/yr (~10 km3/yr) of CO2 by 2050 would occur at a rate  50% 191 

greater than global oil production in 2022 (Zoback & Smit, 2023) and similar to the maximum 192 

estimated global flux of deep groundwater (Ferguson et al., 2023). CO2 injection is likely to be 193 

concentrated geographically, near anthropogenic sources of CO2 (e.g., power plants) and in 194 

areas where suitable subsurface reservoirs exist (Bachu, 2003). Experience from oil and gas 195 

production and associated co-produced water management indicates that even where fluid 196 

budgets are close to balanced, large hydraulic head changes will occur at local scales near 197 

injection wells resulting in substantial changes in regional groundwater flow systems (Barson, 198 

1993; Jellicoe et al., 2022) and, in some cases, induced seismicity (Peterie et al., 2018). Such 199 

impacts have yet to be documented in CCS projects but responsible caution will need to be 200 

exercised if use of the subsurface for CCS becomes more extensive. 201 

 Produced water from oil production and other sedimentary brines have been proposed 202 

as sources of lithium (Kumar et al., 2019; Munk et al., 2016). Lithium extraction from 203 

sedimentary basin brines will only be viable if large fluid volumes can be produced, likely from 204 

wells producing at several times the rate of a typical oil well (Marza et al., 2023).  The median Li 205 

concentration in sedimentary basin brines in the USA is 5 mg/L (Blondes et al., 2016) and we 206 

assume that concentrations in similar environments around the globe are comparable. At this 207 

concentration, 20 km3 of brine would be required to produce an amount equal to global Li 208 

production of 100,000 tpy in 2022 (USGS, 2023), an amount similar to current combined annual 209 

oil and associated produced water volumes (Figure 2).  210 
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Geothermal electricity production of 1,050 TW h/yr using binary technology in 211 

conventional and enhanced geothermal systems has been projected for 2050 using an 212 

integrated assessment model (van der Zwaan & Dalla Longa, 2019). Binary geothermal systems 213 

require approximately 610,000 USGPD/MWe (= 6.53 x 107 m3/yr/MWe) (C. E. Clark et al., 2010), 214 

indicating that 75 km3/yr of fluid would need to be produced to support the projected level of 215 

geothermal electricity production. This target represents a large expansion of geothermal 216 

capacity but would only account for a small fraction of current electricity generation, at 67 217 

TWh/yr compared to the overall generation of 23,000 TWh in 2019 (IEA, 2021a). Large 218 

increases in production and injection of fluids will be required to upscale direct-use geothermal 219 

applications, which currently provide nearly 300,000 GWh/yr of heat, although that number 220 

includes many “closed” systems which extract without production or injection of fluid(Lund & 221 

Toth, 2021). 222 

Despite the large volume of pore space in the subsurface globally, there will inevitably 223 

be competition between different applications (Ferguson, 2013). All developments here will 224 

benefit from the presence of elevated permeability and porosity to allow for larger injection 225 

and/or extraction rates. In some cases, such as geothermal power production and CCS, 226 

overlapping temperature ranges may allow for synergistic developments (Randolph & Saar, 227 

2011). In other cases, previous developments may complicate other types of subsequent uses. 228 

For example, strata that have previously been extensively developed for oil and gas may not be 229 

appropriate for CCS or H2 storage because of the possibility of leakage through older wells 230 

(Gasda et al., 2014). Reservoirs that have a history of injection of fluids that have spent time at 231 

the surface are likely to have cooled, which will have altered their potential to produce 232 
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geothermal power or sequester carbon (Ferguson & Ufondu, 2017). The lack of characterization 233 

of impacts of fluid production and injection will be a challenge as we look to repurpose portions 234 

of the subsurface that have been previously developed. Whether this competition restricts 235 

development or expands that volume of subsurface use is unclear. 236 

Similar magnitudes of changes to subsurface fluid budgets and associated changes in 237 

hydraulic gradients due to extraction of groundwater and hydrocarbons and injection of various 238 

fluids for storage and disposal are occurring orders of magnitude more rapidly than geological 239 

drivers. For example, groundwater flow in the Mannville Group of the central portion of the 240 

Williston Basin, Canada appeared to have been stable for millions of years, even through 241 

multiple glacial cycles (Cheng et al., 2021), yet operation of injection wells since the 1960s for 242 

disposal of oilfield produced waters has resulted in substantial disruption of background 243 

groundwater flow patterns (Jellicoe et al., 2022). The implications of these changes to 244 

groundwater flow on solute transport and microbial activity will likely occur with substantial 245 

time lags and may persist well into the future even once the anthropogenic perturbation ceases 246 

due to the long-time scales associated with hydraulic diffusion (Bredehoeft & Durbin, 2009). 247 

Responses of shallow groundwater systems to new boundary conditions associated with 248 

climate change will likely take decades to centuries (Cuthbert et al., 2019). Fluids in the deeper 249 

subsurface are slow to respond to shifts in climate and topography, with regional aquifer 250 

systems typically having hydraulic response times of thousands to millions of years (Rousseau-251 

