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Abstract16

Large-scale dynamical and thermodynamical processes are common environmental drivers17

of extreme weather events. However, such large-scale environmental conditions often dis-18

play systematic biases in climate simulations, posing challenges to evaluating extreme19

weather events and associated risks in current and future climate. In this paper, a ma-20

chine learning (ML) approach was employed to bias correct the large-scale wind, tem-21

perature, and humidity simulated by the E3SM atmosphere model at ∼ 1◦ resolution.22

The usefulness of the proposed ML approach for extreme weather analysis was demon-23

strated with a focus on three extreme weather events, including tropical cyclones (TCs),24

extratropical cyclones (ETCs), and atmospheric rivers (ARs). We show that the ML model25

can effectively reduce climate bias in large-scale wind, temperature, and humidity while26

preserving their responses to imposed climate change perturbations. The bias correction27

is found to directly improve the water vapor transport associated with ARs, and the rep-28

resentations of thermodynamical flows associated with ETCs. When the bias-corrected29

large-scale winds are used to drive a synthetic TC track forecast model over the Atlantic30

basin, the resulting TC track density agrees better with that of the TC track model driven31

by observed winds. In addition, the ML model insignificantly interferes with the mean32

climate change signals of large-scale storm environments as well as the occurrence and33

intensity of three extreme events. This study suggests that the proposed ML approach34

can be used to improve the downscaling of extreme weather events by providing more35

realistic large-scale storm environments simulated by low-resolution climate models.36

Plain Language Summary37

A machine learning model is employed to bias correct the large-scale dynamical and38

thermodynamical fields simulated by a low-resolution global climate model. The impact39

of the machine learning model on the large-scale storm environment associated with trop-40

ical cyclones (TCs), extratropical cyclones (ETCs), and atmospheric rivers (ARs) was41

evaluated. It is found that the ML bias correction can effectively reduce the mean cli-42

mate biases in large-scale wind, temperature, and humidity fields associated with the three43

types of extreme weather events. For storms such as ETCs and ARs that can be partly44

resolved by the low-resolution climate models, the machine learning bias correction shows45

skills in improving the long-term statistics of these extreme weather events. For storms46

such as TCs that can not be well resolved in the low-resolution climate models, the ma-47

chine learning approach produces more realistic statistics of the tropical cyclone tracks48

by providing more realistic large-scale steering winds for downscaling approaches. By49

reducing model biases without affecting the climate change signals in large-scale storm50

environments derived from the low-resolution climate model simulations, machine learn-51

ing bias correction has the potential to provide more reliable projections for assessing52

future changes in extreme weather events.53

1 Introduction54

General circulation models (GCMs) are the most common approach used in pro-55

jecting climate change including future changes in extreme storms such as atmospheric56

rivers (ARs), tropical cyclones (TCs) and extratropical cyclones (ETCs) which have sub-57

stantial societal and economic impacts (S. Seneviratne et al., 2012; Angélil et al., 2016;58

Guan & Waliser, 2017; Moon et al., 2018; Wehrli et al., 2018; Merz et al., 2020; Dai &59

Nie, 2022; S. I. Seneviratne et al., 2023). However, achieving a proper representation of60

these extreme events for hazard assessment requires high spatial resolutions (on the or-61

der of a few kilometers) to realistically simulate the storm processes (e.g. convection),62

which is computationally demanding for global modeling (e.g., Willison et al., 2013; Kendon63

et al., 2014; Kitoh & Endo, 2016; Kanada & Wada, 2016; Kanada et al., 2017; Lucas-64

Picher et al., 2021; Nie et al., 2018; Mori et al., 2019). Consequently, downscaling tech-65
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niques have been widely used in combination with GCMs at low resolution (on the or-66

der of hundreds of kilometers) to yield important scientific insights on past and future67

changes of extreme storms (Emanuel et al., 2006; Emanuel, 2013; Knutson et al., 2013,68

2019, 2020; Lee et al., 2020).69

Downscaling approaches rely on the large-scale storm environments simulated by70

GCMs to project future changes of extreme weather events through established statis-71

tical relationships (e.g, Emanuel, 2013; Colle et al., 2015; Dixon et al., 2016; Balaguru72

et al., 2023a), or to provide boundary conditions for limited area or regional models to73

simulate the local climate and extreme weather events (e.g, Giorgi et al., 1994; Fu et al.,74

2005; Gutowski et al., 2020). Accurate simulation of the large-scale storm environments75

by GCMs is therefore essential to achieve reliable downscaling to evaluate future changes76

in frequency, intensity, and characteristics of storms. However, the large-scale storm en-77

vironments governing regional- to local-scale extreme events are often not well represented78

in the GCMs due to varying levels of systematic biases and uncertainties in represent-79

ing smaller-scale processes that interact with the large-scale environments. (e.g. Collins80

et al., 2013; Flato et al., 2013; Mueller & Seneviratne, 2014; Zappa et al., 2013; Volosciuk81

et al., 2015). As a result, GCM bias corrections have been an important research topic82

in downscaling studies and many bias correction methods have been developed to pro-83

vide more reliable regional climate information (e.g, Deque, 2007; Christensen et al., 2008;84

Z. Xu & Yang, 2012; Vrac et al., 2012; Gudmundsson et al., 2012; François et al., 2020;85

W. Xu et al., 2021; Vaittinada Ayar et al., 2021). Studies have demonstrated that cor-86

rection of the GCM mean bias may improve dynamical downscaling of local-scale extreme87

weather events such as tropical cyclones over the North Atlantic Ocean (e.g, Bruyère et88

al., 2014; Done et al., 2015).89

In recent years, advances in machine learning (ML) techniques have enabled ap-90

plication of modern artificial neural network architectures in bias correction and statis-91

tical downscaling of GCMs (e.g., Moghim & Bras, 2017; Steininger et al., 2020; Han et92

al., 2021; Z. Xu et al., 2021; F. Wang & Tian, 2022; Fulton et al., 2023). Several types93

of ML approaches have proven to successfully reduce spatial- and temporal- biases in GCMs94

(F. Wang & Tian, 2022; Fulton et al., 2023). In this paper, we introduce a long short-95

term memory neural network (LSTM) machine learning (ML) approach (Charalampopoulos96

et al., 2023) developed to bias correct the climate simulations produced by the U.S. De-97

partment of Energy (DOE) Energy Exascale Earth System Model (E3SM, Golaz et al.,98

2022). Specifically, the developed ML approach is employed to postprocess the large-scale99

wind (U, V), temperature (T), and humidity (Q) from long-term present-day and future100

climate simulations conducted with version 2 of the E3SM Atmosphere Model (EAMv2)101

at a horizontal grid spacing of ∼ 1◦, driven by prescribed sea surface temperature and102

sea ice as lower boundary conditions. With an ultimate goal of improving modeling of103

extreme weather events, we evaluate the impact of ML bias correction on the large-scale104

storm environments and the long-term statistics of extreme weather events simulated by105

EAMv2, with a focus on three types of extreme weather events, including ARs, TCs and106

ETCs. Importantly, we also evaluate the impact of the ML bias correction on the responses107

of the three types of extreme weather events to future climate change. The goal of this108

study is to determine how well low-resolution climate models with the ML bias correc-109

tion may provide more skillful simulations of large-scale storm environment conditions110

than those without bias correction, thus providing a path to improved assessments and111

downscaling of extreme weather events.112

In Section 2, we introduce the experimental design and ML bias correction method.113

In Section 3 we evaluate the impacts of the ML model on the GCM model biases and114

the GCM projected climate change signals in large-scale model states (i.e. U, V, T, Q).115

Then the long-term statistics of ARs, TCs, and ETCs and their associated large-scale116

storm environment with and without ML bias correction are compared and evaluated117

for the present-day climate (1979-2014) (Section 4). Section 5 presents the impact of ML118
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bias correction on the responses of ARs, TCs, and ETCs to climate change projected by119

pseudo global warming (PGW) simulations with and without postprocessing by the ML120

bias correction. Lastly conclusions and discussions are given in Section 6121

2 Model and Simulations122

2.1 A brief overview of E3SM Atmosphere Model (EAM)123

E3SM is a global Earth system model developed by the U.S. Department of En-124

ergy (Leung et al., 2020) with the first version released in 2018 (Golaz et al., 2019). This125

study uses the E3SM Atmosphere Model version 2 (EAMv2, Golaz et al., 2022) at stan-126

dard resolution (also referred to as the “low-resolution” configuration). In brief, EAMv2127

uses separate computational grids for dynamics and column physics parameterizations.128

The dynamical core is configured with the “np4” cubed-sphere mesh with a horizontal129

resolution of ∼110km to solve the equations for large-scale dynamics and tracer trans-130

port (e.g, Dennis et al., 2012; Taylor & Fournier, 2010). The column parameterizations131

are run on a “pg2 grid” which shares the element grid with the dynamics but has a 2132

× 2 subgrid of quadrilaterals for a total of four columns per element (e.g, Lauritzen et133

al., 2018; Herrington et al., 2019). The key subgrid-scale physical parameterizations in134

