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Abstract12

Four-dimensional variational (4D-Var) data assimilation is an effective assimilation method13

for obtaining physically consistent time-varying states. In this study, I propose a method14

using a neural network surrogate model obtained by machine learning to solve one of the15

most serious challenges in 4D-Var, which is to construct an adjoint model. The feasibil-16

ity of the method was demonstrated by a 4D-Var experiment using a surrogate model17

for the Lorenz 96 model. Several effective procedures have been proposed to obtain an18

accurate surrogate model and the assimilated initial conditions: two-stage learning (i.e.,19

single- and multi-step learning) of neural networks, limiting the target states of the sur-20

rogate model to a small subspace of the state phase space, and updating the surrogate21

model during 4D-Var iterations.22

Plain Language Summary23

Better initial conditions are crucial for more reliable numerical simulations, such24

as for accurate weather forecasting. By combining information from observational data25

with simulation data, data assimilation estimates more accurate initial conditions. The26

four-dimensional variational (4D-Var) method is among the most successful data assim-27

ilation methods. The most difficult aspect of applying 4D-Var is to construct another28

model, termed the adjoint model, from the simulation model. This paper proposes a method29

for building an adjoint model using machine learning techniques that greatly reduce the30

difficulty of construction. The feasibility of the method was demonstrated by applying31

it to an idealized model that mimics atmospheric variability. Certain effective procedures32

for obtaining more accurate initial conditions are also proposed.33

1 Introduction34

Better initial conditions are crucial for accurate deterministic numerical simulations.35

Data assimilation is widely used to obtain the initial conditions. For example, data as-36

similation is an essential component of numerical weather forecasting systems. Four-dimensional37

variational (4D-Var) data assimilation is a data assimilation method and has the advan-38

tage of obtaining a time evolution that is consistent with the model physics. Conversely,39

the 4D-Var method requires an adjoint model of the simulation model for backward cal-40

culation of the gradient of a cost function with respect to the initial conditions. Build-41

ing the adjoint model and updating the model as the simulation model is updated is costly,42

which is among the biggest challenges of the 4D-Var method. Despite this disadvantage,43

4D-Var data assimilation has been employed in several operational numerical weather44

forecasting systems. Simulation models for operational use tend to have a longer lifetime45

than simulation models for research purposes. In addition, simulation models for research46

purposes usually have multiple simulation paths, that is, several different schemes for47

individual physical processes, from which users choose according to their objectives. There-48

fore, models for research purposes may require more effort to develop and manage ad-49

joint models than models for operational purposes.50

In recent years, machine learning techniques have developed rapidly and are be-51

ing used in an increasing range of domains. Data assimilation and machine learning have52

some similarities (e.g., Geer, 2021). Both minimize an error, termed the cost or loss func-53

tion, by optimizing target quantities, such as the state vector for data assimilation and54

the network parameters in machine learning. In neural network training, the network55

parameters are updated according to the gradient of the loss function regarding each pa-56

rameter. To obtain the gradient, a backward propagation algorithm is generally used.57

Recently, excellent machine learning frameworks, such as Pytorch (https://pytorch.org/)58

and TensorFlow (https://tensorflow.org/), have been developed, and gradient com-59

putation can be easily performed using such frameworks without manual programming60

of the backward propagation algorithm. Note that the learning parameters represent the61
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same procedure as updating the initial conditions with the adjoint model in 4D-Var. There-62

fore, once the forward simulation model is constructed using the framework, it is not nec-63

essary to manually build its adjoint model. The backward calculation of the gradient with64

respect to the initial conditions can be performed using the functionality of the frame-65

work. However, physics-based simulation models built using the framework generally re-66

quire more computational resources, such as CPU time and memory usage, than con-67

ventional models written in C or Fortran, which may not be practical.68

A neural network surrogate model that replicates physics-based simulations is a pos-69

sible solution. Surrogate models are not based on physical laws, that is, not on govern-70

ing equations, but on statistical relationships between the initial conditions and simu-71