Gueutin et al., 2013). Solute transport responses typically take place over longer time periods 252 

due differences between rates of advection and hydraulic diffusion(Ferguson et al., 2023). 253 

Evidence for increases in subsurface paleofluid fluxes, solute transport and microbial activity 254 
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have been tied to geological events such as continental scale glaciations (McIntosh et al., 2012) 255 

or extensive denudation and incision by large rivers (Kim et al., 2022; Li et al., 2023).  256 

 There has been considerable debate about how the Anthropocene will appear in the 257 

geologic record but this has largely focused on depositional processes and what markers will 258 

delineate the shift from the Holocene to Anthropocene (McCarthy et al., 2023; Zalasiewicz et 259 

al., 2011). Anthropogenic activities in the deep subsurface will also leave a mark in the geologic 260 

record. Wells and boreholes will likely be rarely encountered due to their small diameter and 261 

large spacing (Zalasiewicz et al., 2014). Hydraulic fractures, which commonly extend 50 to 100 262 

m from the wellbore (Davies et al., 2012), will increase the footprint of human activities slightly 263 

but activities associated with more permeable strata, where fluids can migrate greater 264 

distances, are likely to leave more extensive evidence. Transport of fluids from injection into 265 

conventional oil and gas reservoirs commonly reaches several 100 m (Craig Jr et al., 1955; 266 

Wassmuth et al., 2009) and transport of CO2 of distances of several 100 m have been observed 267 

in CCS projects (Ringrose, 2018).  Contaminant plumes with greater extents can develop in 268 

shallower groundwater systems under background hydraulic gradients(Van der Kamp et al., 269 

1994) but will be less common in deeper systems due to the lower hydraulic gradients unless 270 

injection or pumping wells are operated for long time periods (Jellicoe et al., 2022). Transport 271 

can be further enhanced by the presence of leaky wells. Instances are documented where 272 

migration of fluids over distances of several 100 m have occurred through leaky wells in 273 

waterflooding (Eger & Vargo, 1989) and hydraulic fracturing operations(DiGiulio & Jackson, 274 

2016).  Contaminant plumes in shallow groundwater systems can persist for decades or longer 275 
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(Essaid et al., 2011) and timescales in the deep subsurface could be even longer due to the 276 

smaller geochemical fluxes available to support geochemical transformations. 277 

  Secondary minerals, such as barite, carbonates and sulfides are commonly precipitated 278 

following the injection of water for secondary recovery of oil (i.e. waterflooding), hydraulic 279 

fracturing or for disposal of produced water from oil and gas operations (Bennion et al., 1998; 280 

Engle & Rowan, 2014; Jew et al., 2017). CCS operations are predicted to result in bleaching of 281 

sandstones and release of trace metals due to removal of hematite (Bickle & Kampman, 2013), 282 

along with precipitation of halite (Muller et al., 2009). At a smaller scale, calcite and sulfide 283 

precipitation may occur due to stimulation of microbial activity by materials introduced during 284 

drilling and well construction (Pidchenko et al., 2023).  The isotopic signatures of these minerals 285 

precipitated due to injection of fluids may differ from similar minerals precipitated under 286 

background conditions (Śliwiński et al., 2017). The rock record in environments that have 287 

experienced fluid flow events that resulted in precipitation of secondary minerals driven by 288 

changes in solute fluxes, salinity, redox conditions and microbial communities can provide some 289 

insights into how anthropogenic activities in the deep subsurface are being preserved. 290 

Conclusions 291 

 Extraction of groundwater as well as production and injection of fluids by the oil and gas 292 

industry have become important components of the global subsurface fluid budgets during the 293 

Anthropocene. Increased use of subsurface fluids for extraction of energy and mineral 294 

resources and associated pore space for storage of alternative energy and anthropogenic waste 295 

has been proposed to confront climate change. While there is likely adequate subsurface 296 

storage, the fluxes of fluids involved with CCS, geothermal energy production and lithium 297 
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extraction will be substantial, likely exceeding current levels associated with the oil and gas 298 

industry.  299 

The subsurface and its pore space has often been viewed as a resource(Melo Zurita et 300 

al., 2018) rather than part of the Earth system. Over the past two decades, there has been an 301 

increase in the awareness of the microbial communities that inhabit the deep subsurface of 302 

depths of up to a few km (Bar-On et al., 2018; Magnabosco et al., 2018; McMahon & Parnell, 303 

2014). This has been accompanied by questions about how the deep subsurface fits within the 304 

larger Earth system in terms of microbial life and associated water and geochemical fluxes 305 

(Ferguson et al., 2021, 2023; Lollar et al., 2019; Warr et al., 2018). As we stand at the precipice 306 

of the energy transition, we have the opportunity to develop the deep subsurface in a manner 307 

that allows us to study its natural functions and response to anthropogenic perturbations to 308 

minimize human impacts and build understanding, synergies and resilience.  309 

Data Availability Statement 310 

No new data was generated or compiled to support writing of this commentary. 311 
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