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Abstract 16 

Flash droughts– the rapid drying of land and intensification of drought conditions - have 17 

devasting impacts to natural resources, food supplies, and the economy. Less is currently known 18 

about the drivers of flash droughts and their impact to landscape carbon losses. We leverage 19 

carbon and water cycle data from NASA OCO-2 and SMAP missions to determine the net 20 

impact of flash drought events in the U.S. on the carbon sinks. On average, pre-onset carbon 21 

uptake fully offsets post-onset losses, creating a carbon neutral biosphere over a  3 month 22 

period surrounding flash drought onset. This contrasts with ecosystem models, which 23 

underestimate pre-onset uptake and overestimate post-onset loss. Furthermore, spaceborne 24 

observations of solar induced fluorescence (SIF) provide a reliable indicator of flash droughts at 25 

lead times of 2-3 months, due to feedbacks between vegetation growth and soil water loss. This 26 

study is expected to improve understanding and prediction of flash droughts.  27 

 28 

Plan Language Summary 29 

Flash droughts have devasting impacts to the environment, natural resources, and society, and 30 

are difficult to predict. Here, we use NASA models and satellite observations to determine (1) 31 

the impact of flash drought on storage of carbon in land ecosystems, and (2) the extent to which 32 

satellite remote sensing can improve flash drought early warning. We find that beneficial 33 

environmental conditions occurring prior to onset of flash drought leads to increases in carbon 34 

storage in ecosystems compared to normal conditions. This anomalous storage of carbon in 35 

ecosystems is sufficient to fully offset inevitable decreases in carbon storage associated with hot 36 

dry conditions following onset of flash drought, leading to a net zero impact of flash drought on 37 

carbon storage over the 6-month period surrounding drought onset. Moreover, we find the 38 

satellite observations of solar induced chlorophyll fluorescence (SIF), representing a re-emission 39 

of radiation by plants following absorption of sunlight for growth, are extremely well correlated 40 

to soil moisture losses associated with flash drought at lead times of 6-12 weeks across diverse 41 

landscapes and ecoregions in North America. Satellite SIF thus shows promise as a reliable early 42 

warning indicator of flash drought, at sufficient lead time conducive to decision making.  43 

 44 

1. Introduction 45 
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Flash droughts have been responsible for some of the most damaging droughts in the United 46 

States in the past decade [Zhang and Yuan, 2020]. The rapid emergence and onset of land drying 47 

and vegetation stress often results in significant damage to natural and managed vegetation 48 

[Zhang and Yuan, 2020], which has direct and immediate impacts to natural resources, food 49 

supplies, and the economy [Otkin et al., 2018]. These events can also have important 50 

downstream impacts to carbon storage through changes in photosynthetic uptake, soil 51 

respiration, and elevated fire risk [Wolf et al., 2016; Hoell et al., 2019]. However, the extent to 52 

which these events drive anomalous carbon loss is unknown due to the large range of seasonal 53 

timing, geographical location, land cover, land use, and drought severity. As such, despite 54 

extensive assessment of meteorological drought impacts on vegetation and carbon [e.g., Ciais et 55 

al., 2005; Parazoo et al., 2015; Wolf et al., 2016; Madani et al., 2020], relatively little is 56 

currently known about the impact of these short-term extremes on carbon storage. 57 

Flash droughts have also been difficult to predict and monitor [Chen et al., 2019; Ford and 58 

Labosier, 2017; Pendergrass et al., 2020], in part due to the absence of significant precipitation 59 

deficits characterizing more traditional meteorological droughts. Flash droughts are triggered or 60 

exacerbated by high temperatures leading to increased evaporative demand, often appearing 61 

suddenly and without warning, and can persist weeks to months [Anderson et al., 2013; McEvoy 62 

et al., 2016; Otkin et al., 2013, 2018]. The limited predictability, the potential for significant 63 

impacts to natural resources, carbon storage, and water resources, and the apparent link to high 64 

temperatures have motivated efforts to inventory, monitor, and forecast flash drought events 65 