EAMv2 include representations of deep convection (G. J. Zhang & McFarlane, 1995),135

turbulence and shallow convection (Golaz et al., 2002; Larson et al., 2002), cloud micro-136

physics (Morrison & Gettelman, 2008; Gettelman & Morrison, 2015; Y. Wang et al., 2014),137

aerosol life cycle (Liu et al., 2016; H. Wang et al., 2020), and shortwave and longwave138

radiation (Iacono et al., 2008; Mlawer et al., 1997). In addition, EAMv2 is interactively139

coupled with a land model (Oleson et al., 2013) that uses the same “pg2” grid for col-140

umn parameterizations. EAMv2 is configured with 72 vertical layers, extending from the141

Earth’s surface to ∼0.1 hPa (∼64 km). The vertical grid spacing is uneven, with the layer142

thickness ranging typically from 20 m to 100 m near the surface and up to 600 m near143

the model top.144

2.2 Simulation and Bias Correction145

The simulations conducted for this study use prescribed sea surface temperatures146

and sea-ice concentrations, following the Atmospheric Model Intercomparison Project147

protocol (AMIP, Gates et al., 1999). Table 1 summarizes the key configurations of these148

E3SMv2 simulations. The first group (Group 1) consists of one baseline simulation (i.e.149

“CLIM”) and two pseudo global warming (PGW) simulations (i.e. “SSP245” and “SSP585”).150

CLIM is a present-day free-running simulation driven by prescribed observed monthly151

mean sea surface temperature (SST) and sea ice concentration (SIC) from the input4mip152

datasets (Reynolds et al., 2002) as the lower boundary conditions. Other external forc-153

ing data, including volcanic aerosols, solar variability, concentrations of greenhouse gases,154

and anthropogenic emissions of aerosols and their precursors, were prescribed following155

the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project-156

Phase 6 (CMIP6, Eyring et al., 2016; Hoesly et al., 2018; Feng et al., 2020). Emissions157

of aerosols and their precursor gases were set to the values of the year 2010 to represent158

the present-day condition. The simulation was run from 1 January 1978 to December159

2014. The first year of model output was discarded as model spin-up, and the remain-160

ing 36 years of model output were used for analysis.161

The two PGW simulations, SSP245 and SSP585, use the same configurations as162

for CLIM, except with imposed climate change perturbations added to the boundary con-163

ditions of SST and SIC:164

• SSP245: the patterned SST and SIC perturbations (i.e. ∆) associated with the165

Shared Socioeconomic Pathways 2-4.5 scenario were added to the SST and SIC166

boundary conditions used in CLIM. Specifically, the monthly mean SST and SIC167
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model outputs during the 1991-2010 (present-day) and 2041-2060 (future climate)168

periods were extracted from the coupled simulations conducted with 15 CMIP6169

models (See Table A1). The climatological mean of the monthly SST and SIC over170

the two periods were then computed by averaging each quantity over the 20-year171

period, and the ∆SST and ∆SIC were derived as the difference between the present-172

day and future climatological mean SSTs and SICs for each month and each grid173

point. Finally, the multi-model ensemble mean (MME) of ∆SST and ∆SIC were174

computed and added to the SST and SIC that were prescribed in the CLIM sim-175

ulation as climate change perturbations for the pseudo SSP245 global warming176

experiment. We note that the monthly mean ∆SST and ∆SIC were added to each177

corresponding month to preserve the monthly and seasonal cycles of ∆SST and178

∆SIC. Overall, the SSP245 perturbations correspond to a 1–2 K warming in the179

annual mean SST and 5 − 10% reduction in the annual mean SICs in most re-180

gions over the globe compared to the observed SST and sea ice in the present-day181

climate (see Figs. A1a–b).182

• SSP585: same as SSP245, except that the CMIP6 coupled simulations conducted183

under the Shared Socioeconomic Pathways 5-8.5 scenario during 2041-2060 were184

used to derive the SST and SIC perturbations for the pseudo global warming ex-185

periment. Compared to the SSP245, SSP585 with an end-of-century forcing of 8.5186

W m−2 instead of 4.5 W m−2, results in stronger warming of SSTs and larger re-187

ductions of SICs (see Figs. A1c–d).188

The second group (Group 2) consists of three simulations that are the same as Group189

1 except that the machine learning (ML) model was used to post-process the three sim-190

ulations in Group 1 to bias correct the EAMv2 simulations of the present-day and fu-191

ture climates. In brief, the ML model employed for bias correction was proposed by Barthel192

et al. (2023) in which a neural network (NN) operator acts on the coarse-resolution cli-193

mate model simulation in a postprocessing manner. Specifically, the NN operator was194

trained to learn a map between a nudged coarse resolution EAMv2 historical simulation195

and the ERA5 reanalysis data (Hersbach et al., 2020) that represents the real atmosphere.196

The nudged simulation was conducted by constraining the large-scale model state (i.e.197

U, V, T, Q) towards the ERA5 reanalysis following S. Zhang et al. (2022) and Sun et198

al. (2019) so that the trajectory of model state predominately obeys the dynamics of the199

coarse resolution EAMv2 model, yet is constrained from chaotically diverging from the200

ERA5 reanalysis. To counteract the artificial dissipation introduced by the nudging ten-201

dency, the spectrum of the nudged solution is corrected to match the free-running EAMv2202

model. Training on this specific pair of trajectories (the spectrally corrected nudged EAMv2203

solution and the ERA5 data) allows the network to learn a map from the chaotic attrac-204

tor of the coarse resolution EAMv2 model to that of the reference data (i.e. ERA5 re-205

analysis) without being corrupted by chaotic divergence. At test time, the correction op-206

erator is then applied to the output of free-running EAMv2 simulation which is mapped207

into a trajectory residing in the attractor of the reference data. A full description of the208

mathematical framework for the ML model is included in appendix A2. More detailed209

information for the development and verification of the ML model can be found in Barthel210

et al. (2023).211

In this study, the ML model was applied to bias correct the 3-hourly instantaneous212

U, V, T, and Q model output at each grid point and 72 model levels from the three sim-213

ulations in Group 1. The ML bias-corrected data is referred to as ML(CLIM), ML(SSP245),214

and ML(SSP585) in Table 1 and throughout the rest of this manuscript. A comparison215

between the Group 1 and Group 2 simulations is performed to quantify the effects of the216

ML bias correction on the EAMv2 simulations of mean climate, extreme events, and cli-217

mate change signals, which will be presented in Sections 3–4. It’s important to note that218

none of the climate simulations for the historical or future scenarios in Group 1 were used219

in the ML training. As mentioned above, ML training was performed using an EAMv2220

simulation with nudging towards ERA5, which is different from the free running histor-221
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Table 1. List of simulations for present-day and future climate scenarios. The three simula-

tions in Group 1 were conducted with the coupled atmosphere-land components of EAMv2 with

default “low-resolution” configuration at ∼ 110 km grid spacing (see (Golaz et al., 2022)). All

simulations were conducted with prescribed sea surface temperature (SST) and sea ice concen-

tration (SIC) (see context in Section 2.2 for details). Group 2 consists of three simulations that

apply ML bias corrections to the corresponding simulations in Group 1. Here ”pseudo 1979-2014”

refers to simulations driven by SST and SIC with climate perturbations corresponding to the

difference between (2014-2060) and (1991-2010) added to the SST and SIC of the CLIM period of

1979-2014.

Group Short name Time period Bias correction Scenario

1 CLIM 1979-2014 No Present-day
1 SSP245 pseudo 1979-2014 No Future climate
1 SSP585 pseudo 1979-2014 No Future climate

2 ML(CLIM) 1979-2014 Yes Present-day
2 ML(SSP245) pseudo 1979-2014 Yes Future climate
2 ML(SSP585) pseudo 1979-2014 Yes Future climate

ical simulation (CLIM). In addition, no new training was carried out for the bias cor-222

rection of future scenarios. Therefore, the implied hypothesis here is that the bias cor-223

rection model trained using the historical simulation can be applied to correct similar224

biases in future climate scenarios. Further analyses and evaluations in this regard will225

be presented in Section 3.2.226
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3 Validation of machine learning (ML) bias correction227

3.1 Bias correction on historical simulation228

We first evaluated the ability of the ML approach to reduce the model biases in229

EAMv2. Figure 1 shows the zonal mean and annual mean biases in the zonal wind (U),230

temperature (T), and specific humidity (Q) fields of the EAMv2 simulations without and231

with ML bias correction. The metrics were derived by comparing CLIM and ML(CLIM)232

in Table 1 with the ERA5 reanalysis during the 1979-2014 period. The biases in the U,233

T and Q fields from ML(CLIM)(Figs. 1b, e and h) are systematically smaller than those234

in CLIM (Figs. 1a, d and g) over most regions and vertical levels, meaning that the ML235

model leads to promising bias reduction in the mean climate fields simulated by EAMv2.236

We also note that the performance of ML bias correction varies with the quantities and237

spatial locations. Compared to the wind field (Fig. 1a–b), more significant bias reduc-238

tions are seen in the temperature (Fig. 1d–e) and humidity fields (Fig. 1g–h). In addi-239

tion, more promising bias corrections are seen in the near-surface levels relative to the240

upper model levels in all fields over most regions over the globe (also see Fig B1 in Ap-241

pendix). This is possibly because of the large variabilities in the fields such as wind in242

upper model layers (see Fig. 1c), which could limit the skills of ML bias correction model243

in these regions.

