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Abstract Calculation procedure 3. Bandgap (ecal))

The Mercury’s magnetic fields are known to be weaker than that predicted by conventional dynamo models. In order

to explain the Mercury’s weak magnetic field, several models are proposed (Stanley and Glatzmaier, 2010). One of 1 Structu re relaxa'“()n

them is the thermoelectric dynamo, which drive the dynamo via the thermoelectric force (Stevenson, 1987). The field

Local density approximation (LDA) Quasiparticle self-consistent GW (QSGW)

strength is proportional to the relative Seebeck coefficient between the core and the mantle. Because the Seebeck

2. Seebeck coefficient

coefficient of insulators is more than one order larger than that of metals, the Seebeck coefficient of Mercury’s mantle

IS the central parameter. Therefore, we Investigated the Seebeck coefficient of mantle minerals from the

first-principles calculations. The structure relaxation and band structure calculations were conducted by using the 3 . Baﬂdgap

Quantum ESPRESSO package. The bandgap energy was calibrated by means of the quasiparticles self-consistent

GW (QSGW) approximation adopted in the ecalj package. The Seebeck coefficient was calculated via the Boltzmann 4 _ I m p u nty ban d
equation implemented in the BoltzTraP package. The results indicate that the Seebeck coefficient of forsterite with a Crystal structure of Mg,SIiO, olivine

small amount of dopant exhibit comparable to that previously thought (|S| ~ 1000 uV/K). This value may constrain the
upper limit. The Mercury’s mantle may contain ~3wt% FeO (Robinson and Taylor, 2001). The Fe substitution and O

vacancy act as donor, which is predicted to reduce the Seebeck coefficient, significantly. The field strength also

i It is widely known that the LDA and the GGA systematically underestimate the bandgap energy, which significantly
depends on the electrical conductivity of the mantle. Recent high pressure experiments suggest that the electrical 1 . Stru Ctu re re I axa'tl O n (PWS Cf)

affects the Seebeck coefficient of insulator. Here, we conducted the QSGW calculations to calibrate the bandgap.
conductivity of the Earth’s mantle is ~ 102 Sm. Considering the both of the Seebeck coefficient and the electrical
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* Double dynamo model (Vilim et al., 2008) The crystal structure of Mg2SiO4 olivine was relaxed by using the Quantum ESPRESSO with

* Feedback dynamo model (e.g. Glassmeier et al., 2007) PBE-PAW potential. The results are consistent with previous experiments (Brown et al.,

- Thermoelectric dynamo model (Stevenson, 1987) 1996). I m pIaUSI ble thermOEIECtnC dyn amO

(Stanley and Glatzmeier, 2010)
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(Stevenson, 1987) (Ricci et al., 2017) (Yoshino et al., 2009)



