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Abstract 40 
Mountainous watersheds are characterized by variability in functional traits, including 41 
vegetation, topography, geology, and geomorphology, which together determine nitrogen (N) 42 
retention, and release. Coal Creek and East River are two contrasting catchments within the 43 
Upper Colorado River Basin that differ markedly in total nitrate (NO3

-) export. The East River 44 
has a diverse vegetation cover, sinuous floodplains, and is underlain by N-rich marine shale, 45 
resulting in a three to twelve times greater total NO3

- export relative to the conifer-dominated 46 
Coal Creek. While this can partly be explained by the larger size of the East River, the distinct 47 
watershed traits of these two catchments imply different mechanisms controlling the aggregate 48 
N-export signal. A causality analysis shows biogenic and geogenic processes were critical in 49 
determining NO3

- export from the East River catchment. Stable isotope ratios of NO3
- (δ15NNO3 50 

and δ18ONO3) show the East River catchment is a strong hotspot for biogeochemical processing of 51 
NO3

- at the soil-saprolite interface and within the floodplain prior to export. By contrast, the 52 
conifer-dominated Coal Creek retained nearly all (~97 %) atmospherically-deposited NO3

-, and 53 
its export was controlled by catchment hydrological traits (i.e., snowmelt periods and water table 54 
depth). The conservative N-cycle within Coal Creek is likely due to the abundance of conifer 55 
trees, and a smaller riparian region, retaining more NO3

- overall and reduced processing prior to 56 
export. This study highlights the value of integrating isotope systematics to link watershed 57 
functional traits to mechanisms of watershed element retention and release. 58 
 59 
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Plain Language Summary  80 
The role different functional traits play in the retention and release of nitrogen remains uncertain. 81 
Here we describe how two neighboring catchments in the Upper Colorado River Basin, 82 
characterized by contrasting vegetation, geology, and geomorphology, cycle and export nitrogen. 83 
The East River catchment, which is underlain by nitrogen-rich shale, and has a diverse 84 
vegetation cover, releases three to twelve-times as much nitrate (NO3

-) than the conifer-85 
dominated Coal Creek, which is underlain by granitic rock. However, a suite of analyzes show 86 
that the distinct watershed traits of these two-catchments lead to diverse emergent pathways of 87 
nitrogen cycling. Biogenic and geogenic processes, critical to determining NO3

- export in East 88 
River, impart strong biogeochemical processing prior to export. By contrast, Coal Creek retains 89 
almost all of the atmospherically-deposited NO3

-, likely due to uptake by conifers, and a small 90 
riparian region. This study highlights the use of nitrate isotope systematics to parse different 91 
mechanisms leading to NO3

- export.  92 
 93 
Key points 94 
 95 

• Comparing and contrasting neighboring catchments permits the identification of 96 
watershed traits regulating the cycling, retention and release of nitrogen (N).  97 

• Conifer forest-dominated catchments show a conservative nitrogen cycling, retaining ~97 98 
% of atmospherically dominated nitrate.  99 

• By contrast, meadow-dominated catchments underlain Mancos shale are biogeochemical 100 
hotspots for N-cycling, and export higher nitrate loads.  101 
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 120 
1. Introduction  121 
 122 
Strong variability in stream water chemistry between neighboring headwater catchments can 123 

provide insight into how watershed traits (e.g., gradients in bedrock, topography, aspect, and 124 

land cover) interact to modulate retention and release of critical elements and thus influence 125 

downstream water quality (Alexander et al., 2007; McDonnell et al., 2007). Nitrogen, which 126 

often limits ecosystem processes within mountainous watersheds (Campbell et al., 2002; Kou et 127 

al., 2020; Thébault et al., 2014), enters through several pathways, including by atmospheric 128 

deposition of inorganic and organic nitrogen (Clark et al., 2021), bedrock weathering (Holloway 129 

et al., 1998; Houlton et al., 2018; Wan et al., 2021), and nitrogen fixation (Moyes et al., 2016). 130 

Retention within the ecosystem occurs primarily through plant acquisition, microbial 131 

immobilization (Goodale, 2017; Zogg et al., 2000), and groundwater storage (Ascott et al., 132 

2017). Loss of nitrogen occurs through denitrification within variably saturated regions of the 133 

watershed (e.g., within floodplains, Bouskill et al., 2019; Gomez-Velez et al., 2015), the 134 

erosional deposition of particulate nitrogen (Berhe & Torn, 2017), or lateral flow of dissolved 135 

species to streams and rivers (Peterson, 2001; Rose et al., 2015).  136 

 137 

The balance between the retention and release of nitrogen in headwater catchments is strongly 138 

coupled to the hydrological cycle (Maavara et al., 2021; Wan et al., 2021; Schimel et al., 1997; 139 

Zhu et al., 2018). The transit times of different solutes through the terrestrial biosphere are 140 

dictated by the contact time between water and reactive surfaces including microorganisms 141 

(Lansdown et al., 2015; Li et al., 2021; Pinay et al., 2015). The resultant stream water chemistry 142 

is derived from distinct water sources that reflect this transit time, and the magnitude of 143 

biogeochemical cycling of nitrogen along the various flow paths to the river. Depending on the 144 

time of year within snowmelt-dominated systems, the chemical signatures might reflect nitrogen 145 

derived from flow paths across distinct hillslope depths (Zhi et al., 2019; Zhi et al., 2020), 146 

whereby shallow soils dominate solute flux to the river as the water table rises towards the 147 

surface during snowmelt (Zhi et al., 2019). By contrast, stream water chemistry likely reflects the 148 

deeper groundwater-dominated sources under baseflow conditions. 149 

 150 
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The movement of water and nitrogen through the subsurface of mountainous catchments is also 151 

further modified through interactions with vegetation. Plant-nitrogen assimilation predominantly 152 

takes place from shallow soil layers, aided by the turnover of microbial biomass built-up under 153 

snowpack (Sorensen et al., 2020). Mycorrhizal-symbionts further regulate nutrient transfer from 154 

soils to plants (Hobbie & Högberg, 2012), and the relationship between plants and different 155 

mycorrhizal fungi shapes the nitrogen sources that can be accessed (Phillips et al., 2013; Ward et 156 

al., 2022). Moreover, the flux of nitrogen entering catchments is also dependent on litter 157 

decomposition is a function of litter quality (e.g., carbon: nitrogen ratios), which is a function of 158 

species demographics and a critical pathway of the nitrogen cycle in high-altitude soils (Maavara 159 

et al., 2021). Catchment heterogeneity results in the emergence of different plant communities, 160 

which, subsequently plays an important role in determining aggregate nitrogen retention and 161 

release (Newcomer et al., 2021). 162 

  163 

This study details how nitrogen is cycled and exported as a function of headwater catchment 164 

traits. We compare and contrast the nitrogen cycles of two catchments, Coal Creek and the main 165 

stem East River, within the wider East River watershed in the Upper Colorado River Basin, 166 