lation results. Surrogate models are built by machine learning from the inputs and out-72

puts of physics-based simulations. Surrogate models can be designed to be computation-73

ally much less expensive. Once a surrogate model has been developed, the functional-74

ity of the framework can be used to calculate the gradient of the cost function with re-75

spect to the initial conditions using the surrogate model. Even without using the func-76

tionality, building an adjoint model of the neural network model manually is much eas-77

ier than building an adjoint model of the physics-based model because neural networks78

generally consist of a limited number of simple operations such as weighted sums and79

a few nonlinear activation functions. If the gradient of the cost function obtained using80

the surrogate model is sufficiently accurate to improve the initial conditions, 4D-Var data81

assimilation can be performed much more easily.82

There are two major concerns with using surrogate models in 4D-Var. The first is83

whether a surrogate model can be obtained that provides sufficiently accurate simula-84

tion results. For systems with large degrees of freedom, such as the atmospheric system,85

surrogate models must also have a sufficiently large degree of freedom. The greater the86

degrees of freedom, the more difficult it is to build a surrogate model. By limiting the87

target states of the surrogate model in the state phase space to a small subspace around88

the state to be assimilated, the difficulty is expected to be lower than when the entire89

phase space is targeted. Another difficulty is whether gradients can be accurate enough90

to improve the initial conditions. Even if a surrogate model providing accurate forward91

computations can be obtained, its Jacobian may not be accurate (Aires et al., 2004). In92

particular, if the resulting network overfits the training data, the gradients may be un-93

realistic, even if the results of the forward simulation are reasonable.94

Several studies have proposed a similar concept for using machine learning for data95

assimilation. Brajard et al. (2020) combined data assimilation and machine learning with-96

out a physics-based model. In this method, the amount of training data is capped be-97

cause the training data are limited to the observation data. The limitation can make over-98

fitting programs more serious. The method proposed in this study generates training data99

by simulations using a physics-based model and there is no limit to the amount of train-100

ing data. Hatfield et al. (2021) attempted to use an adjoint model obtained by machine101

learning for 4D-Var data assimilation. They demonstrated the 4D-Var by replacing the102

non-orographic gravity wave drag parameterization scheme of the general circulation model103

with a neural network. The scheme is only a part of the model, and most parts of the104

adjoint model are derived manually, as in the conventional method.105

In this study, the feasibility of using a neural network surrogate model was inves-106

tigated to improve the initial conditions in 4D-Var data assimilation. A simple dynam-107

ical system is used to study the feasibility. First, several physics-based simulations were108

performed. A neural network surrogate model was built using the output data from the109

simulations. Using this surrogate model, a 4D-Var data assimilation experiment was con-110

ducted. The focus was on the feasibility of using the gradients computed with the sur-111

rogate model to improve the initial conditions.112
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2 Model and Methodologies113

2.1 Lorenz 96 model114

The Lorenz 96 model is a dynamical system model proposed by Lorenz (1996):115

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F, i = 1, 2, · · · I, (1)

where I is the number of grid points. The first, second, and last terms on the right-hand116

side correspond to the advection, diffusion, and forcing terms, respectively. It is known117

that the system exhibits chaotic behavior for a range of F values.118

Physics-based simulations were performed using the fourth-order Runge-Kutta scheme119

with a time step of ∆t = 0.01. I and F were set to 40 and 8.0, respectively, at which120

the system was chaotic. Periodic boundary conditions were employed. The initial con-121

ditions were xi = F + εi, where ε is a small random perturbation with a normal dis-122

tribution with a standard deviation of 0.01. After a spin-up of 5,100 integration time steps,123

time integration of 100 steps from t = 0 to 1 was performed (hereafter referred to as the124

reference).125

Then, the ensembles were generated by adding random perturbations with a nor-126

mal distribution with a standard deviation of 0.1, to the reference state after the first127

