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Abstract 10 

Assessing the changes in future extreme hydrologic conditions due to climate change is essential. 11 

This study investigates the potential impacts of climate change on precipitation, streamflow and 12 

inland flooding in Northeast United States (NEUS) during the mid-21st century. Dynamically 13 

downscaled climate projections from global climate models were obtained using the Weather 14 

Research and Forecasting (WRF) model over the North American continent. These were used to 15 

drive a high-resolution hydrologic model WRF-Hydro over NEUS. We performed three 10-year 16 

long simulations for historical (1995-2004) and future (2045-2054) periods under business-as-17 

usual scenarios at a spatial resolution of 200 meters. A general extreme value model was developed 18 

to project the risks associated with low-frequency events. Results from four major watersheds 19 

indicate a significantly wetter regime in peak winter months and potential drier conditions during 20 

late spring to early summer. Discharges in fall are projected to decrease in the northern watersheds 21 

and increase towards the south. Extreme flow, and water depths resulting from extreme inland 22 

flooding are projected to increase by 5-20% and >100%, respectively. Extent of the total flooded 23 

area is likely to be 20% greater by the mid-century. These increased risks can be attributed to: 1) 24 

approximately 25% increase in decadal mean, and >75% increase in decadal maximum 25 

precipitation intensity, 2) up to 30% lower snow availability and 5-25% higher evapotranspiration 26 

throughout the year, and 3) a projected 5% increase in soil moisture in all seasons except summer. 27 

Furthermore, rapid snow melting in winter might cause an earlier peak flow in the rivers. 28 

Plain Language Summary 29 

Climate change is expected to have significant impacts on the future hydrology of the Northeast 30 

United States (NEUS). Streamflow and inland flooding are expected to change in response to 31 

future changes in temperature and precipitation. This study applied a regional climate model to 32 

downscale historic and future climate information from three coarse-resolution global climate 33 

models. Next, a high-resolution inland hydrologic model was forced with those downscaled 34 

outputs to investigate critical changes in the streamflow rates, water pooling depths, soil moisture 35 

and evaporation rates. Decade long ‘Future’ simulations (2045-2054) were compared to the 36 

‘Historic’ ones (1995-2004). We find that the changes in extreme precipitation are higher in 37 

magnitude than changes in mean precipitation. Mean river flow is projected to increase in winter 38 

and decrease in summer with the timing of peak flow shifting earlier in the spring. Models predict 39 

increases in extreme flow in four major rivers of NEUS – Connecticut, Delaware, Hudson, and 40 

Potomac. Moreover, extreme inland flooding intensity is projected to increase, affecting more 41 

regions of NEUS. Models predict the amount of snowpack to decrease, and evapotranspiration to 42 

increase due to a warmer climate in future. The findings are critical for water managers and 43 

stakeholders of NEUS in decision making.  44 

1 Introduction 45 

    Earth’s climate is changing primarily due to increasing amount of carbon dioxide (CO2) and 46 

other greenhouse gases in the atmosphere. Observations indicate that human-induced global 47 

warming reached approximately 1oC above pre-historic levels in 2017 and is likely to reach to 48 

1.5oC above pre-industrial levels by 2040 (Allen et al., 2018). Intergovernmental Panel on Climate 49 

Change (IPCC) suggested a global temperature rise between 2.0 to 4.2oC by the end of 21st century 50 

(Pachauri et al., 2014). As Clausius-Clapeyron equation suggests about 7% increase in the 51 

moisture holding capacity of the atmosphere per degree of warming (Trenberth, 1999; Allan and 52 

Soden, 2008), climate change is expected to impact the future hydrologic cycle. This has important 53 
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implications for flooding, water resources, and ecosystems. Multiple studies have projected 54 

potential changes in temperature (Dai, 2012; Karmalkar and Bradley, 2017), precipitation (Allen 55 

and Ingram, 2002; Groisman et al., 2005; Shaw et al., 2011; Pendergrass et al., 2017), tropical 56 

storms and hurricanes (Seneviratne et al., 2012), droughts and floods (Tebaldi et al., 2006), 57 

evaporation rates (Condon et al., 2020; Konapala et al., 2020), snow pack amounts (Fyfe et al., 58 

2017), streamflow (Naz et al., 2016; Byun et al., 2019), sea level rise (Yin et al., 2009; Kulp and 59 

Strauss, 2019), surface energy budget (Hu et al., 2019) and water budget (Leta et al., 2016) due to 60 

climate change. These changes have cascading effects to existing infrastructures, freshwater 61 

ecosystem, aquatic habitats, droughts, hydropower, water quality and so on. 62 

    Northeastern United States (NEUS) has seen significant increases in extreme precipitation 63 

events in the past five decades (Melillo et al., 2014; Parr et al., 2015a; Walsh et al., 2014). It is 64 

identified to be highly vulnerable to climatic changes (Hayhoe et al., 2007; Wuebbles et al., 2017; 65 

Siddique et al., 2021). While the intensity of the most extreme precipitation events (or the heaviest 66 

1% of all daily events) have increased in every region of the contiguous US since the 1950s, the 67 

maximum change in precipitation intensity of extreme events occurred in the NEUS reached 71% 68 

(Melillo et al. 2014). Moreover, changing rainfall characteristics are expected to influence the 69 

other components of the hydrologic cycle, including streamflow, soil moisture and 70 

evapotranspiration (ET), having direct impacts on droughts and floods (Horton et al., 2014; Bose 71 

et al., 2017). Several studies have investigated the potential future changes in some of these 72 

aspects, mostly at different sub-regions of NEUS. For example, increased occurrences of flooding, 73 

compared to historic flooding records, have been identified (Collins, 2009; Armstrong et al., 2014; 74 