United States. Although separated by less than 7 kilometers, these snowmelt-dominated 167 

catchments differ in their underlying traits, notably geology, dominant vegetation, 168 

geomorphology, and aspect (Hubbard et al., 2018). In contrast, rates of atmospheric nitrogen 169 

deposition to the two catchments are similar and extremely low (~2-3 kg ha-1 yr-1), meaning that 170 

underlying catchment traits dominate the differences in nitrogen retention and release. Herein we 171 

examine whether the contrasting biotic and abiotic traits that distinguish Coal Creek and the East 172 

River are apparent through contrasting signals in nitrogen export.  173 

 174 

To test this supposition, we analyze concentration-discharge (cQ) relationships of biogenic and 175 

geogenically derived solutes across a five-year data time series from both Coal Creek and East 176 

River catchments. cQ relationships have been widely used to determine how different 177 

catchments store and release water and solutes (Knapp et al., 2020), and to partition between 178 

geogenic and biogenic sources as a function of the hydrograph (Zhi et al., 2019). The cQ 179 

relationship is often described by a power law between the logarithms of both variables (c=aQb), 180 

where a represents the intercept and the exponent, b, represents the slope of the cQ relationship 181 



6 

(Musolff et al., 2015). The exponent provides information determining how the relationship 182 

between solute export changes with the hydrograph (Thompson et al., 2011). For example, b = 0 183 

indicates a chemostatic relationship between discharge and solute concentration, a relationship 184 

characteristic of headwater catchments (Godsey et al., 2009). By contrast, positive or negative 185 

deviations from this relationship can represent solute mobilization (e.g., from shallow soil 186 

reservoirs), or dilution (common for geogenically derived solutes), respectively (Knapp et al., 187 

2020; Musolff et al., 2015; Zhi et al., 2020). However, the power law characterization of the cQ 188 

is insensitive to high variability in data, which can be the case for nutrients such as NO3
- and 189 

attributable to heterogeneity in landscape properties and hydrologic connectivity that influence 190 

groundwater table fluctuations, redox conditions, and elemental mobility (Thompson et al., 191 

2011). We therefore combine the power law analysis with an analysis of the ratio between the 192 

coefficient of variation (CV) of concentration (CVc) and discharge (CVc/CVq), which can further 193 

contextualize whether the underlying relationship in solute export is driven by variability in 194 

discharge, improving understanding of solute mobilization (Knapp et al., 2022). For example, a 195 

CVc/CVq ratio ≤ 0.5 indicates that the variability in discharge (CVq) is greater than the variability 196 

in solute concentrations (CVc), and is therefore, chemostatic. By contrast, a high solute 197 

concentration variability, relative to discharge (CVc/CVq ≥ 0.5), the relationship might be 198 

considered chemodynamic. 199 

 200 

Neither metric described above attributes solute export to an underlying mechanism, therefore 201 

this analysis is combined with measurements of the stable isotopes of nitrate (δ15NNO3 and 202 

δ18ONO3) from both soil porewater, as well as Coal Creek and East River. The isotopic signature 203 

of nitrate represents the aggregated contribution of different sources and reflects both the 204 

strength of retention and the magnitude of biogeochemical cycling along different flow paths 205 

towards the river (Granger & Wankel, 2016). δ15NNO3 and δ18ONO3 can identify periods of high 206 

nitrate reduction through the monotonic enrichment in isotopic fractionation (Wexler et al., 207 

2014), indicating prolonged transit times through the ecosystem. Moreover, the direct 208 

contribution of atmospheric nitrate to riverine export can be identified through high δ18ONO3 (~60 209 

- 80 ‰) imparted during the atmospheric formation of nitrate (Michalski et al., 2012), and this 210 

isotopic signal can be used to quantify retention of atmospheric nitrate by vegetation and 211 

microbes.  212 



7 

 213 

We use these complementary data sets to address two main objectives: Our first objective seeks 214 

to compare and contrast nitrate export within two neighboring catchments differing in functional 215 

trait distribution while sharing the same climate and nitrogen deposition patterns. A second 216 

objective focuses on the East River catchment and leverages existing borehole infrastructure, not 217 

currently available in Coal Creek, to relate riverine nitrate export to nitrogen cycling across a 218 

hillslope-toeslope-floodplain continuum adjoining the river.   219 

 220 

2. Materials and Methods 221 

 222 

2.1. Study Site: The East River watershed (38° 57.5’ N, 106° 59.3’ W) is a representative 223 

headwater system in the West Elk Mountains near the towns of Crested Butte and Gothic, 224 

Colorado (USA) within the Upper Colorado Basin (Hubbard et al., 2018). The East River is a 225 

major tributary to the Gunnison River, which accounts for almost half of the Colorado River’s 226 

discharge at the border with Utah. The East River watershed is approximately 300 km2 (Fig. 1), 227 

and encompasses the main stem East River (including the current study site East River at 228 

Pumphouse), Slate River, Washington Gulch, and Coal Creek (Fig. 1a). The East River 229 

watershed is a large watershed of the hydrologic unit code 10 (USGS: HUC10 East River 230 

Watershed: #1402000102)), characterized by the intersection of two HUC12 catchments. The 231 

East River at Pumphouse is made up of the smaller HUC12 catchments (#140200010201 Upper 232 

East River) which drains to the HUC12 #140200010202 Brush Creek catchment where the 233 

Pumphouse is located. For clarity, the catchment, East River at Pumphouse, is hereafter referred 234 

to as ERP, to avoid confusion with the larger East River watershed. Coal Creek is a defined 235 

