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Abstract13

This study presents a novel methodology for extracting latent variables from high-dimensional14

sparse data, particularly emphasizing spatial distributions such as precipitation distri-15

bution. This approach utilizes multidimensional scaling (MDS) with a distance matrix16

derived from a new similarity metric, the Unbalanced Optimal Transport Score (UOTS).17

UOTS effectively captures discrepancies in spatial distributions while preserving phys-18

ical units. This similar to mean absolute error however it considers location errors, pro-19

viding robust measures crucial for understanding differences between observations, fore-20

casts, and ensembles. Density estimation of these latent variables enhances the analyt-21

ical utility, quantifying ensemble characteristics. The adaptability of the method to spa-22

tiotemporal data and its ability to handle errors suggest its potential as a promising tool23

for diverse research applications beyond spatial analysis in meteorology.24

Plain Language Summary25

This study introduces a new method to understand weather patterns by simplify-26

ing complex data. A mathematical technique was developed to efficiently identify hid-27

den information from weather patterns. This assists meteorologists to understand the28

weather with greater accuracy. This method simplifies weather data by highlighting the29

essential similarities and differences between weather forecasts. This makes it easier for30

scientists to interpret and use the resultant data effectively. This study offers a new and31

efficient way to make sense of vast weather data, benefiting meteorological research, and32

potentially improving weather forecasting. This technique contributes to the meteoro-33

logical field, in addition it also contributes to various fields with sparse distribution data.34

1 Introduction35

Probabilistic forecasts play a pivotal role in systems characterized by chaotic or stochas-36

tic behavior, such as weather forecasting. Ensemble simulations are commonly employed37

to estimate the probability distributions of future states. However, evaluating the pre-38

dictive distribution in such multivariate, high-dimensional systems poses challenges, for39

instance in considering spatially distributed phenomena.40

While univariate cases allow straightforward distribution definitions based on en-41

semble member results, multivariate cases, particularly in high-dimensional systems such42

as weather forecasting, face the “curse of dimensionality”, Representing joint distribu-43

tion which matches the state vector’s dimensionality becomes infeasible owing to this is-44

sue, which influences accurate probability estimations.45

Current discussions often focus on one-dimensional distributions, often consider-46

ing points individually (e.g., grid points) or single statistical quantities, such as spatial47

averages. However, this point-wise approach could overlook crucial spatial patterns, es-48

pecially in sparse quantities such as precipitation, leading to an overestimation of dis-49

crepancies between states, particularly in high-resolution simulation results (Gilleland50

et al., 2009).51

Several systems operate within small embedded manifolds of lower dimensions, known52

as ranks. In addition, statistical methods often represent the observed variables in the53

original high-dimensional space as the outcomes of a mathematical model, with indepen-54

dent variables termed latent variables. The dimensionality of these latent variables can55

be significantly smaller than that of real variables. Herein lies the potential advantage56

of evaluating distributions in a lower-dimensional space, offering effective dimension-reduction57

opportunities.58

Principal component analysis is widely used for dimensionality reduction, however59

it has limitations in nonlinear systems (for example, Nishizawa & Yoden, 2004). The vari-60
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ational autoencoder (Kingma & Welling, 2013) has displayed promise however it faces61

challenges in predictive forecast problems owing to limited ensemble sizes for training.62

It should be important to note that in this approach, the latent variables are often nor-63

malized and this normalization leads to the loss of information regarding the magnitude64

of the absolute values in the original physical space, preventing the spread of vectors cor-65

responding to ensemble members from serving as an indicator of uncertainty. Moreover,66

this approach requires prior knowledge of the effective dimensions to effectively extract67

physically meaningful latent vectors in a smaller dimensional space.68

In this study, a novel methodological approach for extracting meaningful latent vari-69

ables from high-dimensional ensembles is proposed. These latent variables, which reside70

in a reduced space, aim to effectively represent the state of the system without prior knowl-71

edge of its effective dimensions. By preserving the physical units in distance measure-72

ments, this approach captures the essential distribution of the ensemble data. Through73

synthetic ensemble experiments, the effectiveness of this approach is demonstrated in ex-74

tracting meaningful latent vectors.75

2 Methods76

2.1 Extracting Latent Variables77

In this subsection, the proposed approach to extract latent variables from high-dimensional78

ensembles is described. The methodological approach was divided into three steps.79