Figure 1. Zonal and annual mean model biases in zonal wind (U, unit: m s−1, panels a–b),

temperature (T , unit: K, panels d–e), and water vapor mixing ratio (Q, unit: g kg−1, panels

g–h) averaged over the period of 1979-2014 from free-running (i.e., CLIM, first column) and ML

bias-corrected (i.e., ML(CLIM), second column) EAMv2 simulations. The biases are derived by

comparing monthly mean EAMv2 simulations with ERA5 reanalysis. The dotted region indicates

the differences are significant at a 95% confidence level from a Student’s t test. The third column

shows the standard deviation of U, T, and Q at each pressure level from the ERA5 reanalysis.

The log-linear interpolation is used to regrid the EAMv2 data on the hybrid sigma-pressure level

to pressure-level for comparison with ERA5 reanalysis. Details of the simulation setups can be

found in Table 1.
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For a more quantitative evaluation, Figure 2 further shows the mean biases and244

root-mean-square error (RMSE) of selected physical quantities from CLIM and ML(CLIM).245

The mean biases are normalized by the observed values, while the RMSE is normalized246

by the RMS of the observed values to demonstrate the relative rank of the biases in dif-247

ferent variables. We can see that the ML bias correction effectively reduces the biases248

by 10-20% in the wind, temperature, and humidity fields over the globe (Fig. 2a), espe-249

cially in the mid-latitude regions. Meanwhile, the global and regional patterns of large-250

scale wind, temperature, and humidity fields are also systematically improved as evidenced251

by the RMSE metrics (Fig. 2c–d). With these results, we conclude that the ML approach252

is capable of reducing biases in the mean climate simulated by EAMv2, which may pro-253

duce a more realistic representation of the large-scale dynamics and thermodynamics fields254

associated with extreme events.

Figure 2. First row: mean biases in selected physical quantities averaged over the globe

(panel a) and mid-latitude region ([30-60N] and [30-60S] latitude bands, panel c) from EAMv2

simulations without (i.e “CLIM” in red) and with (i.e.“ML(CLIM)” in blue) ML bias correction,

normalized by the observed value (i.e. ERA5 reanalysis); Second row: same as the first row,

but for root-mean-square errors (RMSE) of anomaly patterns between EAMv2 simulations and

observations, normalized by the root-mean-square(RMS) of the observed values. All metrics are

calculated using the monthly mean model output and ERA5 reanalysis (i.e. observation) dur-

ing the period of 1979-2014. The y-axis shows the selected physical quantities, includingsurface

pressure (PS, unit: hPa), sea level pressure (PSL, unit: hPa), zonal wind (U, unit: m/s) and

temperature (T, unit: K) at bottom model level, 850-, 500- and 200-hPa pressure levels, as well

as the specific humidity (Q, unit: g/kg) at 925-, 850-, 500- and 200-hPa pressure levels. The log-

linear interpolation is used to regrid the EAM model output on the hybrid sigma-pressure level

to pressure-level, and compared with ERA5 reanalysis on pressure levels. Details of the simula-

tion setups can be found in Table 1.

255

3.2 Impact of bias correction on mean climate change signals256

As discussed in Section 2.2, the ML model trained with EAMv2 nudged simula-257

tions and ERA5 reanalysis during the historical period is directly used to correct the EAMv2258
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simulations for historical and future climate scenarios. Unlike many previous studies (e.g.259

Gutiérrez et al., 2019; Teutschbein & Seibert, 2012; Chen et al., 2020, 2021) which as-260

sumed that the bias correction was identical in present-day and future climates, our ML261

bias correction does not assume that the biases in climate model simulations are inde-262

pendent of the mean climate states. In other words, we do not assume that the error cor-263

rection terms computed in the present day climate can be simply added to the future264

runs. It is likely, however, that the large-scale structure and magnitude of model biases265

are very similar between the climate of the two time periods. If this is true, the bias cor-266

rection should not significantly interfere with the large-scale climate change signals re-267

sulting from the imposed perturbations for the pseudo global warming simulations. We268

demonstrate that this is the case for our employed ML model by checking the features269

of the large-scale climate change signals before and after the ML bias correction in this270

section.

Figure 3. Differences of air temperature at 850-hPa (unit: K) between the present-day and

pseudo global warming EAMv2 simulations averaged over the whole simulation period of 1979-

2014. Shown are (a) SSP245 – CLIM and (c) SSP585 – CLIM for EAMv2 simulations without

ML bias correction, as well as (b) ML(SSP245) – ML(CLIM) and (d) ML(SSP585) - ML(CLIM)

for EAMv2 simulations with ML bias correction. The dotted regions indicate the differences are

significant with a 95% confidence level. The SSP245 and SSP585 denote two pseudo global warm-

ing EAMv2 simulations with imposed climate change perturbations in sea surface temperature

(SST) and sea-ice concentrations (SIC) derived from the CMIP6 historical simulations following

SSP2-4.5 and SSP5-8.5 future scenarios, respectively. Detailed description on simulations can be

found in Table 1.

271

Figure 3 shows the spatial distribution of the temperature changes at 850-hPa due272

to the imposed climate change perturbations in SST and SIC for the SSP2-4.5 (top row)273

and SSP5-8.5 (bottom row) future scenarios. The patterns and magnitude of changes274

in near-surface temperature comparing the PGW and CLIM simulations (Figure 3a and275

c) are largely consistent with the pseudo global warming perturbations of SST (Figure A1a276

and c). These responses are expected due to the direct impact of the prescribed SST per-277

turbations on the temperatures in the lower atmosphere. Compared with the climate change278
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signals without bias correction (Figs. 3a and c), ML bias correction applied to CLIM and279

the PGW simulations overall does not significantly modify the patterns and magnitude280

of 850-hPa temperature responses in most regions over the globe (Figs. 3b and d). An281

exception is the regions around 30◦ S and 30◦ N where a moderate modification on the282

magnitude of 850-hPa temperature changes is observed (e.g. Fig. 3c versus Fig. 3d). Fur-283

ther analysis indicates that the ML model applies correction to the large cold temper-284

ature biases over these regions (see. Fig. 1d–f) during the historical period. Such cor-285

rections from the ML model are expected to take effect in the SSP245 and SSP585 sim-286

ulations as well. Through non-linear processes in the atmosphere, the moderate adjust-287

ment of the climate change signals in these regions is not unexpected.

Figure 4. Long-term statistics for monthly mean air temperature (first column, unit: K)

and specific humidity (second column, unit: g kg−1) at 850-hPa pressure levels over the whole

global domain during the simulation period of 1979-2014. Shown is the comparison among ERA5

reanalysis (grey bars), uncorrected (dashed lines), and ML-corrected (solid lines) EAMv2 sim-

ulation for present-day (blue lines) and future climate scenarios (red lines). The future climate

simulations with SSP2-4.5 and SSP5-8.5 (bottom row) perturbations are shown in the top and

bottom rows, respectively. The detailed descriptions on simulations can be found in Table 1.

288

To further study the correction patterns between the present-day climate and fu-289

ture scenarios, the probability density functions (PDFs) of monthly temperature and hu-290

midity at 850 hPa during 1979-2014 are also plotted and shown in Figure. 4. Consistent291

with the results in the previous section, we can see that the ML bias correction adjusts292

the PDF of CLIM in the present-day climate towards the PDF of ERA5 reanalysis data293

(dashed and solid blue lines versus grey bars) for both near-surface temperature and hu-294

midity fields. For future climate scenarios, consistent with the imposed positive radia-295

tive forcing associated with the SSP scenarios, both EAMv2 simulations with and with-296

out ML bias correction predict warmer 850-hPa temperatures and higher specific humid-297

ity relative to present-day conditions (red lines versus blue lines). Therefore, the phys-298

ical climate change effects, i.e. shifting toward warmer temperatures, are not erroneously299

removed as systematic biases by the ML model. More importantly, the differences be-300

tween the ML-corrected future scenarios and present-day climate (solid blue and red lines)301

are very similar to those between the uncorrected datasets (dashed blue and red lines,302
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see also Fig B2), suggesting that the ML bias correction does not significantly interfere303

with the pseudo global warming-induced climate change signals. In fact, we note that304

the PDFs of T850 and Q850 after ML bias correction (i.e. ML(SSP245) and ML(SSP585),305

solid red lines) are also quantitatively closer to the ERA5 global statistics (grey bars),306

compared with the uncorrected free-running simulations (i.e. SSP245 and SSP585, dashed307

red lines). This implies that the ML bias correction constrains the EAMv2 simulations308

with corrections of the same sign and similar magnitude in both present-day and future309

climate simulations. For instance, the near-surface humidity correction shifts the right-310

side tail of the distribution by a similar amount to that seen in the present-day results311