[e.g., Mo and Lettenmaier, 2015, 2016; Ford and Labosier, 2017; Osman et al., 2021, 2022].  66 

Osman et al (2021, 2022) developed a soil moisture volatility-based flash drought definition to 67 

inventory flash drought onset and severity across the Contiguous United States (CONUS) over 4 68 

decades. Critically, this work demonstrates the universal signature of soil moisture anomalies 69 

across thousands of flash drought events, and frequent absence of severe precursor 70 

meteorological anomalies. This inventory provides a unique opportunity to study the impact of 71 

flash drought on carbon exchange, and evaluate new precursors for flash drought.  72 

In addition, spaceborne observations of solar induced fluorescence (SIF) have also proven to be a 73 

useful tool for monitoring flash droughts (Mohammadi et al., 2022), as SIF exhibit unusually fast 74 

responses to drought, providing lead time of 2 weeks to 2 months for flash drought onset. The 75 

rapid physiological changes tracked with SIF contrast with the more structural responses tracked 76 
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by Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), 77 

which are among the many drought indicators currently used by the US Drought Monitor 78 

(USDM). 79 

Improving detection and characterization of flash droughts and understanding how they impact 80 

ecosystem carbon and water budgets will be critical as flash droughts become more common 81 

[Yuan et al., 2023]. This study builds on recent developments in remote sensing and flash 82 

drought inventories to (1) determine the extent to which spaceborne SIF provides an advanced 83 

indicator of flash drought across multiple classes, vegetation types, and regions, and (2) quantify 84 

the temporally and spatially integrated impact of flash droughts on carbon and water budgets. 85 

We leverage gridded estimates of ecosystem carbon exchange, vegetation productivity and 86 

evapotranspiration, soil moisture, and atmospheric forcing using products constrained by satellite 87 

(OCO-2, SMAP, MODIS) and ground-based (NOAA CO2 Network) observational data. Time 88 

series of these products are sampled against flash drought inventories over the CONUS from 89 

2015-2020, and analyzed over a period of  3 months relative to date of drought onset. We 90 

examine patterns of variability in space and time, across drought classes, ecoregions, and 91 

vegetation types. Our objective is to describe the cascade of events in the atmosphere, land, and 92 

soil leading to soil moisture loss and changes in carbon uptake, which will improve our 93 

understanding of drought, and advance drought forecasting and carbon cycle projections.  94 

2. Methods 95 

2.1 Flash Drought Inventory 96 

We leverage the inventory of soil moisture flash droughts generated and extended by Osman et 97 

al (2021, 2022) for CONUS from 1979–2021 at 0.125 spatial resolution. Flash droughts are 98 

identified using a soil moisture volatility index (SMVI) calculated using root zone soil moisture 99 

(RZSM) from the NLDAS-2 soil moisture dataset (https://ldas.gsfc.nasa.gov/nldas/v2/forcing). 100 

SMVI captures change that is more rapid than usual and is thus ideally suited for both rapid 101 

onset and rapid intensification drought events. Flash drought onset is recorded when 1) the 5-day 102 

RZSM moving average falls and stays below the 20-day moving average for at least 20-day days 103 

or 2) both simple moving averages are below the 20th percentile of the 1979–2020 time-of-year 104 

RZSM climatology (Osman et al. 2021). We examine patterns of carbon, water, and 105 

meteorological variables for three categories of flash drought produced from this inventory, 106 

defined based on the magnitude of precursor meteorological anomalies: (1) “stealth”, which are 107 



 5 

least severe in terms of evaporative demand and soil moisture, (2) “dry and demanding” which 108 

are most severe with high evaporative demand and low soil moisture, and (3) “evaporative” with 109 

modest evaporative demand and soil moisture anomalies.  110 

2.2 Carbon Cycle Data 111 

Net Ecosystem Exchange: Atmospheric CO2 inversions use data assimilation methods to adjust 112 

prior estimates of natural CO2 flux from terrestrial biosphere models into agreement with 113 

observed spatial and temporal gradients in atmospheric CO2. The amount of adjustment depends 114 

on uncertainty applied to the models and observations, as well as the sensitivity of observations 115 

to surface fluxes. The v10 Orbiting Carbon Observatory (OCO-2) Model Intercomparison 116 