HUC12 catchment (#140200010204 Coal Creek) of the HUC10 East River Watershed 236 

(#1402000102).  237 

 238 

The East River watershed has an average elevation of 3266 m, and ranges from 2750 to 4000 m 239 

(Fig. 1b). The area has a continental, subarctic climate, with a mean annual temperature of 0℃, 240 

and average minimum and maximum temperatures of -9.2 and 9.8℃, respectively. Mean annual 241 

precipitation is ~1200 mm yr-1, with the majority (> 80 %) falling as snow, and much of the rest 242 

falling during the monsoonal period in late summer and fall (Carroll et al., 2020). Snowfall and 243 
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melt dominate the hydrological cycle, as is typical for mountainous systems in the Western 244 

United States (Li et al., 2017), and losses are partitioned between evapotranspiration and 245 

streamflow, which differ in their contributions based on several characteristics, including a 246 

higher ET flux with higher proportional tree cover (Sprenger et al., 2022). Runoff characteristics 247 

for both catchments are similar in terms of the timing of peak discharge in early June and the 248 

transition to baseflow in late September-early October, where groundwater represents a 249 

significant fraction of streamflow (Hubbard et al., 2018). 250 

 251 

Atmospheric deposition of wet and dry forms of reactive nitrogen (nitrate and ammonium) for 252 

the East River watershed was extracted from the EPA CASTNET continuous monitoring system 253 

located at Gothic (https://www3.epa.gov/castnet/site_pages/GTH161.html), and from the broader 254 

national atmospheric deposition program (https://nadp.slh.wisc.edu/committees/tdep/). Annual 255 

nitrogen deposition averaged 2 - 3 kg-N ha-1 over a 17-year period (2000-2017), split equally 256 

between reduced and oxidized inorganic nitrogen (Fig. S1).Over that period the magnitude of 257 

total nitrogen deposited into the watershed remained relatively constant, but the contribution 258 

from ammonia roughly doubled, while that from nitrate fell, consistent with other regions of the 259 

Rocky Mountains (Clark et al., 2021), and likely attributable to a lack of regulation on NH4
+ 260 

emissions (Li et al., 2016).  261 

 262 

Figure 1: The East River watershed depicting (a) land cover and (b) elevation. On each panel the 263 
different catchments are demarcated by a black outline. With the Coal Creek catchment the river 264 
sampling point is denoted by the orange diamond, while the orange circle in the East Tiver 265 
catchment indicates the river sampling point, and the adjacent borehole transect for terrestrial 266 
porewater collection.   267 
 268 
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grassland meadows. The meadow regions show a mix of perennial bunchgrass (e.g., Festuca 291 

arizonica), forbs (e.g., Potentilla gracilis, Veratrum californicum, Lupinus spp.), and shrubs 292 

(Artemisia tridentata). Relative to Coal Creek, the East River shows considerable sinuosity, and 293 

has an extensive riparian floodplain system dominated by dwarf birch (Betula grandulosa) and 294 

mountain willow (Salix spp.). Plant communities are largely underlain by Cretaceous Mancos 295 

shale bedrock (Hubbard et al., 2018), which is entirely absent in Coal Creek, with glacial till also 296 

underlying the North Eastern end of the catchment. Agricultural influence is limited to summer 297 

grazing of cattle within the ERP.  298 

 299 

2.2. Borehole installation: To link export patterns to nitrogen cycling within terrestrial 300 

ecosystems, we focused on a montane hillslope within the pumphouse intensive research site at 301 

the East River. Five 10-m deep boreholes (0.14 m diameter) were drilled into bedrock along a 302 

137 m-long hillslope-toeslope-floodplain transect. Specific drilling and instrumentation details of 303 

these boreholes have been published previously (Wan et al., 2021), however, pertinent here was 304 

the installation of porewater samplers, and moisture sensors from the O-horizon, through the 305 

weathered saprolite, into the bedrock at >8 m across the transect. Porewater samples were taken 306 

throughout the 2017-2019 period, inclusive of two anomalously high- and low-snowpack years. 307 

 308 

2.3. Physicochemical measurements: We collected measurements of streamflow and stream 309 

water chemistry across a 5-year, 9-month period covering January 1st, 2016 through September 310 

30, 2021. The analysis of the streamflow data has been described recently (Carroll et al., 2021). 311 

Stream- and porewater samples were collected for aqueous chemistry measurement using an 312 

automatic sampler (Teledyne ISCO 3700, NE, USA) attached to a peristaltic pump. Sampling 313 

frequency for stream water samples varied from once per week to three times per week 314 

depending on season. Snow was sampled synoptically by digging snow pits and sampling down 315 

through the depth of the pit. This depth was dependent on the snow year and varied between 0.4 316 

and 1.6 m. Precipitation samples were also taken synoptically during the monsoonal period, 317 

which typically spans the late June to early September timeframe. Prior to anion or cation 318 

analysis, water samples were filtered through a 0.45 μm Millipore filter. The anion samples were 319 

collected into 2ml polypropylene vials (with no headspace), and the cation samples were 320 

collected into high-density polyethylene vials, and acidified with ultra-pure concentrated nitric 321 
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acid. Anions were measured through ion chromatography (Dionex ICS-2100, Thermo Scientific, 322 

USA), and aqueous cation concentration was determined using ICP-MS (Elan DRC II, Perkin 323 

Elmer, USA). Dissolved total nitrogen (DTN) was measured on all samples via thermal 324 

decomposition and chemiluminescence (Shimadzu TOC-VCSH with the attached TNM-1). 325 

Water samples for the determination of ammonium concentrations were taken as described above 326 

and measured on a Lachat (QuikChem 8500 series 2 flow injection analysis system).  327 

 328 

2.4. Nitrate isotope measurements: The natural abundance of δ15NNO3 and δ18ONO3 in riverine and 329 

porewater, snow, and rainfall were measured using the denitrifier method as described previously 330 

(Bouskill et al., 2019), and in detail in the supplemental materials. Briefly, samples from either 331 

the river (40 ml) or lysimeters (50 - 100 ml) were filtered through a 0.2 μm Sterivex filter and 332 

placed on ice in the field. Samples were shipped overnight to Lawrence Berkeley National 333 