(Figure. 4 b and d). Overall, it is encouraging that the ML model effectively reduces the312

model biases in large-scale dynamical and thermodynamical atmospheric conditions, while313

introducing insignificant interference on the climate change signals (or preserving the cli-314

mate change signals imposed from external forcing).315

4 Impact of bias correction on statistics of extreme weather events316

In this section, we further discuss the value of ML bias correction for the study of317

extreme weather events and their underlying processes in EAMv2. We selected three types318

of extreme weather events to analyze: atmospheric rivers (ARs), extratropical cyclones319

(ETCs), and tropical cyclones (TCs). The evaluation metrics rely on feature tracking320

using the TempestExtremes package (P. A. Ullrich et al., 2021), and are detailed in Ap-321

pendix B. These three types of events are of interest partly because they represent ex-322

treme weather events that operate at spatial and temporal scales that are largely resolved323

(e.g. ARs), or under-resolved (e.g. ETCs and TCs) by low-resolution climate models (e.g.324

EAMv2) at ∼ 1◦ horizontal resolution. With analyses of these events, we aim to demon-325

strate the value of the ML bias correction for improving simulations and projections of326

extreme weather events by typical GCMs.327

4.1 Atmospheric rivers (ARs)328

Atmospheric rivers (ARs) are characterized by intense moisture transport, which,329

on landfall, produce precipitation that can be both beneficial and destructive (Payne et330

al., 2020). The major features of ARs are reflected by the zonal and meridional mois-331

ture transport (model output fields TUQ and TVQ, respectively). As shown in Eq. (C5),332

TUQ and TVQ are directly linked to large-scale wind and specific humidity, and are ex-333

pected to be well simulated by EAMv2 at ∼ 1◦ resolution.334

Despite the model being capable of resolving ARs, biases still exist in the simulated335

ARs. As reported in Kim et al. (2022), version 1 of the E3SM model overestimates the336

occurrence frequency and the water vapor transport of ARs. Therefore, it is worth check-337

ing whether EAMv2 with the ML bias correction can reduce these AR biases. Here, Tem-338

pestExtremes is employed to track ARs using the 6-hourly TUQ and TVQ fields derived339

from the EAMv2 simulations with and without ML bias correction. The occurrence fre-340

quency and vertically integrated horizontal water vapor transport (IVT) associated with341

ARs are then calculated and shown in Figure 5. We can see that the significant over-342

estimation of IVT in E3SM v1 still exists in the EAMv2 model (Fig. 5b), meaning that343

spurious large moisture transport associated with ARs persists in both versions of the344

EAM model. These model biases can introduce biases in the AR-driven precipitation in345

model simulation as found in previous studies (Kim et al., 2022).346

With the ML bias correction, the spurious large moisture transports associated with347

ARs are significantly reduced in the EAMv2 simulations (Fig. 5c). The remaining model348

biases in the composite IVT field are statistically insignificant in most regions over the349

globe. Following Eq. (C5), such improvements in ARs are obtained because of the ef-350

fective bias reductions by the ML model in both large-scale wind and humidity fields (Fig. 1h351

and Fig. 1i). Consistently, the AR annual occurrence frequency also agrees better with352
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ERA5 reanalysis after the ML bias correction (Fig. 5e versus f). Note that TempestEx-353

tremes uses the Laplacian of IVT instead of an IVT threshold for AR tracking. There-354

fore, biases in large-scale humidity on its own is not responsible for the AR frequency355

biases in Fig. 5e. The improvements in the occurrence frequency of ARs suggest that the356

ML bias correction not only modifies the IVT value at each grid point but also inher-357

ently improves the gradient of IVT simulated by EAMv2.

Figure 5. Top row: distribution of the vertically integrated horizontal water vapor transport

(IVT, units kg m−1 s−1 ) from ERA5 reanalysis averaged over all identified AR events at each

grid point during 1979-2014 (panel a), and the model biases in the EAMv2 simulations without

(i.e., CLIM, panel b) and with (i.e. ML (CLIM), panel c) ML bias correction. The AR events

and composite IVT are tracked with TempestExtremes using the 6-hourly TUQ and TVQ data

from ERA5 reanalysis and EAMv2 simulations; Bottom row: same as the top row, but for the

annual AR occurrence frequency (unit: %) in ERA5 reanalysis (panel d) and the mean biases in

CLIM (panel e) and ML (CLIM) (panel f). The annual frequency of AR is defined as the per-

centage of the number of time steps (6-hour) a grid point was part of an AR, divided by the total

number of 6-hour time steps in each year during 1979-2014. The dotted region in panels b–c and

e–f indicates that the differences between EAMv2 simulation and ERA5 are significant at a 95%

significance level.

358

Figure 6 further shows the responses of the IVT and occurrence frequency of ARs359

to the climate change perturbations in SSTs and SICs used in the pseudo global warm-360

ing EAMv2 simulations. The differences between SSP245 and CLIM suggest an increase361

of the IVT (Fig. 6a) and the occurrence of AR events (Fig. 6c), which can be explained362

by the higher atmospheric humidity associated with warmer temperature as shown in363

Figure 4. However, circulation changes such as changes in the jet stream and subtrop-364

ical high-pressure systems (Kim et al., 2022) likely also play a role since as noted ear-365

lier, ARs are tracked based on the Laplacian of IVT instead of an IVT threshold so an366

increase in atmospheric humidity alone does not translate to more frequent AR occur-367

rence. These climate change signals are also seen in the same pair of simulations with368

the ML bias correction (ML(CLIM)and ML(SSP245)), indicating that the bias correc-369

tion preserves the climate change signals. Compared with the free-running E3SM sim-370
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ulations, the ML bias correction results in a weaker increase of IVT and occurrence fre-371

quency of AR over the Northeast Pacific and Southern Ocean regions, which is likely due372

to the correction of ML on the overestimation of IVT in the E3SM model. Similar re-373

sponses in the intensity (in terms of IVT) and occurrence frequency of ARs are also seen374

in the pseudo global warming simulations with stronger imposed climate changes in SST375

and SIC (i.e. SSP585), but the magnitudes of change in IVT and occurrence of ARs are376

more pronounced due to the stronger external forcing in SST and SIC (Figure B3). Again,377

the ML bias correction preserves the climate change signals, while adjusting the strength378

of the responses in IVT associated with ARs. Overall, the results in this section suggest379

that the ML bias correction reduces the systematic model biases in large-scale wind and380

humidity and improves the representation of ARs in EAMv2. Meanwhile, the ML bias381

correction does not have a significant impact on the climate change signals associated382

with ARs derived from the pseudo global warming simulations. By eliminating the sys-383

tematic model biases, the bias-corrected AR environments provide more reliable infor-384

mation for downscaling of ARs for assessing future changes in precipitation and flood385

hazards associated with ARs.

Figure 6. Changes of the vertically integrated horizontal water vapor transport (IVT, units

kg m−1 s−1, top row) and annual occurrence frequency of ARs (unit: %) in the EAMv2 simula-

tions with imposed climate change perturbations in sea-surface temperature (SST) and sea-ice

concentration(SIC) for the SSP2-4.5 scenarios. Shown is the differences of SSP245 – CLIM (pan-

els a and c) and ML(SSP245) – ML(CLIM) (panels b and d) for the EAMv2 simulations without

and with ML bias correction, respectively. The composite of IVT is derived using all AR events

tracked by TempestExtremes during the present-day or pseudo-global warming period of 1979-

2014. The definitions of the annual frequency of AR are the same as in Figure 5a. The dotted

region in panels b–c and e–f indicates that the differences are significant at a 95% significance

level.

386

4.2 Extratropical cyclones (ETCs)387

Extra-tropical cyclones (ETCs) are a fundamental part of the atmospheric circu-388

lation that modulates the transportation of heat, moisture, and momentum in the mid-389

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

latitudes (Hawcroft et al., 2012; Sinclair et al., 2020). The heavy precipitation and strong390

winds accompanying ETCs are known to cause extreme weather-induced damages in mid-391

latitude regions such as Europe and North America (Fink et al., 2009; Hoskins & Hodges,392

2002). We begin our discussion by showing the track densities of ETCs that are tracked

Figure 7. Track density maps for total annual ETCs over Northern Hemisphere (NH, top

row) and Southern Hemisphere (SH, bottom row) tracked in the ERA5 reanalysis (panels a

and d) and EAMv2 climate simulations without (i.e, CLIM, panels b and e) and with (i.e.,

ML(CLIM), panels c and f) ML bias correction. The ETC events and composite IVT are tracked

with the TempestExtremes using the 6-hourly mean sea level pressure (PSL) data from ERA5

reanalysis and EAMv2 simulations. The warm-core tropical-cyclone-like vortices were excluded

during the feature tracking. The track densities shown are defined as the total number of time

steps (6-hour) the ETCs passed the 8x8 o grid box over the globe in each year during 1979-2014.

Units are the number of 6-hourly ETC occurrences per 8◦ × 8◦ grid box per year.