Demaria et al., 2016a; Siddique et al., 2020). An increase in annual ET at the rate of around 3 cm 75 

per oC of temperature increase, with a consequent reduction of April-May runoff in New England, 76 

was documented in Huntington (2009). Marshall and Randhir (2008) suggested a 12-22% decrease 77 

in runoff in the Connecticut watershed depending on CO2 emission scenarios. Due to the 78 

dependence of runoff on snowmelt, timings of discharges are also important in NEUS. Hayhoe et 79 

al. (2007), Berton et al. (2016), Villarini (2016), Dhakal and Palmer (2020) identified potential 80 

changes in the timings and seasonality of flood events. Hodgkins et al. (2003) and Kam et al. 81 

(2016) indicated higher winter discharges and earlier peak discharges in spring in a warmer 82 

climate. Additionally, Parr et al. (2015b) found an increase in soil moisture during winter and 83 

spring (due to precipitation increase) and decrease in autumn and summer (due to increase in ET, 84 

up to 0.2 mm/day) in the Connecticut watershed. While most of the above-mentioned studies 85 

looked at discrete watersheds, very few studies gave a region-wide analysis of future hydrological 86 

characteristics using detailed meteorological drivers developed from a high resolution dynamically 87 

downscaled dataset. Demaria et al. (2016b) investigated effects of climate change on streamflow 88 

and seasonal snowpack over a large region covering NEUS and Midwest. They found positive 89 

trends in 3-day peak flows and negative trends in 7-day low flows along with statistically 90 

significant decreases in snow water equivalent ([SWE], depth of water that would result from 91 

complete melting of the snowpack). They also concluded that the snow cover might migrate 92 

northward in future due to warming. In a recent study, Grogan et al. (2020) also documented 93 

similar conclusions. However, either lack of domain coverage or analysis of limited variables 94 

remain a hindrance in comprehensive understanding of the regional hydrologic changes in NEUS. 95 

    The extent of inland flooding and surface water depths resulting from the extreme flood events 96 

are also likely to change in future. However, this has not been investigated yet; perhaps due to 97 

limited availability of observations and modeled flood elevation estimates (Wobus et al., 2021; 98 

Collins et al., 2022). Besides, previous studies over NEUS have focused on the hydrologic 99 
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conditions of individual river basins at coarse resolution. Hence, precise changes in spatial patterns 100 

of such hydrologic changes remain unexplored.  101 

Global Climate Models (GCMs) are widely used tools to simulate the response of global 102 

climate to increasing greenhouse gas (GHG) concentrations. However, most of the current GCMs 103 

are coarse-resolution (hundreds of kilometers) and are often unable to reproduce climatic and 104 

weather features at regional or local scale. To overcome this, regional climate models (RCMs) are 105 

used in conjunction with GCMs to dynamically downscale the projections for a specific region 106 

(Castro et al., 2005; Pal et al., 2019; Kotamarthi et al., 2021). To assess the hydrologic impacts of 107 

climate change, previous studies have used several GCM-downscaled climate products under 108 

various Representative Concentration Pathway (RCP) scenarios to force the hydrologic models 109 

(Sunde et al., 2017; Quansah et al., 2021). For this study, we use the Weather Research and 110 

Forecasting (WRF) model as RCM to dynamically downscale decade long GCM climate 111 

projections for ‘Historic’ (1995-2004) and ‘Future’ (2045-2054) periods under RCP8.5 scenario 112 

at a spatial resolution of 12km. Next, we implement WRF’s high-resolution distributed hydrologic 113 

modeling component WRF-Hydro for the hydrologic modeling purposes. WRF-Hydro is currently 114 

the underlying framework for the National Water Model of the US and is capable of simulating 115 

the entire hydrologic cycle at a local to neighborhood scale. WRF and WRF-Hydro ensures a 116 

highly resolved climate forcing and detailed representation of heterogeneous topographical 117 

features as opposed to previously performed coarse-resolution macro scale modeling studies 118 

(Demaria et al., 2016a; Naz et al., 2016) performed over NEUS. Somos-Valenzuela and Palmer 119 

(2018) used WRF-Hydro to calculate historical water budget tendencies over NEUS watersheds. 120 

This modeling approach also generates unique high-resolution inland flooding water depth maps 121 

at high spatiotemporal resolution along with the conventional hydrologic modeling outputs, such 122 

as streamflow, snowpack, soil moisture, and evapotranspiration. However, due to its high 123 

computational cost for large domains, most studies have used it over a watershed scale and focus 124 

on short-term events. Our study is first of its kind to provide extreme inland flood magnitudes and 125 

extent estimates of the past and future decades at a high resolution of 200 meters over the entire 126 

NEUS of 1380 x 1320 km2. Furthermore, we developed stationary and non-stationary extreme 127 

value analysis parameters over NEUS to calculate return levels with uncertainty estimates at any 128 

given return period. We also provide a comprehensive overview of other hydrologic changes over 129 

the entire NEUS to understand the changes in water balance and the potential drivers of the changes 130 

in streamflow and inland flooding, which also help reinforce some of the conclusions found in 131 

previous literature.   132 

 The main goals of this study are to: (1) Investigate the changes in the hydrologic conditions 133 

in terms of streamflow, ET, soil moisture and snowpack amount of the entire NEUS and validate 134 

with previous regional scale studies with different model combinations. (2) Quantify changes in 135 

inland flood magnitude and extent in near future. (3) Use Generalized Extreme Value (GEV) 136 

theory to predict risks and associated uncertainty of the low-frequency events. 137 