Project (v10 OCO-2 MIP) accounts for differences in observational constraint and prior flux, by 117 

performing an ensemble of inversions using different models as priors and different 118 

combinations of CO2 data from the OCO-2 satellite (land nadir + land glint, LNLG) and surface 119 

sites (in situ, IS). We leverage 1 x 1 ensemble mean posterior fluxes from v10 OCO-2 MIP 120 

inversions (Byrne et al., 2023 and references therein) constrained by combined spaceborne and 121 

in situ observations (LNLGIS), which extend from the beginning of the OCO-2 record in January 122 

2015 through December 2020 (denoted posterior NBP). We also examine model priors for 123 

comparison (denoted prior NBP). Monthly fluxes are downscaled to weekly resolution using 124 

spline interpolation. 125 

Solar Induced Fluorescence: SIF remote sensing measurements capture seasonal, interannual, 126 

and long term variability in vegetation growth across dryland and forested ecosystems in North 127 

America [Parazoo et al., 2014; 2015; Smith et al 2018]. OCO-2 measures SIF at high precision 128 

and accuracy, and small spatial footprint (1.3 x 2.25 km
2
), needed to capture vegetation 129 

feedbacks with water and carbon. However, it’s narrow OCO-2 swath (10 km) and infrequent 130 

repeat frequency (16 days) limits studies of rapid change associated with flash drought. Methods 131 

have been applied to downscale OCO-2 SIF products using MODIS reflectance (e.g. CSIF; 132 

Zhang et al 2018) and the combination of MODIS reflectance and meteorological data (GOSIF; 133 

Li and Xiao 2019). These methods use machine learning algorithms to extrapolate, upscale and 134 

fill the gaps in OCO-2 SIF retrievals, providing gridded SIF datasets at 4-day 5 km resolution 135 

from 2001-2020 (CSIF v2) and 8-day 5 km resolution from 2001-2022 (GOSIF). We leverage 136 

CSIF and GOSIF products as baseline drought indicators, preprocessed into 4-day and 8-day 137 

averages, respectively, for the period 2015-2020 in alignment with v10 OCO-2 MIP fluxes.  138 
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2.3 Water Cycle Data 139 

Soil Moisture: The NASA Soil Moisture Active and Passive (SMAP) satellite mission is used to 140 

track daily changes in soil water during flash drought development. SMAP Level 4 derived soil 141 

moisture products are produced from merging SMAP L3 soil moisture data with land surface 142 

models of water, energy, and carbon (Reichle et al., 2019). We use daily 9 km estimates of 143 

surface and root zone soil moisture from NSIDC.  144 

Evapotranspiration: The Global Land Data Assimilation System (GLDAS) is used to track 145 

daily changes in evapotranspiration (ET) for feedbacks to atmospheric demand. GLDAS V2.2 146 

uses advanced land surface modeling and data assimilation techniques to generate global optimal 147 

fields of land surface states and fluxes at daily 0.25 x 0.25 (Rodell et al., 2004).  148 

2.4 Meteorological Data 149 

Meteorological fields including daily vapor pressure deficit (VPD), air temperature, and water 150 

vapor are taken from hourly MERRA-2 reanalysis at 0.67 x 0.5. Precipitation is taken from the 151 

GPCP V3.2 daily product.  152 

2.5 Analysis 153 

We analyze carbon and water cycle responses over a  3 month period surrounding drought 154 

onset.  We limit our analysis to flash drought events with onset dates from May-July, such that 155 

our effective analysis period spans late winter (February) through fall (October), inclusive of 156 

longer growing seasons in southern CONUS, while excluding the dormant season for most of 157 