5,000 steps of the spin-up. After 100 integration steps as the second spin-up, 100 time-128

integration steps were performed for each ensemble. The time evolution of the ensem-129

ble average of the mean squared error (MSE) from the reference grows exponentially with130

an exponent of the growth rate, that is, the Lyapunov exponent, of approximately 2.14.131

The states were output every five steps, that is, at a 0.05 time interval, and there were132

21 outputs (including the initial state) for each ensemble. These were used to train the133

neural network surrogate model.134

The states of these ensembles lie within a limited subspace in the state phase space135

(hereafter referred to as the localized ensemble set). To examine the effect of the extent136

of the state of the training data in the phase space on the surrogate model trained from137

the data, another ensemble set was generated with a second spin-up of 1,000 steps (here-138

after referred to as the spread ensemble set). The states of this ensemble set are widely139

spread in the phase space with a large variance that is comparable in magnitude to the140

variance of a very long time series. The MSE of the spread ensemble set is approximately141

24–29 throughout the integration period, whereas the MSE of the localized ensemble set142

is approximately 0.27 and 2.3 at the beginning and end of the integration period, respec-143

tively.144

2.2 Surrogate model145

Using the state vectors x of the physics-based simulation as input and target data146

for training, a neural network surrogate model that replicates the physics-based simu-147

lation was built.148

2.2.1 Network architecture149

In the physical system represented by Eqs. 1, the state at the next time step de-150

pends only on the state at the previous step. To emulate this behavior, the network was151

designed as a recurrent neural network. An identical network module is connected re-152

currently, and each module corresponds to a time interval of 0.05 (Figure 1a). Each mod-153

ule consists of a stacked hourglass network (Newell et al., 2016). Each hourglass network154

consists of two stages: down-sampling and up-sampling (Figure 1b). Through these stages,155

multiple horizontal scales are considered. In the down-sampling stage, the grid size is156

halved at each step by the max-pooling layer. There are five steps in the down-sampling157

stage and the grid size at each step is 40, 20, 10, or 5. In the up-sampling stage, the grid158
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size is doubled at each step by the max-unpooling layer and the grid size at each step159

is 5, 10, 20, or 40. The output of each step of the down-sampling stage is added to the160

input of the corresponding step of the up-sampling stage via skip connections. Each step161

consists of convolution layers, batch normalization layers, and rectified linear unit ac-162

tivation layers. In the convolution layers, the values of neighboring grid points interact,163

and the convolutions are expected to replicate advection. The kernel size for the con-164

volutions of the hourglass network is three, and periodic boundary padding is applied165

before the convolution. Before the hourglass network, the number of channels is increased166

from one to four by convolution with a kernel size of one, and after the network, the num-167

ber of channels is reduced from four to one.168

2.2.2 Training and evaluation169

Training of the neural network was divided into two stages: one-step learning and170

ten-step learning. In one-step learning, a non-recurrent single network module was trained.171

The training data were x(t) as the input and x(t+0.05) as the target data, where t =172

0, 0.05, · · · , 0.95. The loss function l1 was defined as follows:173

l1 =
1

I
|f(x(t))− x(t+ 0.05)|2 , (2)

where f is the operator corresponding to the single network module. With the 21-step174

output dataset obtained in each ensemble run, 20 training datasets were available. Thus,175

from M ensemble runs, 20M training datasets could be used.176

In the ten-step learning process, the input data were x(t) and the target data were177

(x(t+ 0.05),x(t+ 0.1), · · · ,x(t+ 0.5)), where t = 0, 0.05, · · · , 0.5. From each ensemble178

run, 11 training datasets were available, and a total of 11M training datasets could be179

used from M ensemble runs. The loss function l10 was defined as follows:180

l10 =
1

10I

10∑
n=1

|fn(x(t))− x(t+ 0.05n)|2 . (3)