    The paper is organized as follows: in Section 2, the study region, data and methods are 138 

discussed. Section 3 describes the results and finally, a summary and the conclusions are 139 

documented in Section 4. Additional information is provided in Supporting Information (SI). 140 
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2 Materials and Methods 141 

2.1. Study region 142 

    NEUS is a region where strong evidence of increased extreme precipitation intensity has been 143 

observed in the 20th century (Brown et al., 2010; Guilbert et al., 2015, Zobel et al., 2018a). NEUS 144 

is one of the most developed areas in the world with more than sixty-four million people living 145 

there. Hence, the watersheds are under the influence of anthropogenic activities like land use and 146 

land cover change, water regulations, population growth etc. Such anthropogenic activities on top 147 

of climate variabilities pose a threat to flow regimes and inland flooding conditions of the NEUS 148 

watersheds (Siddique et al., 2021).      149 

 150 

Figure 1. NEUS WRF-Hydro domain on the US map with the major watersheds and USGS gages marked. 151 

Topography (terrain height in meters) is shown with shading.  152 

    This study includes the states: Maine, Vermont, New York, New Hampshire, Massachusetts, 153 

Rhode Island, Connecticut, New Jersey, Delaware, Maryland, Pennsylvania, Virginia, and West 154 

Virginia (Figure 1) covering entire ‘New England’ (HUC01) and ‘Mid-Atlantic’ (HUC02) 155 

hydrologic units (Seaber et al., 1987). As such, the WRF-Hydro domain (35N-50N, 65W-85W) 156 

includes all the major rivers in this region: Connecticut, Hudson, Delaware, Potomac, Merrimack, 157 

and Susquehanna. Two rivers from northern part – Connecticut (United States Geological Survey 158 
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[USGS] gage ID 0118400) and Hudson (USGS gage ID 01335754), and two rivers from the 159 

southern part- Delaware (USGS gage ID 01463500) and Potomac (USGS gage ID 01638500) were 160 

analyzed in this study. The watersheds and the USGS gages considered for this study are 161 

highlighted in Figure 1. We selected the gages with natural flow on the major rivers based on 162 

complete data availability within the historic period. Gages with influences of dam were not 163 

considered due to limited representation capability of reservoirs in the hydrologic model. 164 

December to February (DJF), March to May (MAM), June to August (JJA) and September to 165 

November (SON) are considered as winter, spring, summer and fall in NEUS, respectively.  166 

2.2. Dynamically downscaled RCM outputs 167 

    We used WRF v3.3.1 model (Skamarock et al., 2008) to dynamically downscale three sets of 168 

Coupled Model Intercomparison Project 5 (CMIP5) GCMs: Community Climate System Model 4 169 

(CCSM4, Gent et al., 2011), the Geophysical Fluid Dynamics Laboratory Earth System Model 2 170 

(GFDL-ESM2G, Donner et al., 2011), and the Hadley Centre Global Environment Model version 171 

2 (HadGEM2-ES, Jones et al., 2011). These GCMs were found suitable to represent the spread of 172 

climate sensitivity for the 30 GCMs in the CMIP5 experiment (Sherwood et al., 2014). The 173 

corresponding downscaled products are referred to as CCSM-WRF, GFDL-WRF and HadGEM-174 

WRF hereafter. In both CCSM-WRF and GFDL-WRF, boundary conditions are bias-corrected 175 

using reanalysis data; and nudging techniques are applied to WRF runs (Wang and Kotamarthi 176 

2015). No bias-correction or nudging are applied to the HadGEM-WRF. The WRF domain 177 

covered most of North America with 12-km grid spacing. Detailed description of the WRF model 178 

set up and RCM simulations can be found in Zobel et al. (2018a) and Pringle et al. (2021). Each 179 

RCM provides dynamically downscaled estimates of two decadal periods 1995-2004 (‘Historic’ 180 

hereafter) and 2045-2054 (‘Future’ hereafter) with one-year spin-up time for each period (1994 181 

and 2044) which are excluded for analysis. The future projections were conducted under RCP 8.5 182 

assuming business-as-usual, as it accurately represents current emissions out until mid-century 183 

(Schwalm et al., 2020). Output from the WRF simulations at 3-hourly intervals were regridded to 184 

4 km and used to force the hydrologic model WRF-Hydro. The precipitation was bias-corrected 185 

(see section 2.3) before regridding. 186 

2.3. Bias correction of precipitation 187 

    The WRF precipitation projections were bias corrected with hybridized quantile 188 

mapping technique, which isolates extremes from the lower quantiles to identify and correct biases 189 

separately. The extremes were determined based on top 2% precipitation as points over threshold 190 

(POT). The Generalized Pareto (GP) cumulative distribution function (CDF) identifies quantiles 191 

in the observed and modeled POTs (for the same reference period) that are equivalent to those in 192 

the future projected POT. The future projections were then adjusted by the ratio of the observed to 193 

the modeled reference POT as a scaling factor at each quantile with the following equation: 194 

POTc = POTfut ∗
FGP,obs
−1 (FGP,fut(POTfut))

FGP,hist
−1 (FGP,fut(POTfut))

 195 

where POTc is bias corrected future POT, POTfut are the modeled future POT, FGP,fut is the GP 196 