CONUS. We examine a total of 32,211 events occurring from May-July in CONUS, spanning 158 

the period 2015-2020. We examine multiple drought categories, ecoregions (Fig S1) and land 159 

cover (Fig S2). Ecoregions are based on Bukovsky regions representing climatically 160 

homogenous regions in CONUS (Bukovsky, 2011). Land cover is based on aggregated plant 161 

functional types from the International Geosphere-Biosphere Project (IGBP). 162 

All carbon, water, meteorological, and vegetation datasets are sampled at the nearest time and 163 

location of onset from the flash drought inventory from 2015-2020. Spatial analysis is conducted 164 

by aggregating across similar vegetation or flash drought categories, using the area average for 165 

each event (area average varies per dataset). Temporal analysis is conducted using Z-scores with 166 

mean and standard deviation computed over 1-8 day windows (depending on the product) from 167 

2015-2020. Uncertainties are computed as standard errors.  168 
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v10 OCO-2 MIP inversions solve for natural fluxes (net biosphere exchange, NBE), representing 169 

the sum of fire emission (Fire) and net ecosystem exchange (NEE). NBE represents net exchange 170 

from land to atmosphere, with positive values indicating net source and negative values a net 171 

sink. We use the GFED4.1s fire emissions dataset (Giglio et al., 2013; van der Werf et al., 2017) 172 

to determine the contribution of fires to NBE.  173 

For the primary analysis, we exclude flash droughts accompanied by fires with emissions 174 

exceeding 0.001 g C m
-2

 yr
-1

. These events are widespread and have significant pre- and post- 175 

onset influence (See Text S1 and Figs S3-S5). This reduces the final sample size to 23,825. We 176 

include this small threshold to keep the sample size sufficiently high, which would otherwise 177 

reduce to 4,025 samples if all fires events were excluded (N = 3806).  178 

3. Results 179 

The temporal distribution of spatially aggregated NBE standardized anomalies (i.e., mean 180 

response across all flash drought events) is characterized by net carbon uptake (or gain) prior to 181 

drought onset, and net carbon emission (or loss) following drought onset (Figure 1). Peak uptake 182 

occurs 6-8 weeks before onset, following positive anomalies in SIF (6-12 weeks prior to onset), 183 

and gradually becomes a weaker sink with declining SIF and soil moisture. The transition from 184 

net sink to net source occurs approximately at onset, following rapid declines in soil moisture 185 

and SIF. Peak efflux occurs 4-5 weeks after onset, 1-2 weeks after the peak negative anomaly in 186 

SIF.    187 
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 188 
Figure 1. Standardized anomalies (Z-score) of solar induced fluorescence (SIF), net biome 189 

production (NBP), and soil moisture during flash drought events. Anomalies represent the 190 

ensemble average of events in CONUS occurring in May-July from 2015-2020. Negative values 191 

of NBP indicate net uptake, and positive values net efflux. Two SIF-based proxies of 192 

photosynthesis (green, GOSIF and CSIF) show positive anomalies 6-12 weeks prior to drought 193 

onset (x = 0), which is synchronized with negative anomalies of NBP (solid red, constrained by 194 

atmospheric CO2 observations) and negative anomalies of surface and root zone soil moisture 195 

(dashed and solid blue lines, respectively). NBP and SIF patterns are reversed following drought 196 

onset. NBP priors, representing model-based estimates unconstrained by atmospheric CO2 197 

(dashed red), underestimate pre-drought uptake and thus overestimate total flash drought carbon 198 

losses.  199 

 200 

In general, these temporal patterns are consistent across SIF products (CSIF and GOSIF), soil 201 

moisture profiles (root zone and surface), and NBE estimates (prior and posterior). An important 202 

exception is the persistent positive offset in prior NBE (dashed, unconstrained), which is 203 

characterized by a weak net sink prior to onset and strong net source afterward. Consequently, 204 
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posterior estimates of temporally integrated standardized anomalies (Fig S6 and Table S1) show 205 

approximately zero net carbon loss on average (mean Z-score = -0.006  0.00097), with prior 206 

estimates suggesting an anomalous source (mean Z-score = 0.17  0.00095). CO2 observational 207 

constraints thus impose strong pre-drought increases in sink strength (mean Z-score = -0.14  208 