The network parameters obtained by one-step learning were used as the initial param-181

eters for ten-step learning. In the latter process, the dropout layers were disabled, and182

the mean and standard deviations in the batch normalization layers were fixed to the183

values obtained in the former.184

For both the one-step and ten-step learning processes, the error of the trained net-185

work was evaluated by the ensemble average of their loss functions calculated using the186

evaluation data of another ensemble set of 100 runs. The batch size was swept and de-187

termined such that the error of the network would be the smallest. The size of the train-188

ing dataset, which is proportional to the ensemble size, was also varied for sensitivity test-189

ing.190

2.3 4D-Var data assimilation191

In the 4D-Var data assimilation experiment conducted in this study, the neural net-192

work surrogate model and its adjoint model were used for the forward and backward com-193

putations, respectively. To focus on the validity of using the adjoint model, the config-194

uration of the 4D-Var experiment was chosen as the simplest configuration in which there195

were no errors in the observed data and observations exist at all grid points. The time196

window for assimilation was set to 0.5, and the observed data were assimilated at inter-197

vals of 0.05, for 10 time steps. The cost function Js was defined as follows:198

Js(x(0)) =
1

10I

10∑
n=1

|fn(x(0))− y(0.05n)|2 , (4)
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where y(t) is the observed state at time t. The first guess for x(0) was the initial state199

of one of the obtained ensemble runs, as described in Section 2.1. The gradient of Js for200

x(0) was obtained using the adjoint model of the surrogate model. The gradient was then201

used to update x(0). The x(0) was updated iteratively to reduce the cost function. A202

one-dimensional golden-section search procedure (Kiefer, 1953) was used for the update.203

At each of the K iterations (hereafter referred to as the update interval), physics-based204

simulation was performed using the latest x(0), and the network parameters of the sur-205

rogate model were updated using the simulation results in the same way as for ten-step206

learning. The learning rate in the surrogate model update was swept between 10−5, 3×207

10−5, and 10−4, and determined such that the improvement of the cost would be the great-208

est.209

3 Results210

3.1 Obtaining the surrogate model211

First, the neural network was trained using one-step learning. The error of the net-212

work depends on the size of the training data. The larger the size of the dataset, the smaller213

the error is (Figure 2a). The error is O(10−4)–O(10−2), which is much smaller than the214

background variance of x, which is O(10). The batch sizes with the smallest errors were215

125, 250, 2000, 4000, and 4000 for ensemble sizes of 50, 100, 200, 400, and 800, respec-216

tively. Then, using the surrogate model obtained, a time integration experiment for t =217

0–0.5 was conducted, that is, the network obtained above was repeated 10 times. This218

time integration was calculated from 1,000 different initial states generated, as described219

in Section 2.1. The accuracy of the surrogate model was evaluated using the MSE from220

the physics-based model solution under the same initial conditions. Figure 2c shows the221

temporal evolution of the ensemble average of the MSEs of the surrogate model obtained222

from an ensemble of M = 800. The MSE grows over time, with the earlier growth rate223

gradually decreasing and later remaining nearly constant. Even later, the growth rate224

is still larger than the growth rate of the physical growth mode described in Section 2.1.225

Next, ten-step learning was performed. Figure 2b shows the error of the network226

obtained from the ten-step learning. Because the discrepancy between the surrogate model227

simulation and the physics-based simulation tends to increase with time, the magnitude228

of the network error is larger than that in one-step learning. The error depends on the229

ensemble size, as in the case of one-step learning. The dependency on batch size is smaller230

than in one-step learning. Using the surrogate model obtained from the ten-step learn-231

ing, time integration was performed as for one-step learning. The growth rate of the er-232

ror in the early time was improved compared to that of the model obtained from the one-233

step learning process (Figure 2c). As a result, the error at the end is approximately 60%234

of the model obtained by one-step learning. Conversely, the error in the first step, that235

is, t = 0.05, is larger than the error of the model obtained by one-step learning. This236

can be explained as follows. In one-step learning, the network learns such that the er-237

ror after one-step integration is small, whereas, in the ten-step learning process, the net-238

work learns such that the average error at 10 steps is small. This means that unstable239

modes with large Jacobian eigenvalues become smaller in one-step learning, and unsta-240

ble modes with large singular values become smaller in the ten-step learning process. This241

is consistent with the expectation of Brenowitz and Bretherton (2018) that a multiple-242

time-step loss function penalizes a rapidly growing unstable mode.243

To evaluate the efficacy of the two-stage learning process, that is, one- and ten-step244

learning, one-stage learning, that is, ten-step learning only, was also conducted. Ran-245

domly generated initial network parameters were used for ten-step learning. It was found246

that the network did not learn well following this training regime. The loss function did247

not decrease significantly during the epoch iteration and was saturated at the level of248