CDF for the modeled future POT, and FGP,obs
−1  and FGP,hist

−1  are the inverse GP CDFs for the 197 

observed and modeled reference POT, respectively. 198 
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The lower 98% of precipitation as points under threshold (PUT) were split into four subsets by 199 

seasons, and each was corrected in a similar way according to the equation: 200 

PUTc = PUTfut ∗
Femp,obs
−1 (Femp,fut(PUTfut))

Femp,hist
−1 (Femp,fut(PUTfut))

 201 

where PUTfut are the modeled future PUT for a given seasonal subset, Femp,fut is the empirical 202 

CDF for the modeled future PUT, and Femp,obs
−1  and Femp,hist

−1  are the inverse empirical CDFs for 203 

the observed and modeled reference PUT, respectively. The PUTc are the corrected PUT 204 

precipitation for a given season. 205 

The bias correction was explicitly performed based on the daily data. The corrected daily 206 

precipitation was temporally downscaled to 3-hourly values using the same temporal distribution 207 

for each day projected by the model.  208 

2.4. WRF-Hydro and Calibration 209 

    The bias corrected precipitation along with other WRF meteorological forcing (specific 210 

humidity, air temperature, incoming shortwave radiation, incoming longwave radiation, surface 211 

pressure, and near surface wind) were used every 3-hour to force the hydrologic model WRF-212 

hydro in standalone mode. WRF-Hydro 5.1.1 (Gochis et al. 2020; Pal et al., 2021a) is a physics-213 

based, parallelized, distributed hydrologic model. It was set up using multiple grid structures in 214 

the basin, such that the Noah-MP land surface model ([LSM], Niu et al., 2011; Pal et al., 2021b) 215 

operated at 4-km horizontal grid spacing with an additional representation of overland flow, along 216 

with channel routing on a 200-m grid (aggregation factor of 20) to accurately represent the river 217 

network of NEUS. A 90-m digital elevation model (DEM) was incorporated to create this routing 218 

grid using WRF-Hydro GIS Pre-processing Toolkit v5.1.1. Our domain contained 6880 west-east 219 

x 6580 north-south grid cells. Surface flow, saturated subsurface flow, gridded channel routing, 220 

and a conceptual baseflow (“pass-through”) were active during the simulations. The time steps for 221 

Noah-MP, channel routing, and terrain routing were 60 minutes, 20 minutes and 10 seconds, 222 

respectively. Six decadal continuous hydrologic simulations were conducted (Table 1) with a 223 

similar model set up, except the climate forcing, to identify the changes in hydrologic condition 224 

due to climate change projected by different GCMs. The ‘Historic’ simulations started on January  225 

Table 1. Hydrologic simulations conducted in this study using WRF-Hydro standalone mode, driven by WRF outputs.  226 

Simulation name Simulation year Forcing 

CCSM-Hydro-Historic 1995-2004 CCSM-WRF 

CCSM-Hydro-Future 2045-2054 CCSM-WRF 

GFDL-Hydro-Historic 1995-2004 GFDL-WRF 

GFDL-Hydro-Future 2045-2054 GFDL-WRF 

HadGEM-Hydro-Historic 1995-2004 HadGEM-WRF 

HadGEM-Hydro-Future 2045-2054 HadGEM-WRF 

1, 1995 and continued till December 31, 2004. The ‘Future’ simulations started on January 1, 2045 227 

and continued till December 31, 2054. All these simulations were ‘warm-started’ from similar 228 
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initial conditions after six months of model spin-up. Model LSM outputs (including ET, snow 229 

water equivalent and soil moisture) were saved every 6-hour and routing outputs (including 230 

streamflow and surface water depth) were saved every hour. Multi-model averages (MMA) are 231 

often used in this study to demonstrate the results, which helps to reduce the variability coming 232 

from individual models. 233 

    USGS discharge data at the four major river locations (Figure 1) were used to calibrate and 234 

validate the performance of WRF-Hydro. The stations on these major rivers were chosen based on 235 

the available data record for 1995-2004 and avoiding any flow with dam interference. Since this 236 

study focuses on hydrological extremes which is more important than moderate and low quantities 237 

when estimating the resulting risks, event-based model calibration is performed for two major 238 

extreme rainfall events of 1995 using Parameter Estimation Tool (PEST) following Wang et al. 239 

(2019). The calibration simulations were performed for 3 days (after six months of spin-up) with 240 

120 parallel simulations to calibrate a total 22 model parameters (See Table S1 in SI) on a high-241 

performance computing (HPC) system. The forcing used for calibration came from North 242 

American Land Data Assimilation System (NLDAS2 [Xia et al., 2012]).  243 

2.4.1. Inland flooding in WRF-Hydro 244 

    The LSM within WRF-Hydro calculates the fluxes of moisture and energy. Infiltration excess, 245 

ponded water depth and soil moisture are subsequently disaggregated from the LSM grid (here 4 246 

km) to the routing grid (here 200m) using a time-step weighted method (Gochis and Chen, 2003) 247 

and are passed to the overland and subsurface terrain-routing modules (Gochis et al., 2020). Depth 248 

of surface head (or ponded water) on any grid cell is a combination of the local infiltration excess, 249 

the amount of water flowing onto the grid cell from overland flow, and exfiltration from 250 

groundwater flow, and is saved as one of the hourly outputs in WRF-Hydro (variable 251 

‘sfcheadsubrt’). After the execution of routing schemes these fine-grid values are aggregated back 252 

to the native land surface model grid as ‘sfcheadrt’ and used on the next iteration as: 253 