0.0014) which are unaccounted for in model priors, and which fully offset post-drought 209 

reductions in sink strength (mean Z-score = 0.13  0.0013). While there are many cases of pre-210 

drought carbon gain in prior estimates (Fig S6B), they are less frequent and less skewed toward 211 

negative values compared to posterior estimates (Fig S6A). The NBE response shifts toward an 212 

anomalous source when including scenarios in which flash drought is accompanied by fires 213 

(Text S1, Fig S7, Table S1).  214 

The spatial distribution of temporally integrated standardized anomalies indicates a mixed 215 

pattern of net carbon sink anomalies (blue) and net source anomalies (red) across CONUS from 216 

2015-2020 (Figure 2). In general, source anomalies, which are most prevalent in southern areas, 217 

are partially offset by sink anomalies in northern areas. This spatial pattern is related to regional 218 

difference in climate and vegetation. For example, the North America Desert ecoregion (Fig 219 

S8D) shows a persistent net source anomaly over the entire flash drought period ( 3 months 220 

surrounding onset). This region is dominated by semi-arid vegetation including shrubs and 221 

savannah, which show similar pre- and post- onset responses (Fig S9C-D) and is prone to 222 

negative soil moisture and SIF anomalies early on. The Eastern Temperate Forest ecoregion (Fig 223 

S8B), on the other hand, shows a weaker but more prolonged period of drawdown extending 224 

beyond drought onset. This region shows minimal soil moisture loss early on, and negligible 225 

reductions in SIF compared to other regions. The contrasting response between Western Desert 226 

and Eastern Forest regions is potentially related to differences in water limitations and dominant 227 

flux component controls, with dry region sinks more susceptible to drought induced GPP 228 

declines, and wetter eastern forests more susceptible to drought induced respiration declines 229 

following rapid soil moisture loss 4 weeks prior to onset.  This result is also consistent with 230 

increased pre-drought productivity being strongest in regions where spring productivity is 231 

temperature limited (Byrne et al., 2020).  NW Forest and Great Plain ecoregions (Fig S8A,C) 232 

show patterns more characteristic of the mean CONUS signal, including pre-onset sink and 233 

positive SIF anomalies, and post-onset source and negative SIF anomalies.  234 
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 235 
Figure 2. Spatial distribution of standardized NBP anomalies for flash drought events in Figure 236 

1. Blue shading indicates net uptake of carbon; red shading indicates net efflux of carbon. The 237 

multi-event average is shown for pixels in which multiple events occurred from 2015-2020. 238 

 239 

Several ecoregions (NW Forests, Great Plains) and vegetation classes (Needleleaf Evergreen 240 

Forest, Grassland, and Cropland) show positive anomalies of SIF at lags of 4 -12 weeks prior to 241 

drought onset, suggesting a boost to plant productivity several months prior to onset of flash 242 

drought. This raises the question as to whether increased drawdown of soil water due to 243 

enhanced plant growth contributes to the development of flash drought.  244 

To answer this question, we perform lag correlation analysis of SIF and ET versus surface soil 245 

moisture at lags of 0 to 15 weeks (Figure 3). Our results show that SIF is negatively correlated 246 

with soil moisture at lags of 8-15 weeks for all drought classes, with timing and value of peak 247 

negative correlation as follows: 8 weeks for “Evaporative” droughts (r = -0.95), 10-11 weeks for 248 

“Stealth” droughts (r = -0.90), and 11 weeks for “Dry and Demanding” drought (r = -0.98). A 249 

similar analysis of ET and soil moisture shows strong negative correlation peaking at 8 week 250 

time lag for Evaporative droughts and no correlation under Stealth droughts.  251 
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 252 
 253 
Figure 3. Lag correlation between standardized anomalies of vegetation properties and surface 254 

soil moisture. Results are shown for (A) solar induced fluorescence (SIF) vs soil moisture, and 255 

(B) evapotranspiration (ET) vs soil moisture, and partitioned into flash drought categories 256 

including Stealth (solid), Dry and Demanding (solid + crosses), and Evaporative (dashed). 257 