Laboratory and kept at -80℃ until analysis. The isotope ratios of NO3
- (δ15NNO3 and δ18ONO3), 334 

where δ (‰) = (RNO3/ Rstd -1)*1000, R indicates either 15N/14N or 18O/16O, and ‘std’ refers to 335 

standard reference material, either N2 in the air for δ15N or Vienna standard mean ocean water 336 

(VSMOW) for δ18O, were measured via the denitrifier method (Casciotti et al., 2002; Sigman et 337 

al., 2001). Analysis of the isotopic data is described in detail in supplemental materials. Briefly, 338 

we used a simple mixing model to partition the isotopic signal of riverine NO3
- between 339 

atmospheric and soil-derived sources. Furthermore, the change in δ15NNO3 relative to that of 340 

δ18ONO3 (i.e., Δδ18ONO3: Δδ15NNO3) was used in stream and poreater to determine whether a 341 

decline in NO3
- concentrations could be due to source water mixing or due to fractionation 342 

mechanisms, as described previously (Granger and Wankel, 2016).  343 

 344 

2.5. Analysis of concentration-discharge relationships: Streamwater cQ relationships were 345 

initially described using a power law relationship (c=aQb) for the whole data-set (which was log-346 

transformed prior to analysis), and broken down for each water year (2016-2021). We further 347 

calculated the coefficient of variation of solute concentration (CVc) and discharge (CVq) (Basu et 348 

al., 2011; Knapp et al., 2022; Thompson et al., 2011), using a previously published approach for 349 

log-normal data (Knapp et al., 2022),  350 

 351 
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𝐶𝑉 =  𝜎𝜇  =  𝑒𝑥𝑝(𝑚௟௡  +  0.5𝑠௟௡ଶ )𝑒𝑥𝑝(2𝑚௟௡  +  𝑠௟௡ଶ ) (𝑒𝑥𝑝(𝑠௟௡ଶ ) − 1)  = ට𝑒𝑥𝑝(𝑠௟௡ଶ ) − 1                      1 

 352 

 353 

where mln and sln represent the mean and standard deviation of the data.  354 

 355 

2.6. Causality analysis with information theory: To contextualize watershed nitrate export 356 

alongside the factors determining transit and loss through the watershed we treat the time series 357 

of different hydrological, physical, biogenic, and geogenic data (from 2016 - 2021) as a coupled 358 

process network (Ruddell & Kumar, 2009). Herein, the directional impacts from one process 359 

(e.g., geogenic leaching, or snowmelt) to the other (e.g., nitrate export) is be quantitatively 360 

inferred by Shannon information entropy (H) and its transfer (TE) (unit bits).     361 

 362 𝐻 =  − ෍ 𝑝௡
௜ୀଵ (𝑋௜)𝑙𝑜𝑔ଶ𝑝(𝑋௜)                               2 

 363 

𝑇௑ିவ௒  =  ෍ 𝑝௬೔,௬೔షభ,௫೔షೕ ൫𝑦௜, 𝑦௜ିଵ, 𝑥௜ି௝൯𝑙𝑜𝑔ଶ 𝑝൫𝑦௜|𝑦௜ିଵ, 𝑥௜ି௝൯𝑝(𝑦௜|𝑦௜ିଵ)                    3 

 364 

where p(x) is probability density function (PDF) of x, p(yi,yi-1,xi-j) is the joint PDF of current time 365 

step yi, previous time step of yi, and jth time step before of xi. p(yi|yi−1,xi−j) and p(yi|yi−1) denote 366 

conditional PDF of the corresponding variables. For example, the information entropy transfer 367 

from snowmelt to nitrate export is calculated as Shannon entropy reduction (uncertainty 368 

reduction) of present nitrate export given the historical snowmelt records (up to12 month time 369 

lags) and excluded the influence from the previous time step for nitrate export. In order to ensure 370 

the calculated transfer entropy does not stem from randomness, we conduct statistical 371 

significance tests by first randomly shuffling the time series 10 times to obtain a distribution of 372 

transfer entropy assuming the random shuffle will break the causality between SWE and 373 𝑁𝑂ଷா௑௉ைோ். Then a significance threshold of TESWE−>𝑁𝑂ଷா௑௉ைோ் is determined by the 95% 374 
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confidence threshold of the shuffled transfer entropy (Yuan et al., 2022). We report causality 375 

only when the TESWE−>𝑁𝑂ଷா௑௉ைோ் of the original time series data is larger than its significance 376 

threshold. We applied this causality modeling approach to the observed time series of watershed 377 

variables at both the Coal Creek and ERP. The factors included in the analysis were chosen as 378 

proxies for the different sources contributing stream NO3
-, and included biogenic solutes derived 379 

from shallower soils (e.g., DOC), or deeper bedrock derived solutes (e.g., Mg), redox active 380 

compounds (e.g., SO4
2-), and hydrological variables influencing nutrient flux and riverine 381 

turnover (e.g., SWE and water temperature). Their relevance to NO3
- was visualized in a network 382 

(Bastian et al., 2009) from which quantitative associations between different variables can be 383 

identified.  384 

 385 

2.7. Assessment of annual and snowmelt nitrate export: We calculated a time-series of total mass 386 

exports leaving the Coal Creek and ERP catchments Ex(t) (Mg/year) using the discharge Qs(t) 387 

and concentration Cn(t) time series by integrating from day 1 of each water year to day 365 for 388 

annual time series, and during the specific time periods related to snowmelt (Equation 4). The 389 

mass export is the multiplication of discharge Qs(t) (m3/s) and concentration of nitrate Cn(t) 390 

(mg-N/L converted to kg/m3) and summed for all daily time steps (dt):  391 

 392 

𝐸𝑥𝑝𝑜𝑟𝑡 = 𝐸𝑥(𝑡) = ෍ௗ௔௬ ଷ଺ହ
ௗ௔௬ ଵ 𝑄𝑠(𝑡)𝐶𝑛(𝑡)𝑑𝑡                  4 

 393 

Discharge and concentration time series were gap-filled and interpolated using an averaging 394 

method when missing values exist. N exports (Mg/year) were converted to N yields by dividing 395 

by the area of each catchment and converting mass from Mg to kg to match the units of 396 

atmospheric deposition (kg/hectare/year). We relate solute fluxes from inputs (e.g., atmospheric 397 

deposition) to the riverine outputs through equation 5 which describes the retention of N within 398 

each watershed on a water year basis:  399 

 400 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑅𝑒𝑡% =  𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑌𝑖𝑒𝑙𝑑𝑠𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∗ 100                    5  
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 401 