𝑠𝑓𝑐ℎ𝑒𝑎𝑑𝑟𝑡𝑖,𝑗 =
∑∑𝑠𝑓𝑐ℎ𝑒𝑎𝑑𝑠𝑢𝑏𝑟𝑡𝑖𝑟𝑡,𝑗𝑟𝑡

𝐴𝐺𝐺𝐹𝐴𝐶𝑇𝑅𝑇2
 254 

where (irt, jrt) are the grid cells within native grid cell (i, j) and AGGREFACTRT is the 255 

aggregation factor. We can use the variable ‘sfcheadsubrt’ (mm) as a proxy for inundation, with 256 

nonzero values indicating wet land surfaces. However, we acknowledge that the depths might be 257 

slightly off from actual inundation at local scales, partially because of the small size of the grid 258 

cells and the coarseness of the DEM at that scale. In addition, WRF-Hydro does not explicitly 259 

represent inundation areas from overbank flow as water does not flow from any channel back to 260 

the terrain. Hence, we consider non-channel overland flow or local ponding depth as inland flood 261 

depth in this study.  262 

2.5. Extreme value analysis and uncertainty quantification 263 

    Extreme value analysis (EVA) is performed to estimate intensities of extreme climate and 264 

hydrologic events from annual maximum series (AMS) isolated from the ‘Historic’ and ‘Future’ 265 

simulations. The CDF of the GEV distribution is given by: 266 

𝐹(𝑥; 𝜇, 𝜎, 𝜉) = exp {− [1 + 𝜉 (
𝑥 − 𝜇

𝜎
)]

−1/𝜉

} 267 
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with parameters 𝜇 (location), 𝜎 (scale), and 𝜉 (shape). For a stationary GEV all parameters are 268 

considered constant. Where the distribution of extreme events is expected to change over time, 269 

one or more parameters of the GEV may be defined as time variant(s). In this study, for a non-270 

stationary GEV the location parameter is modeled as a first-degree linear function of time. 271 

    For historical EVA the stationary GEV is used. For the ‘Future’ scenario, either the stationary 272 

or non-stationary GEV is chosen via the log-likelihood ratio test. To account for numerical 273 

instabilities in the WRF-Hydro simulations while fitting the GEV, only points with sufficient data 274 

above a 0.3 mm (0.001 ft) threshold are considered. In the historic analysis, sufficient data is 275 

defined as 8 years of annual maximums above the threshold. In the combined ‘Historic’ and 276 

‘Future’ analysis, 16 years of data above the threshold is used to define data sufficiency. Each year 277 

included in the analysis was required to have at least 2 models with adequate data. Extreme inland 278 

flood and flow events are calculated at 2-, 5-, 10-, 25-, and 50-year return periods by calculating 279 

the respective percentiles of the fitted distribution’s CDF at each cell.  280 

    One consideration in estimating extreme event intensities is the varying range of climate 281 

variables forecasted by the three WRF simulations used in this study. To quantify the uncertainties 282 

of extreme climate events, statistical bootstrapping is used to generate a pool of 500 augmented 283 

AMS. In each augmented AMS, annual maxima are randomly sampled from the AMS isolated 284 

from 3 the RCMs. Stationary and non-stationary GEV are fit to each AMS, and the 5th, 50th, and 285 

95th percentiles of 500 GEV returns are used as lower, median, and upper bounds for extreme event 286 

estimates.  287 

3. Results and discussions 288 

3.1. Validation of WRF and WRF-Hydro model 289 

    The WRF simulations used in this study have been evaluated extensively (Wang and Kotamarthi 290 

2015; Chang et al. 2016, Zobel et al. 2017, 2018a; Pringle et al. 2021). Here we evaluate the 291 

performance of WRF-Hydro when forced with WRF outputs and bias corrected downscaled  292 

 293 

Figure 2. Comparison of WRF-Hydro simulated historical river discharge to USGS observed discharge over the four 294 

sites shown in Figure 1. The three model estimates are shown in colored bars, USGS data is shown in solid black lines, 295 

multi-model average (MMA) is shown in black dashed line. CCSM = CCSM-Hydro-Historic, GFDL = GFDL-Hydro-296 

Historic, HadGEM = HadGEM-Hydro-Historic. 297 
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precipitation estimates. We compare the model simulated monthly streamflow at the major river 298 

locations and demonstrate that the hydrologic model represents the seasonality and magnitude of 299 

mean monthly flow well (Figure 2). The temporal correlation of MMA and observed was found 300 

0.92, 0.89, 0.88 and 0.89 in Connecticut, Hudson, Delaware, and Potomac, respectively. However, 301 

there are some overestimations for the majority of the months in all the locations (except some of 302 

the summer months for GFDL and HadGEM). This could be expected as we calibrated the model 303 

with respect to high-flow events. However, since we use the same calibrated parameters for the 304 

‘Historic’ and ‘Future’ scenario, the effect of the bias on the changes is expected to be minimal. 305 

All the rivers achieve peak flow in March-April and low flows in the summer (JJA). Connecticut 306 

river, the longest stream in New England, has the highest discharge reaching up to mean monthly 307 

discharge of 1200 cubic meters per second (cms) in April.  308 

3.2. Changes in precipitation  309 

   Figure 3 shows the changes in decadal mean precipitation and decadal maximum precipitation. 310 