1. Calculation of a similarity metric for all pairs of ensemble members and observa-80

tions.81

2. Construction of a distance matrix from the calculated similarities.82

3. Extraction of latent variables in a low-dimensional space from the distance ma-83

trix.84

2.1.1 Metric for Similarity85

Assessing the similarity between spatial distributions requires robust metrics that86

capture various discrepancies, including amplitude, location, area, and shape differences.87

In this study, various metrics were employed to measure the similarity between spatial88

distributions. Table 1 summarizes the metrics used in this study, each addressing the dis-89

tinct facets of the discrepancies. These metrics include traditional metrics, such as the90

mean absolute error (MAE), root mean squared error (RMSE), and Pearson correlation91

coefficient (CORR). In addition, these include scores considering event-based dichoto-92

mous variables, such as the fraction skill score (FSS; N. M. Roberts & Lean, 2008; N. Roberts,93

2008), equitable threat score (ETS; Gilbert, 1884), and frequency bias (FB; for exam-94

ple, Wilks, 2006). These were calculated point-wise, with the exception of FSS and FB,95

which are known to overestimate small-scale discrepancies. Among them, FSS is a score96

which considers spatial displacement and is widely used for high-resolution simulations.97

However, as it is based on a categorized quantity, it does not consider amplitude differ-98

ences. When considering scores with different thresholds to simultaneously determine99

the event, the amplitude difference may be interpreted implicitly. In cases with a large100

number of samples, the interpretation of multiple scores may require complex and dif-101

ficult considerations. For several purposes, such as probability distribution, a compre-102

hensive single score is preferred. Furthermore, it is a dimensionless quantity. Thus, it103

is inappropriate to evacuate the spread of the distribution in the extracted latent vari-104

able space from FSS.105

The Displacement and amplitude score (DAS; Keil & Craig, 2009) is a combina-106

tion of displacement and amplitude differences. It contains more information than the107

traditional scores. However, there are several arbitrary definitions and computational108
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Table 1. Metrics for similarity used in this study

Abbreviation Name Distance

UOTS Unbalanced optimal transport score UOTS
DAS Displacement and amplitude score DAS
FSS Fractions skill score 1− FSS
MAE Mean absolute error MAE
RMSE Root mean squared error RMSE

CORR Pearson correlation coefficient
√

2(1− CORR)
ETS Equitable threat score 1− ETS
FB Frequency bias | log(FB)|

procedures. Keil and Craig (2007) showed that Dmax, which is the maximum search dis-109

tance, has a great decisive impact on the result. It can only take discontinuous values:110

Dmax is proportional to a power of two. Therefore, it may be difficult to choose an ap-111

propriate value based on physical considerations owing to its discontinuous constraint.112

They suggested that other parameters had a minor impact. However, non-negligible ar-113

bitrariness which they did not discuss exists. The score was defined such that the am-114

plitude difference between one distribution and the morphed distribution of the other115

becomes the smallest; however, no condition was provided for the flow. In general, many116

possible flows can achieve the smallest amplitude difference. Thus, there are many pos-117

sibilities for displacement, and the total score depends on the displacement. Another ar-118

bitrary factor is the difference in weight between the displacement and amplitude. This119

score is a combination of these two differences. As they have different units, the differ-120

ences are normalized or nondimensionalized. The normalization factors are determined121

such that the two terms have equal weights; however, there is no justification for the weights122

to be equal. In addition, there is considerable arbitrariness in its computational proce-123

dure, resulting in a variation in the score. In fact, this study’s implementation of com-124

puting the DAS results in a non-negligible difference in the obtained score compared to125

(Keil & Craig, 2009) for the same distributions owing to the undocumented details in126

the procedure. Another critical issue is that the procedure does not consider mass con-127

servation during morphing.128

Of significant note is the introduction of the Unbalanced Optimal Transport Score129

(UOTS) as a novel similarity metric. Designed specifically to evaluate spatial distribu-130

tion discrepancies, the UOTS considers both amplitude and location differences in a uni-131

fied manner, as does the DAS. Unlike DAS, the UOTS minimizes arbitrariness in its math-132

ematical definition and offers a clearer physical interpretation, particularly regarding its133

hyperparameters L and q. In addition, the two terms of the displacement and amplitude134

differences have the same units and can be compared directly. Therefore, nondimension-135

alization does not need to be combined into a single score. The UOTS is a more straight-136

forward score that considers both displacement and amplitude differences than DAS. The137