O(1). As a result, the error of the surrogate model obtained by one-stage learning was249
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much larger than that of the model obtained by two-stage learning. This could be solved250

by a more appropriate network design. Regardless of the case, the network was success-251

fully trained by two-stage learning. This suggests that two-stage learning is an efficient252

way to build surrogate models.253

To investigate the effect on the accuracy of the resulting surrogate model by lim-254

iting the state of the training data to a subspace of the phase space, the same training255

was performed using the spread ensemble set generated with 1,000 steps as the second256

spin-up, as described in Section 2.1, instead of the localized ensemble set. The errors of257

the networks obtained using the spread ensemble set were 0.40, 0.20, 0.088, 0.044, and258

0.018 for ensemble sizes of M = 50, 100, 200, 400, and 800, respectively. These errors259

were approximately 6.5 to 10 times larger when using the spread ensemble set than when260

using the localized ensemble set, with errors of 0.045, 0.024, 0.010, 0.0041, and 0.0028,261

respectively, with the localized ensemble set. This suggests that the difficulty of build-262

ing a surrogate model can be reduced by limiting the target states to a small subregion263

in the phase space.264

3.2 4D-Var experiment265

A 4D-Var data assimilation experiment was conducted using the neural network266

surrogate model. Figures 3a and 3b show the evolution of the cost function Js with the267

number of iterations. As the number of iterations increases, the cost generally decreases.268

The same cost function, but using x obtained from the physics-based model instead of269

the one obtained from the surrogate model, was also calculated (denoted as Jp). It can270

be seen that Jp also decreases with an increasing number of iterations, although its mag-271

nitude is generally larger than Js. This indicates that 4D-Var data assimilation using272

an adjoint model of a neural network surrogate model is effective. The cost is smaller273

for a larger ensemble size. The larger ensemble size corresponds to a smaller error of the274

surrogate model, suggesting that the accuracy of the surrogate model affects the accu-275

racy of the assimilation. It was also found that updating the surrogate model during 4D-276

Var iterations improved the accuracy of the assimilated initial conditions. We see large277

improvements in the cost when the network is updated as seen at 100 iterations for the278

case of an ensemble size of 200 and update interval of 100. We can also see that the smaller279

the update interval, the smaller is the cost.280

Next, the number of iterations required for Jp to be smaller than the threshold Jt281

was examined. Here, Jt was set to 0.001. The number of iterations depends on the num-282

ber of ensembles used to obtain the surrogate model. The larger the ensemble size, gen-283

erally, the smaller is (Figure 3c). When the ensemble size is small, the number varies greatly284

for different update intervals and when the ensemble size is large, the number is simi-285

lar. The number of iterations also depends on the update interval K, and the smaller286

K is, the smaller it becomes (Figure 3d). The dependency on K becomes more pronounced287

as the ensemble size becomes smaller. Even if the accuracy of the initial surrogate model288

is not very high, for example, M = 50, accurate initial conditions could be obtained with289

frequent updates of the surrogate model during 4D-Var iterations, that is, the small K.290

In general, more accurate data contribute to better training in machine learning. There-291

fore, learning during the 4D-Var iteration is likely to be more efficient than the earlier292

two-stage learning because the training data during 4D-Var iterations are more accurate293

because of better initial conditions. However, frequent updates require large computa-294

tional resources because updating the network requires physics-based simulation and train-295

ing with the simulation data. The optimal values of the ensemble size and update in-296

terval must be determined by balancing the computational costs for each stage of train-297

ing and assimilation.298
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4 Conclusions299