393

with TempestExtremes using the sea level pressure (PSL) fields in the two hemispheres394

(Figure 7). The annual ETC storm tracks over the Northern Hemisphere (NH) in ERA5395

reanalysis (Fig 7a ) show very clear high track densities over two regions separated by396

orographic features: the first region extends from high topography in East Asia (i.e., the397

Tibetan Plateau and the Altai–Sayan–Stonovoy range) into the western North Pacific,398

while the second region extends from the lee of the Rocky Mountains in North Amer-399

ica, across the North Atlantic into Scandinavia and northern Russia. Different from the400

NH, the annual ETC tracks in the Southern Hemisphere (SH) show more continuous fea-401

tures with the highest track densities between 50◦-70◦ S (Fig. 7d). The low-resolution402
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EAMv2 model produces a good representation of the observed spatial patterns of ETC403

track densities in both hemispheres (Fig. 7b and e). Compared with the free-running sim-404

ulations (i.e. CLIM, Fig. 7b and e), no significant differences in the ETC track densi-405

ties are seen in simulations with the ML bias correction (i.e. ML(CLIM), Fig. 7c and f).406

The small differences between ML (CLIM) and CLIM are likely because the corrections407

by the ML model on wind and temperature do not lead to significant adjustments on408

the derived PSL (see Eq. C1). As shown in Fig. B4, the systematic model biases of PSL409

in CLIM are less than 2-hPa in most regions over the globe (Fig. B4b). Therefore, we410

will not expect a strong correction from the ML model in these regions with small PSL411

biases (Fig. B4c). However, the CLIM simulation indeed reveals large low-pressure bi-412

ases in the southern ocean region (50◦−70◦S) (Fig. B4b), which is co-located with the413

highest ETC track density region over Southern Hemisphere (Fig. 7d). In the same re-414

gion, we indeed see a reduction of maximum PSL biases in ML (CLIM) due to the cor-415

rection by the ML model (Fig. B4c).416

Figure 8. Composites of meteorological quantities centered on ETC storm center of all fil-

tered storms with mean sea level pressure (PSL) less than or equal to 990-hPa in the ERA5

reanalysis (first column) and the differences between EAMv2 simulations and ERA5 reanalysis

before (i.e. CLIM, second column) and after (i.e. ML(CLIM), third column) applying ML bias

correction. Top row shows the composite of air temperature (contour, unit: K) and wind (vec-

tor, unit: m s−1) at 850-hPa pressure level for (a) ERA5 reanalysis, (b) CLIM – ERA5 and (c)

ML(CLIM) – ERA5; bottom row shows the integrated vapor transport (IVT, unit: g kg−1) for

(d) ERA5 reanalysis, (e) CLIM – ERA5 and (f) ML(CLIM) – ERA5. All ETCs tracked with 6-

hourly PSL fields during 1979-2014 are included in the composite by filtering out the storms with

centered PSL > 990-hPa. The white (panels a–c) and black (panels d–f) cross markers indicate

the center of ETC storms.

The reasonable representation of ETC occurrence in both CLIM and ML(CLIM)417

enables a fair comparison of the large-scale storm environment associated with ETCs through418

feature-oriented composite analyses. Figure 8 shows the composited 850-hPa temper-419

ature field, along with analogously calculated composites of 850-hPa wind vectors (Fig. 8a–420

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

c) and integrated vapor transport (IVT, Fig. 8d–f). The advection of warm and moist421

air wrapping cyclonically around the eastern side of the storm center is clearly seen in422

the ERA5 reanalysis (Fig. 8a and d). The CLIM simulation without ML bias correction423

shows systematic warm biases and spurious large water vapor transport around the storm424

center, suggesting an overestimation of the advection of warm and moist air associated425

with the ETCs in the model (Fig. 8b and e). A sizable cold temperature bias is also pro-426

nounced on the north side of the composite storm (Fig. 8b). For ML(CLIM) with the427

ML bias correction, the biases in the temperature, wind, and vapor transport are clearly428

reduced in the composite storms (Fig. 8c and f), with more significant improvements in429

the integrated vapor transport fields (Fig. 8f). This results in a more realistic advection430

of temperature and humidity associated with the ETCs in the EAMv2 simulations. We431

also notice that the ML bias correction produces a weakening of the westward wind around432

the storm center (Fig. 8d) compared with those in CLIM. This seems to be a physical433

response as the corrections on the warm temperature bias around the storm center re-434

duce the west-to-east temperature gradient featured in Fig. 8b, leading to an adjustment435

of wind according to the thermal wind balance relationship. The results likely suggest436

that the ML model indeed makes physically meaningful corrections on the EAMv2 sim-437

ulations.438

The responses of the ETC track densities to the future climate change in the North-439

ern Hemisphere (NH) are shown in Figure 9. The results suggest that climate change440

with warmer sea surface temperature and less sea-ice concentrations leads to a reduc-441

tion of the storm track density around the Arctic (Fig. 9a). Stronger signals in the ETC442

track density responses are observed in the simulations with the higher-emission climate443

change scenario of SSP5-85 (Fig. 9c and Fig. B5c). In addition, the signals of the ETC444

track density in response to the climate change in simulations with ML bias correction445

highly agree with the free-running EAMv2 simulations (Fig. 9b versus (Fig. 9a)). Sim-446

ilar conclusions can be drawn for ETC track densities over the Southern Hemisphere (SH,447

Figure B5)448

For the responses of the ETC intensity, Figure 10 shows the changes of compos-449

ited mean sea level pressure fields in response to the imposed climate change perturba-450

tions from the SSP2-4.5 (first row) and SSP5-8.5 (bottom row) emission scenarios. The451

results suggest that global warming may favor more intense ETCs as there is a reduc-452

tion of the storm center sea level pressure in the EAMv2 simulations of SSP2-4.5 (Fig. 10a)453

and SSP5-8.5 (Fig. 10c). Like tropical cyclones, the intensity of ETCs is not expected454

to be well simulated by the low-resolution EAMv2 model as it lacks the resolution to fully455

resolve the storm dynamics. However, analyses of the composite large-scale storm en-456

vironment suggest that global warming leads to warmer temperatures on the west side457

of the storm and increased water vapor transport on the east side of the storm (contour458

and shading in Fig. 11a and c). Meanwhile, there is an enhanced cyclonic circulation in459

the boundary layer regions (i.e. 850-hPa) due to climate change (vectors in Fig. 11a and460

c). These changes in the storm environment suggest enhanced warm and moist air ad-461

vection wrapping cyclonically around the storm center, favoring the development and462

formation of more intense ETCs, consistent with the sea level pressure changes.463

The climate change signals in the ETC intensity and storm environment from the464

EAMv2 simulations with ML bias correction (i.e. Fig. 10b and d for ML-SSP245, and465

Fig. 11b and d for ML-SSP585) largely agree with those in the free-running pseudo global466

warming simulations (i.e. Fig. 10a and c for SSP245; and Fig. 11a and c for SSP585).467

Again, this suggests that the ML bias correction preserves the climate change signals as-468

sociated with ETCs. However, different from the ETC track density, the ML bias cor-469

rection shows noticeable impacts on the magnitude of the responses of the ETC inten-470

sity and storm environment to climate change. Specifically, the responses of PSL to the471

perturbations of SSP2-4.5 and SSP5-8.5 become weaker after applying the ML bias cor-472

rection (Fig.10b and d), compared with those in free-running simulations (Fig.10a and473
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Figure 9. Responses (∆) of annual ETC track densities over North Hemisphere (NH) to the

imposed climate change perturbations in sea-surface temperature (SST) and sea-ice concentra-

tion(SIC) for the SSP2-4.5 (top row) and the SSP5-8.5 scenarios (bottom row). Shown is the

differences of SSP245 – CLIM (panel a), SSP585 – CLIM (panel c) for the EAMv2 simulations

without ML bias correction, as well as ML(SSP245) – ML(CLIM) (panel b) and ML(SSP585) –

ML(CLIM) (panel d) for the EAMv2 simulations and with ML bias correction. All ETCs with

mean sea level pressure (PSL) less than or equal to 990-hPa are included for the metrics. The

ETCs are tracked with 6-hourly PSL fields from EAMv2 simulations during the period of 1979-

2014. The annual track density is defined as the total number of time steps (6-hour) the ETCs

passed over an 8x8 o grid box per year. The dotted region indicates that the differences are sig-

nificant at a 95% significance level.
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Figure 10. Responses (∆) of the composite mean sea level pressure (PSL, unit: hPa) centered

on ETC storm center of all filtered storms in EAMv2 future climate simulations following SSP2-

4.5 (first row) and SSP5-8.5 (second row) emission scenarios. The ∆s are derived by subtracting

the composite PSL in SSP245 and SSP585 simulations from the CLIM simulations. All ETCs

tracked with 6-hourly PSL fields during 1979-2014 are included in the composite by filtering out

the storms with centered PSL > 990-hPa. The black cross markers (panels a–d) indicate the

center of ETC storms.
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c). Accordingly, a weaker change of the temperature and water vapor transport is also474

evidenced in the simulations with ML bias correction (panels b and d versus panels a475

and c in Fig. 11). The modifications of the ML bias correction on the climate change sig-476

nals are likely reasonable. As shown in Figure B1, the EAMv2 model significantly over-477

estimates the humidity over the ETC active regions (e.g. 50-70 ◦S), which likely explains478

the significant overestimation of the composite water vapor transport in Figure 8e. The479

effective corrections by the ML model on these biases tend to reduce the model-simulated480

humidity and water vapor transport associated with ETCs. Such corrections from the481

ML model are also expected to take effect in the ML(SSP245) and ML(SSP585) simu-482

lations. Also noteworthy is that the ML bias correction preserves the physical relation-483

ships between the storm environment and storm intensity, both showing smaller changes484

in the future compared to the changes simulated without bias correction.