Overall, the projected changes in decadal mean are smaller compared to the changes in the 311 

extremes. The decadal mean precipitation changes (Figure 3a-3d) are within 25%, whereas 312 

changes in decadal maximum precipitation are likely to exceed 100%. While all the three models 313 

show similar magnitude in the changes of mean and maximum precipitation, the location of these 314 

changes remains uncertain. For example, CCSM-WRF and GFDL-WRF (Figure 3a, b) project 315 

majorly positive changes in the decadal mean precipitation, but HadGEM-WRF (Figure 3c) 316 

predicts both negative and positive mean changes. Nonetheless, profound changes in decadal 317 

maximum precipitation are likely to be positive. Future extreme precipitation is projected to 318 

increase more than 100% in southern NEUS by CCSM-WRF; parts of New York, Pennsylvania 319 

 320 

Figure 3. Changes in decadal mean (top row) and decadal maximum (bottom row) precipitation as projected by 321 

CCSM-WRF (a, d), GFDL-WRF (b, e) and HadGEM-WRF (c, f). Multi-model average is shown in (d) and (h) for 322 

mean and maximum precipitation, respectively.   323 

and Maine by GFDL-WRF and HadGEM-WRF (Figure 3e, 3g). Additionally, GFDL-WRF 324 

predicts similar large changes in Massachusetts and Connecticut as well (Figure 3f). The MMA 325 

estimate of extremes (Figure 3h) reduces some of the high variability and predicts ~ 75% increase 326 

in some regions of New York and Pennsylvania. In-depth discussions on changes in extreme 327 

precipitation can be found in Zobel et al. (2018b). Here we focus on the effects of such 328 

precipitation changes on the surface hydrology.  329 

3.3. Changes in Streamflow 330 
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    Relative changes in monthly streamflow between ‘Historic’ and ‘Future’ simulations are shown 331 

in Figure 4. Left (right) column demonstrates the changes in mean (extreme) flow. The relative 332 

changes for mean flow range between -20% to 40%, with decreases in the summer and late spring 333 

and increases in winter and early spring. Fall discharge is projected to increase in the southern 334 

watersheds (Delaware and Potomac) and decrease in the northern watersheds (Connecticut and 335 

Hudson). These results are consistent with previous studies (Parr et al., 2015b; Siddique et al., 336 

2021), indicating that the watersheds of NEUS are moving towards a wetter regime particularly 337 

during the months of winter, along with a drier summer season. Future increases in temperature 338 

(Figure S1 in SI) allows the atmosphere to hold more moisture, which results in an increase of 339 

precipitation in most of the months of the year (Figure S2). Snow also plays a critical role in this 340 

region as snowmelt contributes to the seasonal flow. With higher temperature, less available 341 

snowpack (see Figure S3 and Figure 8) and faster snowmelt will result in an increase in flow in  342 

     343 

Figure 4. Percentage changes in monthly streamflow in the rivers of NEUS (left column), and changes in the 344 

distribution of extreme flows (right column). MMA = multi-model average. CCSM = CCSM-Hydro, GFDL = GFDL-345 

Hydro, HadGEM = HadGEM-Hydro.  346 
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early spring and decrease in late spring.  347 

    Consensus among the three models is seen in the distributions of extreme flow (>95 percentile) 348 

shown in the right column of Figure 4. The distributions shift towards the right in future, indicating 349 

higher mean intensity of extreme flows in future. The extreme flows in these rivers are mostly 350 

observed in winter and spring. Combined modeled (MM, black dashed lines) flows indicate the 351 

mean of the extreme flow is predicted to increase by ~20% in Connecticut and Hudson river 352 

(Figure 4b, d), 10.5% in Delaware (Figure 4f) and 5.1% in Potomac river (Figure 4h).  353 

     354 

 355 

Figure 5. GEV projected flow in the rivers for (a-d) 1995-2004 historic and (e-h) 2045-2054 mid-century scenario.  356 

Table 2. EVA projected future changes in extreme precipitation (P) and streamflow (Q) at the four major river basins.  357 

 358 

 
2-year event 5-year event 10-year event 25-year event 50-year event 

 
P Q P Q P Q P Q P Q 

Connecticut 8.1% 9.2% 8.5% 9.9% 9.2% 8.4% 10.5% 11.1% 12.1% 12.7% 

Potomac 4.1% 1.2% 4.1% -2.4% 4.8% -1.7% 5.9% 6.1% 7.1% 11.2% 

Delaware 8.2% 1.7% 9.1% 5.1% 10.3% 8.4% 12.7% 10.8% 14.7% 14.8% 

Hudson 10.5% 8.8% 12.4% 20.1% 13.9% 25.5% 16.1% 36.8% 17.9% 45.8% 

    Figure 5 shows the return level of streamflow for different return periods based on the re-359 

sampled lower, median and higher quantities of streamflow over each of the four rivers (see section 360 

2.5). Overall, the changes were prominent in the low-frequency events, such as the once-every-361 

50-year events (Figure 5). For example, based on the resampled median quantities, 50-year flow 362 
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magnitude increased from 6240 to 7030 m3/sec in Connecticut river (Figure 5a, e), 5040 to 5800 363 

m3/sec in Delaware river (Figure 5c, g), 2900 to 4250 m3/sec in Hudson river (Figure 5d, h), and 364 

6750 to 7520 m3/sec in Potomac river (Figure 5b, f). 5th and 95th quantiles of the uncertainty bounds 365 

were also plotted to incorporate the inter-model spread (see section 2.5). We conclude that the 366 

changes in extreme precipitation over these watersheds are the main drivers for such changes in 367 

extreme flow. Table 2 demonstrates a complete picture of the percent changes in the risks 368 

associated with precipitation and flow coming out from those watersheds. We expect positive 369 

changes in extreme precipitation contributing to extreme flows, except 5-year and 10-year events 370 

in Potomac river where streamflow may decrease even with an increase in precipitation extreme. 371 