In addition to input from atmospheric sources we also evaluate the potential contributions to 402 

NO3
- export from bedrock weathering within the ERP. Correcting the estimated annual NO3

- flux 403 

from the Mancos Shale saprolite of (Wan et al., 2021) with improved flow rates (Tokunaga et al., 404 

2022) results in 2.0 kg ha-1 yr-1 from the critical zone of a hillslope to the floodplain. Only a 405 

fraction of this hillslope value is likely to reach the river due to denitrification while traversing 406 

the floodplain. Furthermore, this value is unlikely to be representative of the watershed scale 407 

hillslope weathering flux as parts of the watershed is underlain by glacial till, not shale, while 408 

infiltration within north facing slopes (where these initial measurements were made) is higher 409 

than south-facing slopes, promoting higher rates of weathering. For these reasons, we assume a 410 

smaller range (0-1 kg ha-1 yr-1) of NO3
– derived from shale weathering likely contributes to the 411 

catchment NO3
– export.  412 

 413 
3. Results 414 
 415 

3.1. Concentration-discharge relationships: The time span of this study covered both historical 416 

highs and lows of snow water equivalence (SWE, m) and discharge (Q, m s-1) within Coal Creek 417 

and ERP. Both 2017 and 2019 were above average snowpack depth and discharge, while 2018 418 

represented a historic low. Figure 2 provides the time course of SWE for the East River 419 

Watershed, and Q for the specific regions. While the temporal trends in snowmelt driven 420 

discharge were the same between Coal Creek and ERP, the larger drainage area and lower 421 

proportion of forest coverage means that the streamflow was much higher within the ERP.      422 

 423 
Figure 2: Discharge, and snow water equivalent throughout the study period (2016-2021).  River 424 
discharge (m s-1) data depicts both the Coal Creek and ERP catchments. Snow water equivalent (m) is 425 
derived from the SNOTEL station (Site 380).  426 
 427 
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  2016 2017 2018 2019 2020 2021 

East 
River 

Annual NO3
- 

export (Mg) 3.8 1.1 0.6 2.8 1.2 1.2 

Q Yield 
(km3) 0.05 0.07 0.03 0.09 0.04 0.03 

Atm. NO3
- 

deposition 
(Mg) 

8.6 9.1 7.3 6.4 7.3 8.4 

Coal 
Creek 

NO3
- annual 

export (Mg) 0.3 0.3 0.1 0.5 0.3 0.3 

Q Yield 
(km3) 0.02 0.03 0.01 0.03 0.02 0.01 

Atm. NO3
- 

deposition 
(Mg) 

6.4 6.5 5.3 4.9 5.3 6.1 

 454 
 455 
Figure 3: (a) Concentration-discharge relationships for different solutes within the ERP and Coal 456 
Creek catchments (i) nitrate, (ii) dissolved total nitrogen, (iii) chloride, and (iv) magnesium. Also 457 
shown are the lines of best fit, the slope of which is represented in the powerlaw relationship as 458 
exponent b (c=aQb). (b) The ratio between the coefficient of variation for solute concentration 459 
and discharge (CVc/CVq) plotted against the exponent (b) of the powerlaw relationship for the 460 
same solutes as in (a). Each plot depicts the entirety of the data for the two watersheds (larger 461 
points with solid black outline) and the data for each water year. Also depicted in these plots are 462 
the positive and negative linear relationship between CVc/CVq and b (solid black lines), and the 463 
threshold point (at CVc/CVq = 0.5, dotted line) separating chemostatic from chemodynamic 464 
regimes.   465 
 466 

Distinct relationships emerge during the rising and falling limb (Fig. 4, & Table 2). The rising 467 

limb has little impact on riverine NO3
- in either the ERP (b = 0.05), or Coal Creek (b = 0.1). 468 

However, the falling limb of the snowmelt period flushes NO3
- into the ERP (b = -0.6), as the 469 
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years (2016 - 2021), followed by the b values during the rising limb and the falling limb of the 491 
hydrograph.  492 
 493 
 494 

 East River Coal Creek 

Nitrate  0.013 (-0.06/ 0.38| 0.05/ -0.6) -0.01 (-0.23/ -0.2| 0.1/ -0.06) 

Dissolved total nitrogen  0.07 (-0.02/ 0.37| 0.16/ 0.08) 0.16 (0.11/ 0.2| 0.14/ 0.2) 

Chloride -0.02 (-0.08/ 0.19| -0.03/ -0.5) -0.07 (-0.3/ 0.12| -0.11/ -0.3) 

Magnesium -0.14 (-0.18/ 0| -0.15/ -0.24 ) -0.26 (-0.3/ -0.21| -0.17/ 0.25) 
 495 

Chloride export was measured as a conservative tracer of watershed export processes, and 496 

showed a broad chemostatic relationship with Q in ERP (b = -0.02, with an interannual range = -497 

0.08 - 0.19), and a slightly stronger dilution of Cl concentration within increasing Q in Coal 498 

Creek (b = -0.07, interannual range = -0.3 - 0.12) and ERP. The cQ relationship for magnesium 499 

provides insight into the export behavior of a predominantly bedrock-derived solute. Riverine 500 

Mg concentration was far higher in the ERP where soils are underlain by a Cretaceous Mancos 501 

shale bedrock, however, the trajectory of Mg export was similar between the catchments and 502 

generally showed a non-linear decline in concentration under increasing Q (Fig. 3a, 4). CVc/CVq 503 

ratios generally underlie the observations from cQ slopes, with groundwater, and geogenically-504 

derived solutes showing little variability in concentrations, and are strongly driven by changes in 505 

discharge (Fox et al., 2022).  506 

 507 
Causality analyses (performed using transfer entropy, (Ruddell & Kumar, 2009) was used to 508 

further parse out the factors regulating NO3
- transit and export (Fig. S3a/b). SWE and water 509 

temperature were important factors governing NO3
- export from both catchments (Fig. S3c). 510 