Figure 11. Same as Figure 10 but for responses (∆) of temperature (blue contours, unit:

K) and wind (black vectors) at 850-hPa pressure level as well as the vertically integrated vapor

transport (IVT, unit: kg m−1 s−1) to climate change following SSP2-4.5 (first row) and SSP5-8.5

(second row) emission scenarios. See Table 1 for a detailed description of EAMv2 simulations.

485

4.3 Tropical Cyclones (TCs)486

Tropical cyclones (TCs) are low-pressure systems that typically form in lower-latitude487

regions, and are one of the most devastating and widespread geophysical hazards in the488

global tropics and subtropics. Previous studies have evaluated the frequency and distri-489

bution of TCs in an earlier version of the EAM model at ∼ 100km resolution and found490
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that the model significantly underestimates the occurrence frequency and intensity of491

TCs (Balaguru et al., 2020). The same conclusions can be drawn for the low-resolution492

EAMv2 simulations in our study (see Figure B6 in Appendix). Therefore, direct eval-493

uation of TempestExtreme-derived metrics for TCs provides limited value to draw con-494

clusions on the impacts of the ML bias correction model. In this section, we instead fo-495

cus on the evaluation of large-scale environmental conditions that are key drivers gov-496

erning TC formation and development. These large-scale storm environments usually497

operate on the order of tens of thousands of kilometers that can be resolved by the EAMv2498

model.

Figure 12. First column: Seasonal mean tropical cyclone Genesis Potential Index (GPI, unit-

less, panel a), potential intensity (PI, unit: m s−1, panel d), and vertical wind shear between 200

and 850 hPa (unit: m s−1, panel g) from ERA5 reanalysis averaged over the period of 1979-2014;

Second column: bias in GPI (panel b), PI (panel e) and 200–850hPa vertical wind shear (panel

h) in the EAMv2 simulation without ML bias correction (i.e. CLIM – ERA5); Third column:

the same as the second column but for the EAMv2 simulations with ML bias correction (i.e.

ML(CLIM) – ERA5, panels c, f and i). The monthly mean model output from ERA5 reanalysis

and EAMv2 simulations are used to calculate the GPI, PI, and vertical wind shear following

Eq.(C7). For all panels, the seasonal mean values are computed for August to October in the

Northern Hemisphere and for January to March in the Southern Hemisphere. The detailed de-

scription of EAMv2 simulations can be found in Table 1.
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Figure 12 shows the climatological season mean TC cyclone genesis potential in-499

dex (GPI), potential intensity (PI), and vertical wind shear between 200 and 850 hPa.500

Here, the GPI and PI are defined using the large-scale vorticity, vertical wind shear, po-501

tential intensity, and humidity fields following (Camargo et al., 2007) (also see Eq.C7 in502

Appendix). Results in Figure 12 suggest that the differences between CLIM and ERA5503

in terms of the GPI, PI and low-level wind shear (Figs. 12 b, e and h) over most of TC504

basins are systematically reduced when the ML bias correction is applied to the U, V,505

T and Q fields (Figs. 12 c, f and i). Therefore, ML bias correction improves the repre-506

sentation of TC large-scale storm environment. These improvements are due to the bias507

reduction in the large-scale U, V, T, and Q fields by the ML model, observed from the508

Eq.(C7). In addition, EAMv2 CLIM simulation, as shown in Fig. 12h, features a notice-509

able overestimation of wind shear over tropical eastern Pacific and Atlantic ocean regions.510

This could also partly account for the significant underestimation of TC track densities511

over the Northeast Pacific and North Atlantic basin (Fig B6i)) because the activity of512

the tropical easterly waves over tropical eastern Pacific and Atlantic oceans are known513

as key drivers for TC genesis. Interestingly, the biases in wind shear over these two re-514

gions in CLIM are significantly reduced in ML(CLIM) after applying the ML corrections515

(Fig 12i). To demonstrate if the ML corrections on large-scale wind indeed lead to changes516

in TC activities, we employ the Risk Analysis Framework for Tropical Cyclones (RAFT,517

W. Xu et al., 2021) for a complementary assessment. The TC track model of RAFT is518

used to simulate TC track density given the climatological steering winds. Comparison519

of the TC track density produced by RAFT as driven by EAMv2 simulated steering winds520

with and without ML bias correction provides an assessment of the large-scale TC en-521

vironment in the simulations. Following W. Xu et al. (2021), we used the 6-hourly large-522

scale wind fields (i.e. U and V) at 200-hPa and 850-hPa from ERA5 reanalysis, CLIM,523

and ML(CLIM) to generate three sets of synthetic TC tracks with RAFT, respectively.524

We hypothesize that the synthetic tracks should agree better with those obtained with525

ERA5 reanalysis if the ML bias correction improves the large-scale wind fields.526

Figure 13 shows the annual mean TC track density over the Atlantic basin from527

the RAFT forecast. Compared to CLIM (Figure 13b), ML(CLIM) shows a better agree-528

ment with ERA5 reanalysis, with a clear reduction of track density biases (Figure 13c).529

The basin mean track density biases are reduced by more than 50% percent as shown530

by the numbers on the top right corner in Figure 13b–c). These results validate our hy-531

pothesis as discussed above, and demonstrate that the ML bias correction improves the532

RAFT TC track forecasts and thus the downscale analysis of the statistics of TC track533

densities. Similar track density forecasts from RAFT are also generated for EAMv2 pseudo534

global warming simulations with and without ML bias correction. As shown in Figures 13d535

and f, climate change induced changes in the large-scale wind fields lead to a significant536

increase in the number of TCs over the Atlantic Basin region, especially in the coastal537

regions over the eastern US. These climate change signals, which have been linked to the538

warmer SSTs over the eastern tropical Pacific Ocean under warming (Balaguru et al.,539

2023b) (also seen in Figs. A1a–b), are still seen in the simulations after applying the ML540

bias correction (Figures 13e and g), suggesting that the ML bias correction on the large-541

scale wind fields preserves the climate change signals and the associated TC track re-542

sponses as seen in the free-running simulations. Moreover, we observe differences in the543

magnitude of the responses of TC track density over Eastern US coastal and Gulf of Mex-544

ico coastal regions before and after ML bias correction (Figures 13e and g versus Fig-545

ures 13d and f). This reflects the impact of ML bias correction on the RAFT forecasts546

and the associated TC track responses through modifications on the large-scale wind fields547

in EAMv2 simulations. As the ML bias correction produces a more reliable representa-548

tion of large-scale wind fields in EAMv2, higher confidence could be given to the results549

drawn from Figures 13e and g. Overall, the improved representation of large-scale storm550
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Figure 13. Annual mean TC track density over Atlantic basin from RAFT forecast driven by

the large-scale environmental wind fields from ERA5 reanalysis (panel a), and the differences in

track densities between RAFT forecasts driven by ERA5 and EAMV2 simulations (panels b–c),

and by EAMv2 simulations in present-day and pseudo-global warming scenarios (panels d–f),

respectively. Panels (b–c) show the CLIM – ERA5 (panel b) and ML(CLIM) – ERA5 (panel c)

for present-day EAMv2 simulations without and with ML bias correction, respectively. Panels

(d–g) show the SSP245 – CLIM (panel d) and SSP585 – CLIM (panel f) for EAMV2 simulations

without ML bias correction, as well as ML(SSP245) – ML(CLIM) (panel e) and ML(SSP585)

– ML(CLIM) for EAMv2 simulations with ML bias correction. The SSP245 (or ML(SSP245))

and SSP585 (or ML(SSP585)) are two pseudo global warming simulations with imposed climate

change perturbations in sea surface temperature and sea-ice concentrations derived for SSP2-4.5

and SSP5-8.5 future climate scenarios. More detailed descriptions of simulations can be found

in Table 1. The 6hourly zonal wind (U) and meridional wind (V) at 200 and 850 hPa during

1979-2014 from ERA5 reanalysis and EAMv2 simulations are used to drive RAFT TC track

forecasts following W. Xu et al. (2021). The annual track density is defined as the total number

of 6-hourly tracks that pass through a 4◦x4◦ grid box per year. The grey dots in panels b and c

indicate the differences are significant at a 95% confidence level.
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environments (e.g. large-scale wind) by ML bias correction is beneficial for obtaining a551

more reliable downscaling of extreme weather events such as TCs.552

5 Conclusions553

Bias correction has been a commonly used approach when applying climate model554

outputs to impact studies. This study employed a machine-learning-based (ML) bias cor-555

rection approach to improve the representation of the large-scale wind (U, V), temper-556

ature (T), and humidity (Q) in the climate simulations conducted with DOE’s E3SM557

