References
[1] Iijima, T., & Potemra, T. A. (1976). The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. Journal of Geophysical Research, 81, 2165–2174. https://doi.org/10.1029/JA081i013p02165
[2] Iijima, T., & Potemra, T. A. (1978). Large-scale characteristics of field-aligned currents associated with substorms. Journal of Geophysical Research, 83, 599–615. https://doi.org/10.1029/JA083iA02p00599
[3] Dungey (1961), Interplanetary magnetic field and the auroral zones, Physical Review Letters, 6, 47.
[4] Wright, A. N. (1996). Transfer of magnetosheath momentum and energy to the ionosphere along open field lines. Journal of Geophysical Research, 101, 13,169–13,178. https://doi.org/10.1029/96JA00541.
[5] Keiling, A., J. R. Wygant, C. A. Cattell, F. S. Mozer, and C. T. Russell (2003), The global morphology of wave Poynting flux: Powering the aurora, Science, 299, 383–386.
[6] Chaston, C. C., et al. (2005), Energy deposition by Alfvén waves into the dayside auroral oval: Cluster and FAST observations, J. Geophys. Res., 110, A02211, doi:10.1029/2004JA010483.
[7] Ohma, A., Østgaard, N., Reistad, J. P., Tenfjord, P., Laundal, K. M., Snekvik, K., et al. (2018). Evolution of asymmetrically displaced footpoints during substorms. Journal of Geophysical Research: Space Physics, 123, 10,030–10,063. https://doi.org/10.1029/2018JA025869
[8] Laundal, K. M., and N. Østgaard (2009), Asymmetric auroral intensities in the Earth’s Northern and Southern hemispheres, Nature, 460, 491-493, doi:10.1038/nature08154.
[9] Østgaard, N., B.K. Humberset, K.M. Laundal (2011). Evolution of auroral asymmetries in the conjugate hemispheres during two substorms. Geophys. Res. Lett. doi:10.1029/2010GL046057
[10] Laundal, K. M., Cnossen, I., Milan, S. E., Haaland, S. E., Coxon, J., Pedatella, N. M., et al. (2017). North–South Asymmetries in Earth’s Magnetic Field. Space Science Reviews, 206(1), 225–257. https://doi.org/10.1007/s11214-016-0273-0
[11] Förster, M., and I. Cnossen (2013), Upper atmosphere differences between northern and southern high latitudes: The role of magnetic field asymmetry, J. Geophys. Res. Space Physics, 118, 5951–5966, doi:10.1002/jgra.50554.
[12] Coxon, J. C., S. E. Milan, J. A. Carter, L. B. N. Clausen, B. J. Anderson, and H. Korth (2016), Seasonal and diurnal variations in AMPERE observations of the Birkeland currents compared to modeled results, J. Geophys. Res. Space Physics, 121, 4027–4040, doi:10.1002/2015JA022050.
[13] Kelley, M. C., Knudsen, D. J., and Vickrey, J. F. ( 1991), Poynting flux measurements on a satellite: A diagnostic tool for space research, J. Geophys. Res., 96(A1), 201– 207, doi:10.1029/90JA01837.
[14] Friis-Christensen, E., Lühr, H., Knudsen, D., & Haagmans, R. (2008). Swarm—An Earth observation mission investigating Geospace. Advances in Space Research, 41(1), 210–216. https://doi.org/10.1016/j.asr.2006.10.008
[15] Patrick, M. R. (2015) Spacecraft Measurements of Ionospheric Poynting Flux, MSc Thesis, The University of Calgary, https://prism.ucalgary.ca/handle/11023/2356
[16] Knudsen, D. J., Kelley, M. C., & Vickrey, J. F. (1992). Alfven waves in the auroral ionosphere: A numerical model compared with measurements. Journal of Geophysical Research, 97(A1), 77-90. https://doi.org/10.1029/91JA02300
[17] Pakhotin, I. P., Mann, I. R., Lysak, R. L., Knudsen, D. J., Gjerloev, J. W., Rae, I. J., … Balasis, G. (2018). Diagnosing the role of Alfven waves in magnetosphere-ionosphere coupling: Swarm observations of large amplitude nonstationary magnetic perturbations during an interval of northward IMF. Journal of Geophysical Research: Space Physics, 123. https://doi.org/10.1002/2017JA024713
[18] Paschmann, G., Haaland, S., Treumann, R. (Eds.), 2002. Auroral Plasma Physics. ISSI, Kluwer Academic Publishers.
[19] Lysak, R. L. (1990). Electrodynamic Coupling of the Magnetosphere and Ionosphere. Space Science Reviews, 52(1-2), 33-87. https://doi.org/10.1007/BF00704239
[20] Newell, P. T., Meng, C.-I., & Lyons, K. M. (1996). Suppression of discrete aurorae by sunlight. Nature 381, 766-767.