UOTS also has the same units as the original quantity, which facilitates physical inter-138

pretations.139

2.1.2 Unbalanced Optimal Transport Score140

The UOTS proposed in this study serves as a novel similarity metric tailored to
assess spatial distribution discrepancies. The UOTS is defined as follows:

UOTS =
1

N
min
γ∈RN2

≥0

∑
i,j

γij

(
‖xi − xj‖2

L

)q
+

1

2

(
‖γ1− φ1‖1 +

∥∥γT1− φ2∥∥1)
 , (1)
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where xi represents the location of the point i, φ1(x) and φ2(x) are mass distribution141

in the two distributions which are to be compared, and γ is the transport matrix, whose142

element γij represents the mass transported from xi to xj . 1 is a vector whose elements143

are all unity, and ‖•‖p represents the Lp norm. N is the vector length, i.e., i, j = 1, · · · , N .144

The score is divided by N , however the number of nonzero elements can be used instead145

of N , depending on the purpose.146

Defined as an optimization issue, the UOTS captures both amplitude and location147

differences, resembling the mean absolute error (L1 norm) when considering spatial dis-148

placement. The first term in the brackets on the right-hand side penalizes location er-149

rors, whereas the second term represents the mean absolute error after the correction of150

location errors. γ1 and γT1 denote the mass distributions after transportation of φ1 and151

φ2, respectively.152

Its formulation involves the hyperparameters L and q, which define the distance153

for identifying similar phenomena and the cost of transport per mass, respectively. The154

parameter L determines the distance threshold for identifying similar phenomena. Pat-155

terns exceeding this threshold are considered different. For the i and j index pairs, where156

‖xi−xj‖2 > L, the optimal value of γij must be zero; otherwise, the first term repre-157

senting the transport cost outweighs the second term representing the amplitude differ-158

ence. Larger q values downplayed the location difference, making the score more toler-159

ant to small displacement errors.160

The UOTS multiplied by LqN is recognized as the optimal partial transport (Caffarelli161

& McCann, 2010; Chizat et al., 2018; Figalli, 2010), flat metric (Peyré et al., 2019) and162

Kantrovidge-Rubinshutain distance (Hanin, 1992; Lellmann et al., 2014). The minimiza-163

tion problem for this optimization can be solved effectively by using the Sinkhorm al-164

gorithm (Cuturi, 2013) with a reservoir of dustbin points by incorporating a regulariza-165

tion term λΩ(γ). Here, Ω and λ represent the entropy regularization function and its co-166

efficient, respectively, and Ω(γ) =
∑
i,j γij log(γij). In this study, the parameter λ was167

fine-tuned to the smallest possible value without causing computational divergence.168

The UOTS introduces a novel approach to evaluate spatial distribution patterns,169

providing a robust means of quantifying similarities between spatial distributions.170

2.1.3 Dimension Reduction and Extraction of Latent Variables171

Dimensionality-reduction techniques have been employed to capture essential fea-172

tures and reduce high-dimensional ensemble data to a more manageable form. These tech-173

niques assist in extracting the underlying latent variables inherent to the data.174

Before extracting the latent variables in a reduced space, a distance matrix was con-175

structed from the similarity metric between the ensemble members and the observational176

data. In the process of constructing the distance matrix, it is crucial to transform met-177

rics into values resembling distances that signify zero for identical distributions, nonneg-178

atives, and symmetry, as detailed in Table 1.179

In this study, multidimensional scaling (MDS; for example, Cox & Cox, 2000), specif-
ically classical MDS or principal coordinate analysis, is utilized to construct a Euclidean
space, where the distances between samples correspond to the given distance matrix. This
method allows for the extraction of state vectors in Euclidean space, revealing the rel-
ative importance of each coordinate and the number of effective dimensions based on stress
functions. The stress function S in MDS is computed as follows:

S =

√√√√∑mi<mj
(Dmimj

− dmimj
)2∑

mi<mj
Dmimj

, (2)
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where Dmimj represents the distance in the reduced space, and dmimj is the distance180

derived from the similarity metric in the original space between members mi and mj .181

MDS operates as a linear procedure, and a nonlinear dimension reduction technique,182

Isomap (Tenenbaum et al., 2000), is also employed. Isomap extends MDS by capturing183

nonlinear manifolds embedded within the original space. By employing geodesic distance184

with a neighborhood graph, Isomap can be applied to complex data structures beyond185

linear representations. Employing Isomap The influence of the linear limitation of MDS186

on the extracted state vectors was examined by employing Isomap. While MDS and Isomap,187

the distance in the low-dimensiotal space is kept to have the same units as that of the188

similarity metric, other dimension reduction methods, such as locally linear embedding189

