References
- Behar, F., Kressmann, S., Rudkiewicz, J.L., Vandenbroucke, M., 1992.
Experimental simulation in a confined system and kinetics modelling of
kerogen and oil cracking. Org. Geochem. 19(1-3), 173-189.
- Behar, F., Lorant, F., Lewan, M., 2008. Role of NSO compounds during
primary cracking of a Type II kerogen and a Type III lignite. Org.
Geochem. 39, 1-22.
- Braun, R.L., Bumham, A.K., 1990. Mathematical model of oil generation,
degradation and expulsion. Energy Fuel 121, 4(1), 132-146.
- Castelli, A., Chiaramonte, M.A., Beltrame, P.L., Carniti, P., Del
Bianco, A., Stroppa, F., 1990. Thermal degradation of kerogen by
hydrous pyrolysis. Org. Geochem. 16(1-3), 75-82.
- Chen, Y.Z., Xu, Z.X., Xu, G.S., Xu, F.H., Liu, J.S., 2017. Coupling
relationship between abnormal overpressure and hydrocarbon
accumulation in a central overturned structural belt, Xihu Sag, East
China Sea Basin (In Chinese with English abstract). Oil Gas Geol. 38
(3), 570–581.
- Cheng, X , Hou, D., Zhao, Z., Jiang, Y., Zhou, X., Diao, H., 2020.
Higher landplant -derived biomarkers in light oils and condensates
from the coal‐bearing eocene pinghu formation, xihu sag, east china
sea shelf basin. J. Petrol. Geol. 43(4), 437-452.
- Cheng, X., Hou, D., Zhao, Z., Chen, X., Diao, H., 2019.Sources of
Natural Gases in the Xihu Sag, East China Sea Basin: Insights from
Stable Carbon Isotopes and Confined System Pyrolysis. Energy Fuel 33,
2166-2175.
- Connan, J., 1974. Time-temperature relation in oil genesis. AAPG Bull.
58(12), 2516-2521.
- Cramer, B., Krooss, B.M., Littke, R., 1998. Modelling isotope
fractionation during primary cracking of natural gas: a reaction
kinetic approach. Chem. Geol. 149, 235-250.
- Dai, J., Zou, C., Li, J., Ni, Y., Hu, G., Zhang, X., Liu, Q., Ynag,
C., Hu, A., 2009. Carbon isotopes of Middle-Lower Jurassic
coal-derived alkane gases from the major basins of northwestern China.
Int. J. Coal Geol. 80, 124-134.
- Fu, D., Xu, G., Ma, L. Yang, F., Ma, Y., 2020. Gas generation from
coal: taking Jurassic coal in the Minhe Basin as an example. Int J
Coal Sci Technol 7, 611-622.
- Golding, S.D., Boreham, C.J., Esterle, J.S., 2013. Stable isotope
geochemistry of coal bed and shale gas and related production waters:
a review. Int. J. Coal Geol. 120, 24-40.
- Hao, L. , Wang, Q. , Tao, H. , Li, X. , Ma, D. , Ji, H., 2018.
Geochemistry of oligocene huagang formation clastic rocks, xihu sag,
the east china sea shelf basin: provenance, source weathering, and
tectonic setting. Geol. J. 53, 397-411.
- Hill, R.J., Jarvie, D.M., Zumberge, J., Henry, M., Pollastro, R.M.,
2007. Oil and gas geochemistry and petroleum systems of the Fort Worth
Basin. AAPG Bull. 91(4), 445-473.
- Hill, R.J., Tang, Y.C., Kaplan, I.R., 2003. Insights into oil cracking
based on laboratory experiments. Org. Geochem. 34, 1651-1672.
- Jarvie, D.M., Hill, R.J., Ruble, T.E., Pollastro, R.M., 2007.
Unconventional shale-gas systems: The Mississippian Barnett Shale of
north-central Texas as one model for thermogenic shale-gas assessment.
AAPG bull. 91(4), 475-499.
- Jiang, S., Li, S., Chen, X., Zhang, H., Wang, G., 2016. Simulation of
oil-gas migration and accumulation in the East China Sea continental
Shelf basin: a case study from the Xihu depression. Geol. J. 51,
229-243.
- Ju, C.X., Dong, C.M., Zhang, X.G., Dong, Y.X., 2016. Study on the pore
structure of low permeability reservoir of the Huagang Formation in
Xihu Depression area (In Chinese with English abstract). Mar. Geol.
Front. 32 (9), 32-40.
- Kinnon, E.C.P., Golding, S.D., Boreham, C.J., Baublys, K.A., Esterle,
J.S., 2010. Stable isotope and water quality analysis of coalbed
methane production waters and gases from the Bowen Basin, Australia.