However, both biogenic and geogenic variables were closely associated with NO3
- release to 511 

streams within the ERP, indicating the contribution of both shallow and deep sources to the NO3
- 512 

aggregate flux. By contrast, NO3
- exported from Coal Creek showed no direct connection to 513 

biogenic or geogenic export (Fig. S3c), indicating the strong role atmospheric deposition plays in 514 

contributing to NO3
- export. 515 

 516 
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NO3
- were not made for Coal Creek soils, so mixing model calculations were made using 545 

nitrification data derived from ERP soils, which overlap with previously published values 546 

(Granger & Wankel, 2016).  This mixing model demonstrated that a larger fraction of riverine 547 

NO3
- exported from Coal Creek was derived directly from atmospheric deposition (~41 %), with 548 

the remainder sourced from soil pools. The range of atmospheric contributions to NO3
- export in 549 

Coal Creek varied from 20 to 62 % (Table S1). A weighted approach to calculating percent 550 

contribution of atmospheric sources to distinct periods of the hydrograph shows it to be larger 551 

during the snowmelt period (34 ± 5 %) relative to baseflow (20 ± 4 %) (Table S2). By contrast, 552 

the majority of exported NO3
- from the ERP was derived from nitrification (~82 %), with a 553 

smaller direct contribution from atmospheric NO3
- deposition, ranging across the year from 16 to 554 

29 %. A biplot depicting δ18ONO3 and δ15NNO3 suggests that the groundwater accumulating within 555 

toeslopes, and from NO3
- the floodplain were significant sources of ERP riverine NO3

- (Fig. S4). 556 

Finally, the ERP showed a relatively high range of δ18ONO3 throughout the year, however, the 557 

percent contribution of atmospheric NO3
- to export was similar during the snowmelt period (22 ± 558 

3 %), and baseflow (24 ± 7 %) (Table S2).  559 

 560 

Periodically, the NO3
- isotope time series within ERP showed concomitant enrichment of both 561 

Δδ18ONO3: Δδ15NNO3 (Fig. 5a, c). These periods occur during snowmelt and under baseflow 562 

conditions, albeit with slightly different enrichment relationships between the two isotopes, of 563 

1.2 and 0.6 during snowmelt and baseflow respectively (Fig. S5). These periods suggest an 564 

actively fractionating mechanism (e.g., denitrification) is contributing to NO3
- loss from solution. 565 

By contrast, evidence for strongly fractionating loss pathways within Coal Creek were not 566 

observed. 567 

 568 

3.4. Terrestrial nitrate cycling in the East River: To strengthen our understanding of how 569 

different sources and sinks contribute to the aggregate NO3
- export within the ERP catchment, we 570 

developed a depth-resolved, time series of δ15NNO3 and δ18ONO3 across a hillslope-toeslope-571 

floodplain transect. This time series permits the identification of major source-sink hotspots 572 

across the terrestrial system that likely account for the stronger biogeochemical processing of 573 

nitrogen within the ERP. Moreover, the time period of intensive sampling encompassed the same 574 

event driven trajectory as the riverine data, capturing historic high and low snowpack depths, 575 
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which dictated much of the variance in water table depth, and runoff. Across this transect, the 576 

δ15NNO3 and δ18ONO3 spanned a large range indicative of multiple sources contributing to nitrate 577 

accumulation and cycling (Fig. 6a, S6a). Within shallower soil horizons, δ15NNO3 and δ18ONO3 578 

ranged from -7.5 to 19 ‰ and -10.5 to 21 ‰, respectively. Within the shale weathering zone 579 

δ15NNO3 ranged from ~ 1 ‰ to 20 ‰, and δ18ONO3 from -10 ‰ to 14 ‰. The fractured bedrock 580 

showed a range in δ15NNO3 from ~ -5 ‰ to 8 ‰, and -29 ‰ to 22 ‰ for δ18ONO3.  581 

A simple mixing model was used to calculate the contribution of atmospheric deposition to 582 

subsurface NO3
- pools across depth and time. Broadly, percent atmospheric NO3

- increased with 583 

depth from 12 % (range: 1.1 - 41 %) within shallow soil layers to 20.2 % (0 - 43.4 %) within the 584 

fractured bedrock, with the saprolite weathering zone showing intermediate levels of 585 

atmospheric NO3
- (~14 %: 4 - 33 %. Table S1, Fig. S6a). Contribution of atmospheric NO3

- to 586 

NO3
- pools increased during the snowmelt period (Fig. S6b) within the shallow soils, but 587 

particularly in saprolite weathering zone, where the contribution increased to ~21 %, with an 588 

upper range of ~32%. This contribution dropped under baseflow conditions (~9 %).  589 

The trajectory of the Δδ18ONO3: Δδ15NNO3 showed distinct relationships across the different 590 

regions of the soil profile (Fig. 6b). The shallow soil horizon showed a weak relationship 591 

between Δδ18ONO3: Δδ15NNO3 of ~ 0.06. However, both the weathering zone and the fractured 592 

bedrock showed stronger Δδ18ONO3: Δδ15NNO3 relationships of ~ 0.7 and 0.5, respectively. The 593 

weathering zone, which shows the strongest Δδ18ONO3: Δδ15NNO3 trajectory, shows a clear 594 

combination of both mixing processes, and fractionating processes (e.g., nitrate reduction, nitrate 595 

reoxidation). However, approximately 25 - 30 % of the nitrate in weathering zone originated 596 

from atmospheric deposition (which imparts a high δ18ONO3 value), precluding the identification 597 

of any one process dominating NO3
- dynamics and demonstrating this zone to be a strong 598 

integrator of different NO3
- sources. 599 

 600 

Figure 6: Relationships between 15NNO3/18ONO3 within the terrestrial zone, (a) 15NNO3/18ONO3 601 
across different soil depths on the hillslope (i.e., Shallow soil horizon, weathering zone, and 602 
consolidated bedrock). The correlation between the 15NNO3/18ONO measurements are provided in 603 
brackets in each legend. (b) The same relationship within two different depths (i.e., shallow soil 604 
horizon, and saprolite weathering zone,) at different points along the transect encompassing the 605 
upper- and mid-hillslope, and the toeslope. As for panel a, the value in brackets represents the 606 
correlation between the 15NNO3/18ONO.  607 
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When normalized to catchment area, the East River at pumphouse (ERP) exported between 3 to 630 