(LLE; Roweis & Saul, 2000), t-distributed stochastic neighbor embedding (t-SEN; Van der190

Maaten & Hinton, 2008), uniform maniforld approximation and projection (UMAP; McInnes191

et al., 2018), and (DensMAP; Narayan et al., 2021), do not since they reconstruct low-192

dimensional variables based on weights or probability corresponding to other points.193

The state vector obtained within the low-dimensional space through dimension re-194

duction serves as an estimate of the latent variables. The validity of these latent vari-195

ables significantly depends on the definition of the similarity metric used.196

2.2 Synthetic Data Experiment197

The synthetic data experiment was designed following the methodology detailed
in Ahijevych et al. (2009) to illustrate the characteristics of various similarity metrics
for assessing spatial distributions. A prescribed geometric spatial distribution mimick-
ing the precipitation distribution was utilized. This distribution is described as follows:

φ(x, y) =


0,

(
x−x1

a

)2
+
(
y−y1
b

)2 ≥ 1

Φ1,
(
x−x1

a

)2
+
(
y−y1
b

)2
< 1,

(
x−x2

0.4a

)2
+
(
y−y1
0.4b

)2 ≥ 1

Φ2,
(
x−x2

0.4a

)2
+
(
y−y1
0.4b

)2
< 1

, (3)

where x2 = x1+0.4a,Φ2 = 2Φ1, and x = i∆x and y = j∆x, with i = 0, 1, · · · , 601, j =198

0, 1, · · · , 501 and ∆x = 4 km.199

Six spatial distributions (Fig. 1) were created, including one reference (observa-200

tion) and five target patterns (forecasts). The parameters (x1, a, b) for the reference, pat-201

tern 1, pattern 2, pattern 3, pattern 4, and pattern 5 are (200∆x, 25∆x, 100∆x), (250∆x, 25∆x, 100∆x),202

(400∆x, 25∆x, 100∆x), (325∆x, 100∆x, 100∆x), (325∆x, 100∆x, 25∆x), and (325∆x, 200∆x, 100∆x),203

respectively. In all distributions, y1 = 250∆x and Φ1 = 12.7 mm. These distributions204

were employed to assess the characteristics of the various similarity metrics.205

Furthermore, in this study, this geometric distribution was extended to ensemble206

forecasts and multiple cases. The observations and ensemble members were generated207

using specific parameters to simulate diverse scenarios, resulting in 100 cases with 50 en-208

semble members each.209

The parameters for the observations are (xobs1 , yobs1 , aobs, bobs,Φobs
1 ) = (300∆x, 250∆x,

√
A
πα ,
√

Aα
π , 2

ε3/2),210

where A and α are the area and aspect ratios, respectively, and (A,α) = (2ε1/2πa0b0, 4
ε2/2 b0

a0
).211

The constants were set as a0 = 25∆x and b0 = 100∆x. ε are random numbers with a212

standard normal distribution.213

The parameters for ensemble members are (xfcs1 , yfcs1 , afcs, bfcs,Φfsc
1 ) = (xobs1 +50∆xε4, y

obs
1 +214

50∆xε5,
√

Afcs

παfcs ,
√

Afcsαfcs

π , 2ε8/2Φobs
1 ), where, (Afcs, αfcs) = (2ε6/2Aobs, 4ε7/2αobs).215
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3 Results216

The characteristics of the various similarity metrics were examined using geomet-217

ric spatial distributions. The experiment involved multiple metrics and the sweeping of218

their hyperparameters. L and q for UOTS were swept at 200 km, ≤ L ≤ 800 km, and219

q ∈ (1, 2). The FSS also had a hyperparameter W which represents the width of neigh-220

borhoods, and it was swept from 200 to 800 km. The parameters for DAS were set to221

Dmax = 180 and 360 km, and I0 = 15.4 m, which were determined according to pre-222

vious research (Ahijevych et al., 2009).223

Figure 1 visually demonstrates the magnitude of various similarity metrics applied224

to the five distributions with respect to the reference. UOTS displayed consistent rank-225

ings across patterns, indicating stability against parameter changes, which is a favorable226

trait. Conversely, DAS and FSS exhibited high sensitivity to their parameters, signify-227

ing the necessity for careful parameter selection. Traditional scores, such as RMSE, MAE,228