Correlations are shown in increments of one week from 0 to 15 weeks before drought. Negative 258 

lags indicate the vegetation properties lead soil moisture in time.  259 

 260 

Moreover, standardized SIF anomalies are consistently positive at lags of 6-12 weeks prior to 261 

onset (Fig S10). Peak Z-score values exceed zero in 80% of flash drought cases, with lowest 262 

rates in “Dry and Demanding” droughts (76%) and highest rates in “Evaporative” droughts 263 

(83%). The median anomaly is significant for each drought category, ranging from 0.69 for 264 

“Stealth Drought” to 0.85 for “Evaporative” droughts.  265 

Vegetation productivity and soil moisture thus appear to be strongly coupled under antecedent 266 

conditions associated with flash drought, with soil moisture responding to variations in SIF 2-3 267 

months earlier. Similar patterns emerge across ecoregions (Fig S11) and vegetation classes (Fig 268 

S12), especially under Stealth drought conditions, and including managed land cover (Fig S12F) 269 

and desert ecoregions (Fig S11D).  270 
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Standardized SIF anomalies thus appear to provide a reliable indicator of flash drought across 271 

diverse ecoregions, vegetation types, and drought classes, at long lead times (6-12 weeks), with 272 

fairly low false-positive rate (~20%) and strong signal (Median Z-Score of 0.75).  273 

4. Discussion and Conclusions 274 

Aggregating SIF and CO2 flux anomalies across all flash drought events in CONUS from 2015-275 

2020 shows a systematic response of the terrestrial biosphere to flash drought, characterized by 276 

(a) an increase in SIF, photosynthesis, and net drawdown of CO2 before drought onset, (b)  277 

gradual depletion of soil water, (c) transition toward net efflux of carbon with declining 278 

photosynthesis and soil water, (d) shift to net source with sudden loss of soil moisture 1-2 weeks 279 

prior to drought onset, and (e) peak efflux of carbon at 4-5 weeks after onset.  280 

4.1 Cascade of Events 281 

The cascade of meteorological, carbon cycle, and soil moisture events is depicted in Figure 4.  282 

Beneficial warm antecedent conditions 10-12 weeks prior to drought onset stimulate anomalous 283 

vegetation activity 6-12 weeks prior to drought onset. Persistent warming and drying of the land 284 

surface (increased air temperature and atmospheric demand) 6-12 weeks out drives gradual 285 

boundary layer growth 2-8 weeks out, which exacerbates dry conditions. The combined effects 286 

of warming, drying, and vegetation growth deplete soil moisture at the surface and in the root 287 

zone. Finally, extreme hot, dry conditions 1 week out triggers abrupt decreases in soil moisture 288 

leading to onset of flash drought and post drought carbon losses.  289 

This “Cascade of Events” is consistent with mounting evidence that hot-dry extremes can 290 

initially benefit vegetation by stimulating growth under temperature limiting conditions, for 291 

example in spring in temperate latitudes, and following snow melt in high latitudes and altitudes 292 

[Ciais et al., 2005; Wolf et al., 2013; 2016; Keenan et al., 2014; Madani et al., 2021]. While this 293 

can initially increase photosynthesis and carbon storage, vegetation feedbacks can exacerbate 294 

hot-dry extremes by depleting soil water taken up by roots for photosynthesis and lost through 295 

transpiration. The combination of vegetation feedbacks with heightened atmospheric demand 296 

accelerates soil water depletion, providing a potential mechanism for rapid onset of drought (i.e., 297 

flash drought) and subsequent reductions in carbon uptake related to stomatal closure (to 298 

conserve water) and decreased productivity. 299 
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 300 
Figure 4. “Cascade of events” depicted by standardized anomalies of meteorological, vegetation, 301 

atmospheric, and soil moisture variables during “Stealth” flash drought events. Beneficial wet 302 

and warm antecedent conditions 10-12 weeks prior to drought onset (A-B) stimulate anomalous 303 

vegetation activity 6-12 weeks prior to drought onset (C). Persistent warming and drying 6-12 304 