Int. J. Coal Geol. 82, 219-231.
- Krouse, H.R., Viau, C.A., Eliuk, L.S., Ueda, A., Halas, S., 1988.
Chemical and isotopic evidence of thermochemical sulfate reduction by
light-hydrocarbon gases in deep carbonate reservoirs. Nat. 333(6172),
415-419.
- Leif, R.N., Simoneit, B.R.T., 2000. The role of alkenes produced
during hydrous pyrolysis of a shale. Org. Geochem. 31(11), 1189-1208.
- Lewan, M.D., 1997. Experiments on the role of water in petroleum
formation. Geochim. Cosmochim. Ac. 61(17), 3691-3723.
- Lewan, M.D., Winters, J.C., McDonald, J.H., 1979. Generation of
oil-like pyrolyzates from organic-rich shales. Sci. 203(4383),
897-899.
- Lin, C.Y., Sun, X.L., Ma, C.F., Zhang, X.G., Zhao, Z.X., 2017.
Physical property evolution of Huagang formation in central inversion
tectonic belt in Xihu depression (In Chinese with English abstract).
J. China Inst. Min. Technol. 46 (4), 700-709.
- Ma, Z., Zheng, L., Xu, X., Bao, F., Yu, X., 2017. Thermal simulation
experiment of organic matter-rich shale and implication for organic
pore formation and evolution. Petrol. Res. 2(4), 347-354.
- Mahlstedt, N., Horsfield, B., 2012. Metagenetic methane generation in
gas shales I.Screening protocols using immature samples. Mar. Petrol.
Geol. 31, 27-42.
- Matuszewski, B.K., 2006. Standard line slopes as a measure of a
relative matrix effect in quantitative HPLC-MS bioanalysis. J.
Chromat. B. 830 (2), 293-300.
- Papendick, S.L., Downs, K.R., Vo, K.D., Hamilton, S.K., Dawson,
G.K.W., Golding, S.D., Gilcrease, P.C., 2011. Biogenic methane
potential for Surat basin, Queensland coal seams. Int. J. Coal Geol.
88, 123-134.
- Pepper, A.S., Corvi, P.J., 1995. Simple kinetic models of petroleum
formation. Part I: oil and gas generation from kerogen. Mar. Petrol.
Geol., 12(3), 291-319.
- Pepper, A.S., Dodd, T.A., 1995. Simple kinetic models of petroleum
formation. Part II: oil-gas cracking. Mar. Petrol. Geol. 12(3):
321-340.
- Prinzhofer, A.A., Huc, A.Y., 1995. Genetic and post-genetic molecular
and isotopic fractionations in natural gases. Chem. Geol. 126,
281-290.
- Qin, J., Shen, B., Tao, G., Teng, E., Yang, Y., Zheng, L., Fu, X.,
2014. Hydrocarbon- forming organisms and dynamic evaluation of
hydrocarbon generation capacity in excellent source rocks. Petro.
Geol. Exper. 36(4), 465-472.
- Schimmelmann, A., Boudou, J.P., Lewan, M.D., Wintsch, R.P., 2001.
Experimental controls on D/H and13C/12C ratios of kerogen bitumen
and oil during hydrous pyrolysis. Org. Geochem. 32(8), 1009-1018.
- Su, A., Chen, H., Lei, M., Li, Q., Wang, C., 2019. Paleo-pressure
evolution and its origin in the Pinghu slope belt of the Xihu
Depression, East China Sea Basin. Mar. Petrol. Geol. 107, 198-213
- Su, A., Chen, H., Zhao, J., Zhang, T., Feng, Y., Wang, C., 2020.
Natural gas washing induces condensate formation from coal measures in
the Pinghu Slope Belt of the Xihu Depression, East China Sea Basin:
Insights from fluid inclusion, geochemistry, and rock gold-tube
pyrolysis. Mar. Petrol. Geol. 118, 104450.
- Su, A., Chen, H.H., Chen, X., He, C., Liu, H.P., Li, Q., Wang, C.W.,
2018. The characteristics of low permeability reservoirs, gas origin,
generation and charge in the central and western Xihu depression, East
China Sea Basin. J. Nat. Sci. Eng. 53, 94-109.
- Sun, L., Fu, D., Chai, S., Yang, W., Zhou, K., Li, W., 2020. Fractal
characteristics and significances of the nanopores in oil shales
during hydrous pyrolysis. J. Petrol. Explor. Prod. Tech. 10(2),
557-567.
- Sun, L., Tuo, J., Zhang, M., Wu, C., Chai, S., 2019a. Impact of Water
Pressure on the Organic Matter Evolution from Hydrous Pyrolysis.