CORR, ETS, and FB, as previously reported by (Ahijevych et al., 2009), showed lim-229

itations in distinguishing between patterns 1, 2, and 4. These outcomes emphasize the230

advantages of UOTS as a robust similarity metric.231

To demonstrate the extraction of latent variables and advantages of the UOTS, a232

synthetic data ensemble experiment was conducted (Section 2.2). Figure 2 presents the233

distributions of the estimated latent variables in two-dimensional space. Although these234

distributions represent a single case, their qualitative characteristics are consistent across235

all the cases.236

When utilizing UOTS, DAS, and FSS with a moderate W , the first and second co-237

ordinates appear to be independent. Conversely, in cases employing RMSE, MAE, ETS,238

CORR, FB, and FSS with small and large W , these coordinates exhibit a relationship.239

The FB and FSS with a large W are nearly one-dimensional, relying solely on the first240

coordinate. FB and FSS with large W depend solely on the area difference and disre-241

gard other errors, leading to a one-dimensional latent variable distribution. ETS, CORR,242

and FSS with small W were distributed in a two-dimensional space however exhibited243

a rather one-dimensional structure. The distributions using MAE and RMSE display in-244

termediate characteristics between the two-dimensional independent structure (e.g., with245

UOTS) and one-dimensional structure (e.g., ETS). With the independent parameters246

given in the distribution generation, the two coordinates are anticipated to be indepen-247

dent if the latent variables are successfully extracted as coordinates. Furthermore, as the248

ensemble members were generated by adding a normal random number to the observa-249

tion parameters, the observation state was expected to be located near the origin in the250

latent variable space. With UOTS, FSS with a medium W , and FB, the observation was251

located near the origin, as expected. However, the observations are not positioned near252

the origin for the other cases. From this perspective, UOTS and FSS with medium W253

emerged as favorable similarity metrics among those investigated.254

Generally, the discrepancies between two spatial distributions can be categorized255

into four types: amplitude, location, area, and shape. In this experiment, the location256

error had two dimensions, and the latent variable was expected to be five dimensions.257

The effective dimensionality D of the estimated latent variables is explored using the stress258

function (Fig. 3). It is expected that the stress will decrease for D ≤ 5, and remain con-259

stant for D > 5. UOTS with specific parameter configurations exhibited an effective260

dimensionality of five, aligned with the expectations: L ≥ 400 and q = 1, and L =261

200 and q = 2. However, some metrics displayed a continuous stress reduction even be-262

yond five dimensions, suggesting an overestimation of dimensionality: UOTS with L =263

200 and q = 1, DAS, RMSE, MAE, ETS, and CORR. With FSS of W = 200 and 400,264

it becomes constant at D = 4 and 3, respectively. The FSS does not consider the am-265

plitude error is related to this underestimation of the dimensionality. Even for the FSS266

with W = 800 and FB, the stress was almost constant for all D, corresponding to a one-267
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Figure 1. Spatial pattern of the synthetic geometric distributions. The top panels display

the reference and five distributions. The red and black color indicates observation and forecasts,

respectively. The thin and thick contours represents the area at which φ = 12.7 and 25.4 mm,

respectively. The lower panels show the magnitude of similarity metrics for the five distributions.

Solid, dashed, dotted, and dash-dotted lines indicate L = 200, 400, 600, and 800 km for UOTS,

W = 200, 400, 600, and 800 km for FSS, respectively. Solid and dashed lines indicate Dmax = 180,

and 360 km for DAS, respectively.
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Figure 2. Spatial pattern of the estimated latent variables in the leading two-dimensional

space. The black and red color indicates the ensemble member and observation, respectively. The

numbers in parentheses represent L and q for UOTS, W for FSS, and Dmax for DAS. The num-

ber under the metric name is the mean distance of the observation from the origin normalized by

the standard deviation of the distance of members from the origin.

–9–



manuscript submitted to JGR: Machine Learning and Computtion

Figure 3. Dependency of the stress on the number of dimension D. Different color and line

types indicate different metrics and parameters. The number in parentheses represent L and q for

UOTS, W for FSS, and Dmax for DAS.

dimensional structure. This indicates that significant information was being discarded.268