Atmosphere Model (EAM). The performance of the ML bias correction method in pro-558

ducing large-scale storm environments associated with extreme events are evaluated for559

both present-day (i.e. historical) and climate change scenarios.560

Globally, the results show that the ML bias correction method performs well in re-561

ducing the overall biases in U, V, T, and Q fields from the climate model simulations.562

Compared with the wind fields, more promising corrections are found in the thermody-563

namical fields (i.e. T and Q), especially in the tropics and midlatitude regions and over564

the lower troposphere (see Figs. 1 and B1). As reported in previous studies (S. Zhang565

et al., 2022), biases are more pronounced in these fields compared to the winds. There-566

fore, there is more room for these larger biases to be corrected during training for these567

fields compared to winds. When looking at the mean values (global and regional means),568

bias correction is very efficient at removing the biases in all fields at most model levels,569

with a systematic bias reduction by 10-20% quantitatively (Fig. 2). The same ML bias570

correction approach is then applied to process the pseudo global warming simulations571

from EAMv2 forced with the imposed climate change perturbations in sea surface tem-572

perature (SST) and sea-ice concentration (SIC) derived for the future climate scenar-573

ios of SSP2-4.5 and SSP5-8.5. The ML bias correction is found to constrain the prob-574

ability distribution function (PDF) of the large-scale model state variable in historical575

simulations toward a better agreement with the observations. Similar shifting of the PDFs576

by ML bias correction is also seen in the pseudo global warming simulations, while the577

large-scale climate change signals of the model state (e.g. temperature and humidity)578

are well preserved before and after the ML bias correction (see Fig. 4).579

This study further demonstrated the value of the employed ML bias correction in580

the assessment of extreme weather events in the low-resolution EAM model. We used581

the model state of U, V, T, and Q with and without ML bias correction to derive the582

long-term statistics, and evaluated the skills of bias correction in improving the EAM’s583

representation of the extreme weather events (e.g. occurrence frequency, intensity, and584

storm environment, etc.) in both present-day and pseudo global warming scenarios, with585

a focus on atmospheric rivers (ARs), extratropical cyclones (ETCs) and tropical cyclones586

(TCs). The results show that the large-scale vapor transport associated with ARs is more587

realistically represented in the bias-corrected datasets than those without bias correc-588

tion, leading to a better representation of the occurrence frequency and the strength of589

ARs in the EAM model (see Sect.4.1). Similarly, more realistic representations of ETC590

structure and ETC-induced changes in water vapor transport and thermodynamical flows591

are also obtained in the simulations with ML bias correction (see Sect.4.2). When the592

ML bias-corrected large-scale winds are used to drive a TC track forecast model for down-593

scaling analysis of TC activities over the Atlantic basin, the resulting TC track forecasts594

agree better with the results driven by observations (see Sect.4.3). In addition, the ML595

bias correction does not significantly change the patterns of the responses of occurrence596

frequency and intensity of the three types of extreme events to pseudo-global warming597

effects, but there are obvious differences in the magnitude of the responses before and598

after the ML bias correction. Analysis of the ETC response to climate change shows that599

the ML bias correction preserves the physical relationship between the storm environ-600

ment and storm intensity. Overall, the findings in this study suggest that the proposed601

machine learning bias correction is a useful approach to facilitate the downscaling of ex-602

–23–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

treme weather events for low-resolution climate models by providing more realistic large-603

scale storm environment information.604
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Appendix A Supplementary material for Section 2605

A1 Additional tables and figures for Section 2.2606

Table A1. List of CMIP6 models used to derive the imposed climate change perturbations in

sea surface temperature (SST) and sea ice concentrations (SIC) for psedo global warming sim-

ulations in Table. 1. The monthly mean model output of “tos” (SST) and “siconc” (SIC) from

the “r1i1p1f1” experiment conducted for “SSP24-5” and “SSP58-5” scenarios were extracted and

used.

CMIP6 Institution CMIP6 Model

AWI AWI-CM-1-1-MR
BCC BCC-CSM2-MR
CAMS CAMS-CSM1-0
CAS FGOALS-f3-L
CCCma CanESM5
CNRM-CERFACS CNRM-CM6-1
EC-Earth-Consortium EC-Earth3
IPSL IPSL-CM6A-LR
MIROC MIROC-ESM
MOHC UKESM1-0-LL
MRI MRI-ESM2-0
NCAR CESM2
NCC NorESM2-LM
NOAA-GFDL GFDL-CM4
NUIST NESM3
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Figure A1. Changes of annual mean sea surface temperature (SST, unit: K, panels a and c)

and sea-ice concentration (SIC, unit: %, panels b and d) in response to the forcing pathways of

SSP2-4.5 (top row) and SSP5-8.5 (bottom row) from CMIP6 coupled model simulations. Shown

is the multi-model ensemble mean climatological differences averaged over the 15 models listed in

Table A1. The climatological differences are computed with the output from coupled historical

simulations during 1991-2010 and future climate simulations during 2041-2060. More detailed

descriptions on the simulations and models in Table A1 can be found in Eyring et al. (2016) and

O’Neill et al. (2016).

A2 Machine Learning Framework607

The machine learning model for bias correction in Section 2.2 utilizes the same convolutional-608

LSTM hybrid neural network (NN) architecture described in Barthel et al. (2023). The609

network takes as its input the snapshots of the entire horizontal discretization of all prog-610

nostic variables (i.e. U, V, T, Q) at a single sigma level of the EAMv2 model. Afterward,611

a custom ”split” layer separates the input into non-overlapping subregions. Then, each612

subregion is independently passed through a series of convolutional layers tasked with613

extracting local flow features. Afterwards, the local information extracted from each sub-614

region is concatenated in a single vector via a custom ‘merge’ layer and projected onto615

a reduced order latent space via a linear fully-connected layer. This latent space repre-616

sentation is then fed through an LSTM layer before being projected back to physical space617

via another linear fully-connected layer. In addition, global information is split into the618

same subregions of the input, and distributed to a series of independent deconvolution619

layers that upscale the data to the original resolution. Finally, a custom ‘merge’ layer620

gathers the information from each subregion and produces the final corrected snapshot.621

–26–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

The mathematical framework and algorithms for the machine learning operator are in-622

troduced below.623

Consider a coarse discretization of a dynamical system, in this case the EAMv2 model,
describing the evolution of the vector quantity v

v̇ = f(v). (A1)

The high fidelity reference solution, in this case ERA5 data, is represented by u. The624

objective of the ML framework we employ is to capture the long time statistics of u by625

solving the imperfect model (A1) and then applying a correction operator, G, to that com-626

puted solution.627

An ML model naively trained a pair of arbitrary trajectories (v, u) is unlikely to
generalize as it will be corrupted by the effects of chaotic divergence. Chaotic divergence
is the inherent property of all turbulent systems that any two trajectories, which may
initially be arbitrarily close, will eventually diverge – making a mapping between them
meaningless. To minimize this affect the correction operator, G is trained not on an ar-
bitrary pair of trajectories but specifically on the pair (vτ , u) where vτ is the solution
to the coarse model nudged towards the reference data,

v̇τ = f(vτ )−
1

τ
(vτ − Pu). (A2)

Here P is an operator which projects the reference solution onto the coarse grid. The628

constant τ is a user defined parameter which represents the timescale over which the nudg-629

ing tendency acts. While this value is chosen such that the nudging term is smaller than630

all others, it still creates small discrepancies between the spectra of the nudged solution,631

vτ , and the free coarse solution, v. If left unaddressed this discrepancy will hinder the632

ability of the machine learned map G to generalize to free-running data. To remedy this633

issue the spectrum of the nudged trajectory, vτ is rescaled to match the spectrum of the634

free-running coarse model.635

Specifically, let q̂k = F [q] be the spatial Fourier transform of an arbitrary field
q. The spectral energy is then defined as

Ek,q =
1

T

∫ T

0

|q̂k|2dt, (A3)

and the energy-ratio between v and vτ is defined as

ak ≡

√
Ek,v
Ek,vτ

(A4)

The spectrum-matched nudged solution is then defined as the inverse Fourier transform
of the spectrally rescaled nudged solution:

v′τ = F−1[akv̂k,τ ]. (A5)

Training the correction operator than reduces to a supervised learning problem with
objective function

min
G

∫ T

0

∥G[v′τ (t)]− u(t)∥2 dt. (A6)

After the correction operator, G, is trained on the spectrally-corrected nudged data, dur-636

ing testing it is applied the free run coarse model trajectory v(t). The resulting corrected637

trajectory constitutes our ML prediction and is then used to compute statistics and other638

properties of interest. We refer the interested reader to Barthel et al. (2023) for a more639

detailed discussion of the mathematical framework and network architecture.640
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Appendix B Additional Tables and Figures641

This section contains supplemental figures used for discussions in Section 3 and Sec-642

tion 4.643

Figure B1. First column: Distribution of annual mean zonal velocity (U850, unit: m s−1,

panel a), temperature (T850, unit: K, panel d) and specific humidity (Q850, unit: g kg−1, panel

g) at 850-hPa pressure level from ERA5 reanalysis averaged over 1979-2014; Second and Third

columns: the same as in first column, but for biases (with respect to ERA5 reanalysis) in U850

(panels b–c), T850 (panels e–f), and Q850 (panels h–i) from EAMv2 simulations without (i.e.,

CLIM, second column) and with (i.e., ML(CLIM), third column) bias correction. The numbers

on top right of panels in the second and third columns denote the global mean root-mean-square

errors (RMSE). The log-linear interpolation is applied to map the EAMv2 data on the hybrid

sigma-pressure level into pressure-level, and to be compared with ERA5 reanalysis. Details of the

simulation setups can be found in Table 1.