12x as much NO3
- as Coal Creek (Table 1 & Fig. 8). The ERP is the larger catchment and nitrate 631 

deposition is calculated to be a little higher (7.8 ± 1 MG in ERP, relative to 5.7 ± 0.7 MG in Coal 632 

Creek). Both catchments show large variability in NO3
- concentrations across the measured range 633 

in discharge (Fig. 3a/b), indicating the contribution of multiple sources of terrestrial NO3
- to the 634 

aggregate downstream export profile (Thompson et al., 2011). A causality analysis illustrates 635 

both similarities in the main factors driving NO3
- export between the two catchments (e.g., the 636 

considerable influence of SWE), but also clear distinctions. For example, NO3
- export in the ERP 637 

is more strongly related to biogenic (e.g., microbial turnover of DOC, which can be tied to NO3
- 638 

reduction) and geogenic (e.g., bedrock weathering) processes (Fig. S3), implying a more 639 

complex role of shallow and deep sources of NO3
- in the ERP (Zhi & Li, 2020). By contrast, 640 

nitrate export in Coal Creek showed little information transfer between biogenic and geogenic 641 

processes, suggesting little microbial transformation prior to export, and no contribtion of 642 

bedrock weathering to NO3
- export. In the following sections we discuss the role of vegetation, 643 

redox heterogeneity, and bedrock properties in contributing to differences in the retention and 644 

release of NO3
- between the two catchments. 645 

 646 

Figure 7: Schematic representation of different retention of NO3
- (in megagrams, MG) across the 647 

two catchments as a function of their distinct vegetation and bedrock properties. Also provided 648 
are the direct contribution of atmospherically deposited nitrate (N18O3

ATM) to exported NO3
-, and 649 

the % of atmospherically deposited NO3
- retained in different watersheds. Estimates of the 650 

contribution of bedrock weathering are also provided for ERP. The units for the different fluxes 651 
are in megagrams (MG), and are normalized to the individual catchment size.   652 
 653 
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by bacteria and fungi during the decomposition of woody debris following tree mortality. 672 

Previous studies have attributed the net retention in forested watersheds, and subsequent declines 673 

in NO3
- export, to the accumulation of high C: N woody debris, and immobilization of dissolved 674 

nitrogen (Lajtha, 2020). Preliminary work has shown a higher mortality rate amongst conifers 675 

within Coal Creek relative to the ERP (Falco et al., in prep.), which could contribute to the 676 

disparity in retention between the two catchments.  677 

 678 

The vegetation in ERP includes montane species (e.g., Artemisia spp. and Festuca spp.), Aspen 679 

glades (Populus tremuloides), and conifer stands (Picea engelmannii, and Abies lasiocarpa), that 680 

likely lead to a more open nitrogen cycle, particularly through litter accumulation and turnover 681 

(Maavara et al., 2021). The difference in vegetation communities between the two catchments 682 

also contributes to distinct hydrological cycles, which play a critical role in nitrogen cycling and 683 

solute export (Webb et al., 2020; Woelber et al., 2018). The dense forest coverage within Coal 684 

Creek increases the loss of snow via canopy interception, ablation, and evapotranspiration, 685 

reducing that contributing to river flow (Fig. 2) (Sprenger et al., 2022). A higher rate of ET can 686 

lower the depth of the groundwater table (Condon et al., 2020), reducing connectivity between 687 

hillslopes and the river, increasing nitrogen retention in upslope regions of Coal Creek.    688 

 689 

4.2. Bedrock properties and nitrogen cycling: A further fundamental difference between Coal 690 

Creek and ERP concerns the underlying bedrock. The ERP is largely underlain by nitrogen-rich 691 

Mancos Shale bedrock, which has been previously reported to show high rates of weathering as 692 

snowmelt-driven groundwaters rise and fall (Wan et al., 2019, 2020; Winnick et al., 2017). Wan 693 

et al., (Wan et al., 2020) estimated a base cation weathering rate for a hillslope within the ERP of 694 

55.3 ± 4 Kmolc ha-1 yr-1, and a shale-nitrogen release rate of 18.9 ± 4.4 kg ha-1 yr-1, and a specific 695 

hillslope NO3
- export of ~2.0 kg ha-1 yr-1. The bulk of this exported NO3

- is likely assimilated by 696 

plants or reduced by microbes within the floodplain (see discussion below), therefore, the 697 

contribution of geogenic sources of NO3
- to the aggregate export signal remains uncertain. Water 698 

table depths dominate solute transport to the river, and shape the characteristic cQ relationships 699 

for different solutes. Zhi et al., formally described how distinct solute sources govern water 700 

chemistry within Coal Creek, demonstrating that low water table depths under baseflow 701 

conditions, or during particularly dry years, activate organic-poor, geogenic sources of solutes 702 
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(Zhi et al., 2019). The relationship between Mg and discharge replicates this dilution pattern 703 

within both catchments (Fig. 3a,b). However, NO3
- demonstrates strong variability with stream 704 

discharge (Fig. 3a). Incidences of high NO3
- export under baseflow conditions could represent 705 

the contribution of geogenic sources in the ERP, however, the variability in cQ is similar to that 706 

in Coal Creek (Fig. 3a, b), which is underlain by crystalline igneous rocks containing only trace 707 

amounts of nitrogen Holloway & Dahlgren, 2002). The high NO3
- concentrations exported under 708 

low discharge in both catchments likely reflects the legacy storage, and subsequent mobilization, 709 

of groundwater NO3
- (Johnson & Stets, 2020), which is contributed to by bedrock weathering in 710 

the ERP (Wan et al., 2020).  711 

 712 

Estimating the contribution of bedrock NO3
- to exports is further complicated by the variability 713 

in the extent of bedrock weathering (and nitrogen release) throughout the ERP catchment, 714 

particularly with aspect and the degree of infiltration (Pelletier et al., 2018). The northeast-facing 715 

hillslope, where the bulk of our data is derived, shows high fracture density and a high 716 

weathering rate. There is, however, considerable variability in the weathering potential of the 717 