[21] McGranaghan, R. M., Mannucci, A. J., & Forsyth, C. (2017). A comprehensive analysis of multiscale field-aligned currents: Characteristics, controlling parameters, and relationships. Journal of Geophysical Research: Space Physics, 122, 11,931-11,960. https://doi.org/10.1002/2017JA024742
[22] C.C. Chaston, C. Salem, J.W. Bonnell, C.W. Carlson, R.E. Ergun, R.J. Strangeway, J.P. McFadden. (2008) The turbulent alfvénic aurora. Phys. Rev. Lett. 100(17), 175003. doi10.1103/PhysRevLett.100.175003
[23] Koochak, Z., & Fraser-Smith, A. C. (2017). An update on the centered and accentric geomagnetic dipoles and their poles for the years 1980-2015. Earth and Space Science, 4, 626-636. https://doi.org/10.1002/2017EA000280
[24] Lysak, R. L. (1991). Feedback instability of the ionospheric resonant cavity. Journal of Geophysical Research, 96, 1553-1568. https://doi.org/10.1029/90JA02154
[25] Pakhotin, I. P., Mann, I. R., Knudsen, D. J., Lysak, R. L., & Burchill, J. K. (2020). Diagnosing the role of Alfven waves in global field-aligned current system dynamics during southward IMF: swarm observations. Journal of Geophysical Research: Space physics, 125, e2019JA027277. https://doi.org/10.1029/2019JA027277
[26] Newell, P. T., T. Sotirelis, and S. Wing (2010), Seasonal variations in diffuse, monoenergetic, and broadband aurora, J. Geophys. Res., 115, A03216, doi: 10.1029/2009JA014805
[27] Nagatsuma, T., Fukinishi, H., Hayakawa, H., Mukai, T., & Matsuoka, A. (1996). Field‐aligned currents associated with Alfvén waves in the poleward boundary region of the nightside auroral oval. Journal of Geophysical Research, 101(A10), 21,715–21,729. https://doi.org/10.1029/96JA01797
[28] Miles, D. M., Mann, I. R., Pakhotin, I. P., Burchill, J. K., Howarth, A. D., Knudsen, D. J., et al. (2018). Alfvénic dynamics andfine structuring of discrete auroral arcs: Swarm and e‐POP observations. Geophysical Research Letters, 45, 545–555. https://doi.org/10.1002/2017GL076051
[29] Verkhoglyadova, O. P., X. Meng, A. J. Mannucci, M. G. Mlynczak, L. A. Hunt, and G. Lu (2017), Ionosphere-thermosphere energy budgets for the ICME storms of march 2013 and 2015 estimated with GITM and observational proxies, Space Weather, 15, 1102-1124, doi:10.1002/2017SW001650
[30] Knudsen, D. J., Burchill, J. K., Buchert, S. C., Eriksson, A. I., Gill, R., Wahlund, J. E., et al. (2017). Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. Journal of Geophysical Research: Space Physics, 122, 2655–2673. https://doi.org/10.1002/2016JA022571
[31] Koustov, A. V., Lavoie, D. B.,Kouznetsov, A. F., Burchill, J. K.,Knudsen, D. J., & Fiori, R. A. D. (2019).A comparison of cross‐track ion drift measured by the Swarm satellites and plasma convection velocity measured by SuperDARN. Journal of Geophysical Research: Space Physics, 124, 4710–4724. https://doi.org/10.1029/2018JA026245
[32] Lomidze, L., Burchill, J. K., Knudsen, D. J, Kouznetsov, A., & Weimer, D. R. (2019). Validity Study of the Swarm Horizontal Cross‐Track Ion Drift Velocities in the High‐Latitude Ionosphere. Earth and Space Science, Volume 6, Issue 3, 411-432, doi:10.1029/2018EA000546
[33] Park, J., Lühr, H., Knudsen, D. J., Burchill, J. K., & Kwak, Y.-S. (2017). Alfvén waves in the auroral region, their Poynting flux, and reflection coefficient as estimated from Swarm observations. Journal of Geophysical Research: Space Physics, 122, 2345–2360. https://doi.org/10.1002/2016JA023527
[34] Woodman, R. F., & La Hoz, C. (1976). Radar observations of F region equatorial irregularities. Journal of Geophysical Research, 81(31), 5447–5466. https://doi.org/10.1029/JA081i031p05447
[35] Cerisier, J. C., J. J. Berthelier, and C. Beghin (1985), Unstable density gradients in the high-latitude ionosphere, Radio Sci.,20, 755–761,doi:10.1029/RS020i004p00755
[36] Burchill, J. and Knudsen, D. J. (2020), EFI TII Cross-Track Flow Data Release Notes, Swarm Data, Innovation, and Science Cluster (Technical Report), European Space Agency, Doc. no: SW-RN-UoC-GS-004, Rev. 5, available from: swarm-diss.eo.esa.int