3.4. Changes in inland flooding 372 

    This study highlights the capability of WRF-Hydro in simulating and projecting changes in 373 

inland flooding conditions over the NEUS. In WRF-Hydro, inland flooding can be assessed in 374 

terms of the extent and depth of surface water accumulation (see section 2.4). We analyze 375 

combined multi-model estimates instead of individual models using the resampling approach 376 

(section 2.5). The results indicate more inundation areas and increased intensity of extreme 377 

 378 

Figure 6. Projected percent changes in 10-year seasonal maximum surface water depth at grid spacing of 200 m based 379 

on three model averages. 380 

inland floods (measured by mm of water) in the NEUS by mid-century. Figure 6 demonstrates the 381 

predicted changes in maximum flood depth in each season. Highest changes are seen in summer 382 

(JJA) and fall (SON), likely due to the increases in extreme precipitation and tropical-to-383 

extratropical cyclone activities over the Atlantic coast in these months in future (Garner et al., 384 

2021; Gori et al., 2022). Regions in New York, Connecticut, Massachusetts and New Hampshire 385 

may experience a change of ~200% (Figure 6c, d). Winter (DJF) and spring (MAM) changes range 386 

50-100% in the states of Virginia, New Hampshire and Maine.  387 
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    According to the GEV analysis, likelihood and flood severity of extreme low-frequency flood 388 

is expected to increase. Figure 7 shows the map of 2-year (a, b) and 50-year events (c, d) for 389 

historic and mid-century periods. Water depth from high-frequency flooding may increase from 390 

60 mm (2.4 inches) to 100 mm (4 inches) in all states (Figure 7a, 7b). Low-frequency extreme 391 

events may cause accumulated water depths of >350 mm (1.15ft) in regions of Pennsylvania and 392 

Ohio which were not seen in the historic scenario. Predicted hotspots are in west Vermont, 393 

southern New York and Connecticut as well (Figure 7c, 7d). In terms of spatial extent, total flooded 394 

area is projected to increase by 20% for all return periods (Figure 7e). In general, higher percent 395 

increases can be expected in the grid cells with higher water depth, except >300mm grid cells in 396 

the 2-year return period (Figure 7e). This suggests that extreme inland flooding might be occurring 397 

in more regions than historic scenarios.   398 

 399 

Figure 7. GEV projected inland flooding estimates of 2-year (top row) and 50-year (bottom row) events for 1995-400 

2004 (a, c) and 2045-2054 (b, d). (e) Change in number of wet grid cells according to surface water depth.  401 

    Furthermore, we were able to investigate the changes in inland flooding at a local scale or 402 

neighborhood level with the help of high-resolution modeling. Figure 8 demonstrates some 403 

examples of changes around a few major cities of NEUS – Philadelphia (Figure 8a, b), New York 404 

(Figure 8c, d), Boston (Figure 8e, f) and Washington D.C (Figure 8g, h). In general, lower flood 405 

intensity grids (colorless dots) are predicted to decrease and higher flood intensity grids (blue and 406 

red) are predicted to increase in number. Especially in the areas surrounding New York, there was 407 

a significant increase in the number of flooded grids projected by GEV analysis. The estimates at 408 

200m resolution are available (see ‘Data availability statement’) for understanding flood risk at a 409 

local scale anywhere in the study domain.  410 

3.5. Changes in mean ET, Soil moisture and SWE 411 

    Projected changes in precipitation and flow are linked to the other hydrologic variables over 412 

NEUS such as ET, soil moisture, and SWE, which are provided by the output of LSM component 413 

of WRF-Hydro (i.e. Noah-MP). Due to consistent warming in NEUS (supplementary Figure S1), 414 

larger portion of winter precipitation falls as rainfall, with decreased SWE, and higher snowmelt 415 

in most of the parts of NEUS, especially in the watersheds of concern (Figure 9a-9d), leading to 416 

higher runoff in winter. In NEUS rivers, peak flows generally occur during March-April when 417 
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snowmelt is triggered by temperature increase. Hence, earlier peak snowmelt will likely cause an 418 

earlier peak in river flow (Figure 4, supplementary Figure S3).  419 

    Changes in soil moisture can cause infiltration and surface runoff change. We find a domain-420 

wide decrease in JJA soil moisture (Figure 9g), over the northern part in SON (Figure 9h), causing            421 

 422 

Figure 8. Extreme surface water depths (mm) in a 50-year event around major cities of NEUS – (a, b) Philadelphia, 423 

(c, d) New York, (e, f) Boston and (g, h) Washington D.C in Historic and Future scenario. Total number of grid cells 424 

counted in each category are also mentioned in parentheses.  425 
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more infiltration and less surface runoff, which explains the decrease in summer flow in the rivers 426 

and decrease in spring flow in northern watersheds (Figure 4). Increase in soil moisture in DJF and 427 

MAM (Figure 9e, 9f) is likely due to increased precipitation and snowmelt. The range of mean 428 

soil moisture change stays within ±5%. 429 

    ET amount depends on surface energy budget and available energy, which creates evaporative 430 

demand. As the temperature rises in the future (Figure S1), ET is also expected to rise if moisture 431 

is available. Our simulations indicate an increase of ET throughout all four seasons in the mid- 432 

century (Figure 9i-9l) with the highest increase in JJA (Figure 9k). Future rise in temperature and 433 

precipitation causes a domain-wide increase of ET ~10%. It is worth mentioning here that the 434 

accuracy of ET estimates in a land surface model depends on accurate land classification and ET-435 

related parameter tuning (Pal et al., 2021b). In this study we did not modify any land related model 436 

parameters for future projections to attribute the changes to climate change only. 437 