Energy Fuel. 33, 6283-6293.
- Sun, L., Tuo, J., Zhang, M., Wu, C., Chai, S., 2019b. Pore structures
and fractal characteristics of nano-pores in shale of Lucaogou
formation from Junggar Basin during water pressure-controlled
artificial pyrolysis. J. Anal. Appl. Pyrol. 140, 404-412.
- Sun, L., Tuo, J., Zhang, M., Wu, C., Wang, Z., Zheng, Y., 2015.
Formation and development of the pore structure in Chang 7 Member
oil-shale from Ordos Basin during organic matter evolution induced by
hydrous pyrolysis Fuel 158, 549-557.
- Takahashi, K.U., Suzuki, N., Saito, H., 2014. Compositional and
isotopic changes in expelled and residual gases during anhydrous
closed-system pyrolysis of hydrogen-rich Eocene subbituminous coal.
Int. J. Coal Geol. 127, 14-23.
- Taylor, R., Duss, M., 2019. A paper about the slope of the equilibrium
line. Chem. Eng. Res. Des.148, 429-439.
- Tissot, B.P., Durand, B.,Espitalie, J.,Combaz, A., 1974. Influence
of mature and diagenesis of organic matter in the formation of
petroleum. AAPG Bull. 58(3), 499-506.
- Wang, W., Lin, C., Zhang, X., Dong, C., Ren, L., Lin, J., 2021.
Provenance, clastic composition and their impact on diagenesis: A case
study of the Oligocene sandstone in the Xihu sag, East China Sea
Basin. Mar. Petrol. Geol 126, 104890,
- Waples, D.W., 2000. The kinetics of in-reservoir oil destruction and
gas formation: constraints from experimental and empirical data, and
from thermodynamics. Org. Geochem. 31(6), 553-575.
- Wu, Y., Zhang, Z., Sun, L., Li, Y., Zhang, M., Ji, L., 2019. Stable
isotope reversal and evolution of gas during the hydrous pyrolysis of
continental kerogen in source rocks under supercritical conditions.
Int. J. Coal Geol. 205, 105-114.
- Xie, G., Shen, Y., Liu, S., Hao, W., 2018. Trace and rare earth
element (REE) characteristics of mudstones from Eocene Pinghu
Formation and Oligocene Huagang Formation in Xihu Sag, East China Sea
Basin: Implications for provenance, depositional conditions and
paleoclimate. Mar. Petrol. Geol. 92, 20-36.
- Xu, H., George, S.C., Hou, D., Cao, B., Chen, X., 2020. Petroleum
sources in the Xihu Depression, East China Sea: Evidence from stable
carbon isotopic compositions of individual n-alkanes and isoprenoids.
J. Petrol. Sci. Eng. 190, 107073.
- Zhang, Z.M., Zhou, J., Wu, X.W., 2006. Oil and gas migration periods
and accumulation process in central anticlinal zone in the Xihu sag,
the East China Sea Basin (In Chinese with English abstract). Petrol.
Geol. Exp. 28 (1), 30-37.
- Zhao, W., Zhang, S., Wang, F., Cramer, B., Chen, J., Sun, Y., Zhang,
B., Zhao, M., 2005. Gas systems in the Kuche Depression of the Tarim
Basin: Source rock distributions, generation kinetics and gas
accumulation history. Org. Geochem. 36(12), 1583-1601.
- Zheng, L., Ma, Z., Wang, Q., Li, Z., 2011. Quantitative evaluation of
hydrocarbon yielding potential of source rock: application of
pyrolysis in finite space. Petrol. Geol. Exper. 33(5), 452-459.
- Zheng, L.J., Qin, J.Z., He, S., Li, G.Y., Li, Z.M., 2009. Preliminary
study of formation porosity thermocompression simulation experiment of
hydrocarbon generation and expulsion. Pet. Geol.Exp. 31 (3), 296-302.
(in Chinese).
- Zhu, W., Zhong, K., Fu, X., Chen, C., Zhang, M., Gao,S., 2019. The
formation and evolution of the East China Sea Shelf Basin: A new view.
Earth Sci. Rev. 190, 89-111.
- Zhu, X., Chen, J., Li, W., Pei, L., Liu, K., Chen, X., Zhang, T.,
2020. Hydrocarbon generation potential of Paleogene coals and organic
rich mudstones in Xihu sag, East China Sea Shelf basin, offshore
eastern China, J. Petrol. Sci. Eng. 184, 106450.
- Zhu, Y.M., Li, Y., Zhou, J., Gu, S.X., 2012. Geochemical
characteristics of tertiary coalbearing source rocks in Xihu
depression, East China Sea Basin. Mar. Pet. Geol. 35,154-165.