Mancos shale throughout the ERP, with areas towards the headwaters of the catchment underlain 718 

by older, harder shale, with fewer fractures through the shale (discussed further in Maavara et al., 719 

2021). We therefore consider that at the catchment scale, bedrock nitrogen from the hillslope 720 

contributes significantly less to watershed NO3
- export than it likely does to floodplain nitrogen 721 

cycling, and, as such, assume a value between 0 - 1 kg ha-1 yr-1 for our estimate of catchment 722 

export (Fig. 8). After accounting for this potential contribution of bedrock weathering to NO3
- 723 

export, Coal Creek shows a significantly higher retention of NO3
- relative to the ERP. We 724 

estimate that approximately 97 % of deposited NO3
- is retained in Coal Creek, relative to ~78-88 725 

% in the ERP.  726 

 727 

4.3. Riparian contributions to NO3
- retention: Coal Creek and the ERP differ further in 728 

geomorphology, with the ERP showing much higher sinuosity through the valley and a larger 729 

areal extent of the riparian region. These are important features regulating the sources of 730 

exported NO3
-. The majority of NO3

- exported by watersheds tends to be derived close to the 731 

river (Sebestyen et al., 2019). A smaller riparian region within Coal Creek reduces preprocessing 732 

of that NO3
- prior to export, which might account for the higher contribution of atmospheric 733 
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sources of NO3
- to aggregate export (Fig. 5). This contribution increases during the snowmelt 734 

period (Table S2), consistent with previous analyses partitioning contributions to aggregate NO3
- 735 

export (Sebestyen et al., 2019), and likely attributable to rapid transit times, and fewer 736 

opportunities for biological transformations during the snowmelt period.  737 

 738 

The ERP shows a higher variability in the sources of NO3
- contributing to its aggregate export 739 

(Fig. 5a). The mobilization of soil-derived NO3
- during snowmelt results in a chemodynamic 740 

relationship with streamflow (Fig. 3b), and increasing export under the rising and falling limb of 741 

snowmelt (Fig. 4a). Across the year, the exported NO3
- has a distinct isotopic composition from 742 

the terrestrial sources. For example, the contribution of atmospheric NO3
- to terrestrial pools 743 

shows a strong interannual pattern, increasing during the snowmelt period, and declining during 744 

baseflow (Fig. S6b). This pattern is not reflected in the river NO3
- isotopic signal (Fig. 5a, & 745 

Table S2), reflecting the contribution of different ecosystem control points, particularly, the 746 

overriding impact of critical zone and floodplain processes. The fluctuating water table also 747 

prolongs transit times and reactivity within the critical zone, and the riparian region. This 748 

promotes the formation of strong oxic/anoxic gradients, and the spatial and temporal coupling of 749 

aerobic (e.g., nitrifying) and anaerobic (denitrifying) metabolisms (Bouskill et al., 2019). A mass 750 

balance calculation using subsurface NO3
- cQ from the upper hillslope region to the toeslope 751 

suggests that much of the NO3
- accumulating within the hillslope critical zone is subject to 752 

denitrification prior to export (Wan et al., 2020). Further support for this mechanism of loss 753 

comes from our observations of very low to undetectable NO3
- concentrations within riparian 754 

regions in ERP and the isotopic enrichment of NO3
- (Fig. S4), along a Δδ18ONO3: Δδ15NNO3 755 

trajectory of 0.6 (Fig. 7), indicative of actively fractionating mechanisms (e.g., nitrite oxidation 756 

and denitrification, Granger & Wankel, 2016).  757 

 758 

The functional potential for denitrification was observed across the ERP riparian region 759 

(Carnevali et al., 2020), however, this area was also been shown to be a potential hotspot for 760 

DNRA (Carnevali et al., 2020), which fractionates the 15N and 18O of NO3
- in a similar manner 761 

(15ɛ:18ɛ = 0.5 - 1.0) to denitrifying bacteria (Asamoto et al., 2021). Rogers et al., modeled the 762 

hydrological and biogeochemical processes retaining and releasing nitrogen within the ERP 763 

riparian region, concluding that these regions are major control points for river corridors, 764 
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providing ~20 % of the stream NO3
-, but remaining major sinks for NO3

- , due to a combination 765 

of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) (Rogers et al., 766 

2021). Under certain conditions, DNRA and denitrification co-exist (Jia et al., 2020), however, 767 

their environmental impact is distinct. At the ecosystem scale DNRA tends to function as an 768 

ecosystem retention mechanism for nitrogen, which might be important in nitrogen limited 769 

ecosystems.   770 

 771 

5. Conclusions  772 

 773 

Nitrogen retention plays a critical role in ecosystem function in mountainous watersheds. 774 

However, the nitrogen cycle is undergoing substantial perturbation (Steffen et al., 2015), and the 775 

reported onset of oligotrophication of the nitrogen cycle in undisturbed catchments (Craine et al., 776 

2018; Mason et al., 2022), can undermine watershed function under future warmer and drier 777 

climate scenarios predicted to disturb mountainous ecosystems (Siirila-Woodburn et al., 2021).  778 

Predicting how this disturbance might feedback onto watershed function can be improved by 779 

viewing function through the lens of watershed traits (McDonnell et al., 2007), which is 780 

emphasized by the current paired catchment approach. Watershed traits, including topography, 781 

bedrock weathering properties, soil properties, land cover, etc., are emergent features of the 782 

historical climate, and regulate the storage and release of water and solutes between different 783 

catchments.  Improving our understanding of whether analagous assemblages of traits retain and 784 

release solutes in comparable ways (i.e., whether conifer dominated forests through the Rocky 785 

Mountains retain atmospheric nitrate and release a larger share of unprocessed nitrate) would 786 

allow these catchments, and their potential response to disturbance, to be considered together in 787 

regional scale models. This study also demonstrates the importance of integrating common 788 

measurements, such as cQ analysis, with stable isotope measurements of NO3
-, to improve 789 

understanding of how catchments with similar cQ relationships can differ strongly in their 790 

nitrogen cycles.   791 
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