 438 

 439 

Figure 9. Multi-model average seasonal percent changes in snow water equivalent (SWE), total evapotranspiration 440 

(ET) and soil moisture. 441 

4 Summary and conclusions 442 

    Climate change has significant impacts on the hydrologic cycle as a warming atmosphere 443 

influences the patterns of extreme precipitation and alters regional flood risks. Assessing such 444 

impact at regional to neighborhood scale is necessary for decision making and developing 445 

mitigation strategies. Different agencies are now considering climate change policies for 446 

adaptation and asset management purposes as extreme precipitation and flooding can pose 447 

significant risks to their infrastructures and networks. In this study, we use high-resolution physics-448 

based models and statistical techniques to quantify increases in hydrologic extremes and predict 449 

increased risks in the near-future over the NEUS. 450 

    Starting from coarse-resolution global models, we estimated atmospheric forcing at 12-km 451 

resolution using WRF. Then the land surface model was run at 4-km and WRF-Hydro hydrologic 452 

routing was performed at 200-m resolution. This study is first-of-its-kind to simulate six decade-453 
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long hydrologic simulations in such high resolution using 3 million CPU hours of supercomputing 454 

resources of Argonne National Laboratory. Total model outputs analyzed were 200 TB.  The high 455 

spatial resolution generates sufficiently detailed outcomes to inform local decisions, while 456 

maintaining statistically robust outcomes needed for extreme value analysis. More specifically, we 457 

were able to use the variable ‘surface head’ from WRF-Hydro to investigate the changes in depths 458 

and extent of inland flooding in future. It informs the extent and depth of surface water 459 

accumulation of inland flooding. This variable has not been explored yet in the WRF-Hydro 460 

literature, but we conclude that a properly calibrated model can provide realistic estimates of inland 461 

flooding. This could be useful information for National Water Model product users for 462 

investigating local flooding in hydroclimate simulations or short-term inundation from tropical 463 

storms. We acknowledge that the main limitation of the study is not being able to incorporate the 464 

impact of future land use change with climate and remains a future work.    465 

 466 

Figure 10. Seasonal changes in the hydroclimatologic variables over NEUS. T = temperature, P = precipitation, Fm = 467 

mean flow, Fext = extreme flow, IFext = maximum inland flood depth, SM = soil moisture, ET = evapotranspiration, 468 

SWE = snow water equivalent. Upward (downward) arrow indicates positive (negative) change in future compared to 469 

historic. Both arrows indicate both changes were present in either space or time within that season.  470 

    Our calculations project that extreme precipitation is likely to increase more (>75%) than mean 471 

precipitation (~25%) potentially raising the risk of extreme inland flooding. Increase in mean 472 

temperature (Figure S1) likely causes such increases in mean precipitation in most of the months 473 

(Figure S2) and increase in ET in all months (since adequate moisture is available). These will also 474 

impact other components of the water cycle. In terms of mean monthly flow in the rivers, the 475 

expected changes are seasonally varying. In DJF, more liquid rainfall and less snowfall increases 476 

the mean and extreme flow, also increasing the soil moisture and maximum inland flood depths. 477 

In MAM, faster snowmelt causes earlier peak flow in the rivers but decreases the mean seasonal 478 

flow due to less available snowpack. Nonetheless, extreme flow increases due to more water 479 
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availability. Large temperature increases in JJA cause the largest increase in ET and reduced soil 480 

moisture. Mean flow in summer months will likely decrease or increase depending on precipitation 481 

variability. As such, a decrease in precipitation in August (Figure S2) might cause flow to decrease 482 

in the northern watersheds. However, southern watersheds acquire higher flow due to more 483 

rainfall. Similar changes are found in SON where the northern and southern watersheds behave 484 

differently. Increase (decrease) in precipitation towards south (north) causes increased (decreased) 485 

flow and soil moisture in southern (northern) rivers (Figure 4). Extreme inland flooding is 486 

projected to increase throughout the year, especially in JJA and SON due to increase in extreme 487 

precipitation. In general, snow water equivalent decreases in all seasons due to substantial increase 488 

in temperature. Soil moisture increases in all seasons except summer. Also, northern regions of 489 

the NEUS might experience a decrease in soil moisture, which is consistent with the lower SON 490 

mean flow there in future. Decrease in soil moisture may have implications for short-term or long-491 

term droughts in NEUS which need further investigation. The seasonal changes are summarized 492 

in Figure 10.  493 

    GEV estimates indicate correlation between extreme precipitation risk and flow risk. Extreme 494 

inland flooding intensity and extent increases throughout the year, especially in the months of JJA 495 

and SON. Specifically, more areas of the NEUS are predicted to be affected by low-frequency 496 

events in future according to GEV analysis. Total flooded area is projected to increase by 20%. 497 

Even the major cities and suburbs will be affected by low-frequency floods of higher return levels. 498 

The high-resolution local-scale data is publicly available for further analysis and risk assessment 499 

(see the ‘Data Availability Statement’ section). Our findings from this work are being used by the 500 

decision makers of New York Power Authority and AT&T for asset management and adaptation 501 

strategies.      502 
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