In this study, a 4D-Var assimilation method was proposed using an adjoint model300

of a neural network surrogate model. In addition, several procedures were proposed to301

efficiently obtain an accurate surrogate model and assimilated initial conditions. As a302

feasibility study, a surrogate model was constructed and a 4D-Var assimilation exper-303

iment was conducted using the Lorenz 96 model. Two-stage learning was found to be304

efficient for obtaining an accurate surrogate model. In the first stage, the network was305

trained from a training dataset the target data of which were one step forward from the306

input data using the physics-based model. In the next stage, the network was trained307

using time-series data of multiple steps as the target data. It was also found that lim-308

iting the target states of the surrogate model to a subspace of the state phase space is309

efficient for building an accurate surrogate model. In the 4D-Var assimilation experiment,310

it was shown that the use of the adjoint model of the surrogate model improved the ini-311

tial conditions. It was also found that updating the surrogate model during the 4D-Var312

iterations was effective in improving the accuracy of the initial conditions. These results313

confirm the feasibility of 4D-Var assimilation using a surrogate model.314

Assimilation has an affinity for the limitation of states in the phase space for build-315

ing a surrogate model. The states in a finite assimilation window generally occupy only316

a small subspace and, therefore, a surrogate model that covers all possible states is not317

needed. We can focus on the subspace around the target state to be assimilated. On the318

other hand, the surrogate model needs to be rebuilt for different cases. The learning speed319

of the network in the other cases can be significantly improved by using the network pa-320

rameters obtained in one case as the initial parameters.321

In this study, the golden-section search method was used to update the initial con-322

ditions during 4D-Var assimilation. The golden-section search method is powerful for one-323

dimensional searches. However, it is not commonly employed in practical 4D-Var appli-324

cations because it requires multiple forward calculations, which generally incur large com-325

putational costs. Forward calculations using a neural network model are generally much326

cheaper than those using a physics-based model. It is an additional benefit that such a327

powerful search method can be used in the proposed approach.328

As simulation models become more sophisticated, they will become more complex,329

which will require more effort from researchers. The effective use of data science tech-330

niques will become increasingly important for various aspects of simulation research.331
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( ) ( + 0.05) ( + 0.1)

Figure 1. Network architecture of the surrogate model: (a) the recurrent network modules

and (b) details of the hourglass network. “Conv”, “BN”, “ReLU”, and “Dropout” indicate con-

volution, batch normalization, rectified linear unit, and dropout layers, respectively. The number

following the convolution indicates the kernel size. The number above each box in (b) is the

channel size multiplied by the grid (neuron) size.

–10–



manuscript submitted to Geophysical Research Letters

5 102 2 5 103

5

10−3

2

5

10−2
1−step learning

ensemble size

lo
ss

(a)

: 2.5

: 5

: 10

: 20

5 102 2 5 103
2

5

10−2

2

5

10−step learning

ensemble size

(b)

: 2.2

: 5.5

: 11

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
10−4

10−3

10−2

10−1

time

M
S
E

(c)

1−step learning
10−step learning

Figure 2. The error of the network obtained by (a) the one- and (b) ten-step learning, and

(c) the temporal evolution of the error of the surrogate model obtained with 800 ensembles by

(red) one-step and (blue) ten-step learning. The symbols and colors in (a) and (b) represent the

batch size normalized by the ensemble size. The broken line in (c) represents the error growth

rate of the physical growth mode.
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Figure 3. The temporal evolution of the cost as a function of the iteration count in the 4D-

Var assimilation with (a) the ensemble size M of 200 and (b) the update interval K of 10, and the

iteration count required to achieve the threshold of 0.001 as a function of (c) the ensemble size

and (d) the update interval. The solid and broken lines in (a) and (b) represent Jp and Js, re-

spectively. The symbols and colors in (c) and (d) represent the ensemble size and update interval,

respectively.
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