–28–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure B2. Probability Density Function (PDF) of monthly mean temperature (∆T, unit: K,

panel a) and humidity (∆Q, unit: K, panel b) differences between present-day and pseudo global

warming simulations conducted with EAMv2. Shown is the SSP245 - CLIM (dashed blue line)

and SSP585 - CLIM (dashed red line) for EAMv2 simulations without ML bias correction, as

well as ML(SSP245) - ML(CLIM) (solid blue line) and ML(SSP585) - ML(CLIM) (solid red lines)

for EAMV2 simulations with ML bias correction. The monthly mean data from each simulation

during the 1979-2014 period were used to derive the metrics. The detailed descriptions on simula-

tions can be found in Table 1.
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Figure B3. Same as Figure 6, but for the pseudo global warming simulations conducted with

EAMv2 using imposed climate change perturbations in SST and SIC derived from SSP5-8.5 fu-

ture scenarios.

–30–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure B4. Horizontal distribution of mean sea level pressure averaged over the period of

1979-2014 from ERA5 reanalysis (panel a), and mean model biases in EAMv2 free-running simu-

lations without (i.e CLIM, panel b) and with (i.e, ML(CLIM), panel c) ML bias correction. The

dotted region in panels b and c indicate the differences between the model and ERA5 reanalysis

are significant at a 95% significance level.
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Figure B5. Same as Figure 9 but for the responses of ETC track density to imposted climate

change perturbations in sea surface temperature (SST) and sea-ice concentration (SIC) from

SSP2-4.5 (top row) and SSP5-8.5 (bottom row) over Southern Hemisphere.
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Figure B6. Top row: track density maps for tropical cyclones (TCs) tracked in ERA5 reanal-

ysis (panel a) and EAMv2 free-running simulations without (i.e., CLIM, panel b) and with (i.e.,

ML(CLIM), panel c) ML bias correction. The 6-hourly sea level pressure (PSL) from 1979 to

2014 are used to track the TC-like vortices at each model grid using the TempestExtremes. The

TC track density is defined as the average number of 6-hourly TC track locations within a 4◦x4◦

grid box per year. Bottom row: Climatological mean distribution of the TC numbers fall into

the Saffir-Simpson wind scale (d) and the normalized probability distribution function (PDF) of

the 10-meter maximum wind speed (e) in IBTrACS observations (grey colored bars) and EAMv2

simulations without (brown colored bars and lines) and with (green colored bars and lines) ML

bias correction. The x-axis in panel (d) correspond to the Saffir-Simpson wind scale: TS, tropical

storm (17.5–32 m s−1); Cat1, Category 1 (33–42 m s−1); Cat2, Category 2 (43–49 m s−1); Cat3,

Category 3 (50–58 m s−1); Cat4, Category 4 (59–69 m s−1); Cat5, Category 5 (> 69 m s−1). The

IBTrACS refers to International Best Track Archive for Climate Stewardship, which contains the

TC track and intensity data in historical observations. The statistics in panels d–e are obtained

with 6-hourly data from 1979–2014.
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Appendix C Additional notes for Section 4644

Sect. 4 discussed three extreme weather events, including atmospheric rivers (ARs),645

extratropical cyclones (ETCs), and tropical cyclones (TCs), that are discussed in Sect. 4.646

Table C1 documents the feature tracking information used to derive the metrics for dis-647

cussions. The TempestExtremes package (P. A. Ullrich et al., 2021) was employed for648

feature detection and tracking of these weather events using the 6-hourly model output649

from EAMv2. Specifically, the TCs and ETCs were tracked with mean sea level pres-650

sure (PSL), while the ARs were tracked with the integrated water vapor transport (TUQ,651

TVQ). In this paper, the same algorithm and parameter setups described in P. A. Ull-652

rich et al. (2021) were used by TempestExtremes for feature tracking of each extreme653

weather events in EAMv2 simulations. Here, both TCs and ETCs are defined as low-654

pressure weather systems, but TCs are distinguished from ETCs with their unique warm655

core structure. The average temperature over 200- and 500-hPa pressure levels at each656

grid point was used in TempestExtreme to identify the TC warm cores, and to separate657

TCs and ETCs in the feature tracking.

Table C1. List of extreme weather events and model variables used for feature tracking by the

TempestExtremes package. The EAM model output used to derive the feature quantities is listed

in the fourth column. See context in Appendix B for details.

Feature events Short name Feature Quantity EAM output

Tropical cyclones TCs Mean sea level pressure(PSL) U, V, T, Q, PS
Extratropical cyclones ETCs Mean sea level pressure(PSL) U, V, T, Q, PS
Atmospheric rivers ARs Integrated Vapor Transport(IVT) U, V, Q

658

In addition, as the ML bias correction was applied to U, V, T and Q at each grid
point and model levels, the feature tracking quantities, including PSL and IVT in this
study for simulations with and without ML bias correction listed in Table 1. Specifically,
the PSL was diagnosed with the algorithm proposed by European Centre for Medium-
Range Weather Forecasts (ECMWF, Trenberth et al., 1993):

PSL =


PS , if Zs ≤ 1e−4 m

PS e
Zs

RdTs

(
1− x

2+
x2

3

)
, otherwise

(C1)

where,

x =



0, if Ts > 290.5 K and T0 > 290.5 K

Rd

g
(290.5−Ts)

Ts
, if Ts ≤ 290.5 K and T0 > 290.5 K

Rd

g
Γ0Zs

Ts
, otherwise

(C2)

T0 = Tb

[
1 +

RdΓ0

g

(
PS

Pb
− 1

)]
+ Γ0Zs (C3)

Ts = Tbot

[
1 +

RdΓ0

g

(
PS

Pb
− 1

)]
, where (C4)

Ts =


Ts+290.5

2 , if Ts > 290.5 K and T0 > 290.5 K

Ts+255.0
2 , if Ts < 255.5 K
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Here, Ps and Zs are surface pressure and Geopotential height, respectively. Tbot and Pbot659

are air temperature and pressure at bottom model level, respectively. These quantities660

are directly from the model output of simulations in Table 1. Γ0 (= 6.5e−3 K m−1) is661

temperature lapse rate. Rd and g denotes the dry air gas constant and gravitational ac-662

celeration, respectively.663

Moreover, the water vapor transport in atmosphere consists the eastward (TUQ)
and northward (TVQ) components, which was derived directly with the U, V and Q from
model output using:

TUQ =
1

g

∫ Pt

Ps

UQdP (C5)

TV Q =
1

g

∫ Pt

Ps

V QdP (C6)

where dP is layer thickness and the integral was computed from surface (i.e. Ps) to top664

model level (i.e. Pt) at ∼0.2 hPa.665

Finally, the cyclone genesis potential index (GPI), potential intensity (PI) shown
in Figure 12 are defined using the large-scale vorticity, vertical wind shear, potential in-
tensity, and humidity fields following (Camargo et al., 2007):

GPI = 105η
3
2

(
H700

50

)3 (
Vpot

70

)3

(1 + 0.1Vshear)
−2

(C7)

where η is the absolute vorticity at 850 hPa in s−1, H700 is the relative humidity at 700666

hPa in percent, Vpot is the potential intensity(PI) computed with the method proposed667

by (Emanuel, 2000; Knutson et al., 2013). The unit of PI is in m s−1. Vshear is the mag-668

nitude of the vertical wind shear between 850 and 200 hPa in m s−1.669

Open Research Section670

The source code for EAMv2 (E3SM Project, 2021) used for simulations in this study671

was obtained from the Energy Exascale Earth System Model project, sponsored by the672

U.S.Department of Energy, Office of Science, Office of Biological and Environmental Re-673

search. The TempestExtremes package used for feature tracking of extreme weather events674

was extracted from the Github at https://github.com/ClimateGlobalChange/tempestextremes675

(P. Ullrich, 2022), and the user guide for this package can be found at https://climate676

.ucdavis.edu/tempestextremes.php (P. A. Ullrich et al., 2021).677

The CMIP6 data used to derive the climate change perturbations of sea surface tem-678

perature (SST) and sea-ice concentration (SIC) are available at https://esgf-node.llnl.gov/projects/cmip6/679

(Eyring et al., 2016; O’Neill et al., 2016). The ERA5 reanalysis data used for machine680

learning training and evaluation in this study are available at the Copernicus Climate681

Change Service (C3S) Climate Data Store via https://doi.org/10.24381/cds.bd0915c6682

(Hersbach et al., 2020).683

The scripts and post-processed data for the analyses in this study can be found on684

Zenodo at https://zenodo.org/doi/10.5281/zenodo.10106705 (S. Zhang & Char-685

alampopoulos, 2023).686
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