Conversely, the stress increases as D increases with UOTS with L = 400, 600, 800 and269

q = 2, and FSS with W = 600. This implies that these metrics are not appropriate270

for representing the Euclidean distance.271

To investigate the relationship between the five parameters and the extracted co-272

ordinates, a correlation analysis was performed. In each case, the correlation coefficients273

between the parameters x, y,A, α and Φ and the extracted five leading variables were274

computed. As the order of the leading coordinates can vary depending on the case, the275

highest correlation coefficient among the five extracted coordinates was selected for each276

parameter. Figure 4 displays the correlation coefficient for each parameter and the ra-277

tio at which the correlation coefficient for the coordinates was the highest. The corre-278

lation coefficients for all five parameters were high for UOTS with a larger L, whereas279

some of the coefficients were small with other metrics. This confirms that UOTS suc-280

cessfully extracted the five latent variables. It should be noted that for UOTS with a larger281

L, A and Φ are almost equally represented by two coordinates. This is because the to-282

tal mass (i.e., total precipitation), which is proportional to AΦ, was extracted as a la-283

tent variable using the UOTS.284

Overall, UOTS with larger L and q = 1 emerged as the most preferred similar-285

ity metrics among those investigated, providing insights into the latent variable distri-286

bution. Caution should be exercised regarding UOTS’s sensitivity to an excessively large287

L, where penalties for transportation might be disregarded. This study primarily con-288

siders distributions with a single nonzero area, i.e., single phenomena, and practical sce-289

narios involving multiple nonzero areas may require careful consideration of the appro-290

priate L values to distinguish between them.291
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Figure 4. (Box-and-whisker plot) Correlation coefficient and (symbols) ratio of the number of

coordinate with highest correlation. The box-and whisker plot represents, from the bottom, the

minimum, the first quartile, the median, the third quartile, and the maximum. Red plus, green

circle, blue x, purple square, and cyan triangle indicate the first, second, third, fourth, and fifth

coordinates.
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Furthermore, the linearity constraints inherited in MDS were considered. The dis-292

tributions in two-dimensional space displays a one-dimensional structure with ETS, CORR,293

and FSS with W = 200. This can be attributed to the limitations of linearity inher-294

ent to MDS. To address this limitation, the nonlinear method Isomap was employed. How-295

ever, the distributions in two-dimensional space obtained with Isomap are similar to those296

obtained using conventional MDS with ETS and CORR. For FSS with W = 200, al-297

though the shape changed significantly, it still exhibited a one-dimensional structure. This298

implies that the dimensionality constraint is inherent to the characteristics of the sim-299

ilarity metric.300

4 Conclusions301

This study introduces an innovative methodology aimed at deriving lower-dimensional302

latent variables from high-dimensional sparse data, primarily focusing on spatial distri-303

butions. The application of multidimensional scaling using a novel similarity metric, namely,304

the UOTS, has proven to be highly effective in extracting these latent variables. Notably,305

UOTS, similar to the mean absolute error however it considers location errors, provides306

a robust measure that retains physical meaning within its latent vectors.307

The estimation of probability distributions from these latent variables using den-308

sity estimation methods, such as kernel density estimation, offers substantial analytical309

advantages over the original high-dimensional space. This approach offers several poten-310

tial advantages for various applications. For example, it enables the determination of the311

ensemble mean and spread while considering crucial factors such as location differences,312

which are vital in numerous meteorological applications. The ensemble mean can be es-313

tablished using the unbalanced optimal transport theory as the barycenter, whereas the314

ensemble spread can be derived from the squared sum of the eigenvalues obtained through315

multidimensional scaling. To evaluate the probability distribution and compare distri-316

butions in different cases, it is crucial that the Euqlidian distance in the latent variable317

space is almost identical to that in the original high-dimensional space. The UOTS has318

the same units as the original physical quantity and MDS preserves the units. There-319

fore, the method using the UOTS and MDS is preferable to consider the probability dis-320

tribution in low-dimensional space.321

Although the primary focus was on the spatial distributions, this method is adapt-322

able to spatiotemporal distributions with minimal modifications. Incorporating factors,323

such as advection speed in the temporal direction, into the transport cost of UOTS al-324

lows for a seamless extension while maintaining the core methodology.325

The efficacy of this methodology is underscored by its ability to handle discrepan-326

cies in spatial distributions by considering the amplitude, location, area, and shape er-327

rors. The UOTS with a larger L and q = 1 emerged as the most preferable similarity328

metric among those investigated to comprehend the distribution of latent variables.329

The versatility of this approach can be extended to various meteorological appli-330

cations. Moreover, this approach is not limited to meteorology as it is also applicable331

to various fields dealing with sparse spatiotemporal distributions. Its adaptability to di-332

verse domains and robustness in handling errors makes it a promising tool across scien-333

tific disciplines.334
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