out (B) drives boundary layer growth 2-8 weeks out (D). The combined effects of warming, 305 

drying, and vegetation growth lead to gradual depletion of soil moisture at the surface and in the 306 

root zone (E). Extreme hot, dry conditions precede flash drought onset.  307 

 308 

4.2 Net Zero Carbon Response  309 

Pre- and post-drought onset NBE standardized anomalies (Z-score = -0.14 and 0.13 on average, 310 

respectively) largely cancel out, producing a negligible carbon sink anomaly (-0.006) across all 311 

flash drought events. In projecting carbon responses to future extremes, it is therefore critical to 312 
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account for the integrated response before and after drought onset. Recent work looking at 313 

carbon cycle responses to future extremes indicate the dominance of negative carbon anomalies 314 

(Sharma et al., 2023). NBE anomalies from this study were computed for lags of 1-4 following 315 

onset of climate extremes. By not accounting for pre-drought anomalies, future carbon losses are 316 

likely overestimated. We acknowledge that carbon response patterns may shift in the future with 317 

more frequent and intense extremes; nevertheless, our study highlights that integrated effects are 318 

non-negligible.  319 

As flash droughts become more common [Yuan et al., 2023], accurate assessments of drought 320 

inventories and carbon and water cycle impacts will be critical. V10 OCO-2 MIP priors used in 321 

this analysis strongly underestimate carbon uptake associated with beneficial antecedent 322 

conditions, and overestimate emissions after drought onset. This supports previous studies that 323 

show poor performance in representing ecosystem response to drought [Byrne et al., 2020; Kolus 324 

et al., 2019]. Our analysis highlights several areas of focus to improve model representations of 325 

drought-carbon interactions: (1) temperature sensitivity of photosynthesis across diverse 326 

ecosystems to abnormally warm springs, (2) plant-soil water interactions which can sustain 327 

photosynthesis while depleting soil moisture, and (3) sensitivity of heterotrophic respiration to 328 

abrupt warming and drying. 329 

4.3 SIF is a Promising Early Warning Indicator of Flash Drought  330 

These findings illustrate the value of spaceborne SIF for flash drought early warning especially 331 

for events occurring in early to mid-summer, providing reliability in terms of strong signal and 332 

low false-positivity rate. Significant positive anomalies in standardized SIF are a frequent 333 

occurrence ahead of flash drought (median Z-score = 0.80) and are extremely well correlated to 334 

negative soil moisture anomalies at lags of 2-3 months. Stealth droughts in particular are 335 

challenging to forecast due to reduced severity of meteorological indicators and could easily 336 

benefit from tracking standardized SIF anomalies early on.  337 

Several key factors that continue to hinder full implementation of spaceborne SIF within drought 338 

forecasting systems such as the US Drought Monitor are data latency, frequency, and coverage. 339 

OCO-2 provides accurate tracking of the mean response across multiple events, but individual 340 

events or spatial gradients are hidden by infrequent (16-day) and sparse (8 km swath) sampling. 341 

SIF enabled sensors such as GOME-2 and TROPOMI provide improved mapping and early 342 

warning of drought events (e.g., Mohammadi et al., 2022), but are currently not produced 343 
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operationally. Furthermore, coarse footprints comprising the program of record (5 – 50 km) do 344 

not resolve mixed land cover including managed systems (< 1 km) masking critically important 345 

flash drought impacts on crop yield and food security, and other potential buffers (or amplifiers) 346 

to carbon flux anomalies. Irrigation, which was not analyzed here, is likely to have an important 347 

influence on flash drought responses. Continued research is needed to better understand the link 348 

between SIF and meteorological factors on the timing, magnitude and duration of drought, and 349 

more emphasis should be placed on collaborative work between drought forecasting agencies 350 

and research institutions. We also recommend parallel efforts focused on more operational use of 351 

SIF through reduced data latency, implementation of near real time data fusion systems to 352 

produce gridded maps with moderate temporal resolution (~4-8 days), and development of wide 353 

swath satellite sensors capable of producing spatially resolved maps of SIF at high frequency. 354 
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