Reference:
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., et al. (2020). Presentation and evaluation of the
IPSL‐CM6A‐LR climate model. Journal of Advances in Modeling Earth
Systems, 12, e2019MS002010.https://doi.org/10.1029/2019MS002010
Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M.,
John, J. G., & Zhao, M. (2020). The GFDL Earth System Model version 4.1
(GFDL‐ESM4.1): Overall coupled model description and simulation
characteristics. Journal of Advances in Modeling Earth Systems, 12,
e2019MS002015.https://doi.org/10.1029/2019MS002015
Haarsma, R., Acosta, M., Bakhshi, R., Bretonnière, P.-A., Caron, L.-P.,
Castrillo, M., Corti, S., Davini, P., Exarchou, E., Fabiano, F.,
Fladrich, U., Fuentes Franco, R., García-Serrano, J., von Hardenberg,
J., Koenigk, T., Levine, X., Meccia, V. L., van Noije, T., van den Oord,
G., Palmeiro, F. M., Rodrigo, M., Ruprich-Robert, Y., Le Sager, P.,
Tourigny, E., Wang, S., van Weele, M., and Wyser, K. (2020): HighResMIP
versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR – description, model
computational performance and basic validation, Geosci. Model Dev., 13,
3507–3527, https://doi.org/10.5194/gmd-13-3507-2020
Li, L. J., Yu, Y. Q., Tang, Y. L., Lin, P., Xie, J., Song, M., et al.
(2020). The flexible global ocean–atmosphere–land system model
grid‐point version 3 (FGOALS‐g3): Description and evaluation. Journal of
Advances in Modeling Earth Systems, 12(9).https://doi.org/10.1029/2019MS002012
Mauritsen T, Bader J, Becker T, Behrens J, Bittner M, Brokopf R, Brovkin
V, Claussen M, Crueger T, Esch M, Fast I, Fiedler S, Fläschner D, Gayler
V, Giorgetta M, Goll DS, Haak H, Hagemann S, Hedemann C, Roeckner E
(2019) Developments in the MPI-M earth system model version 1.2
(MPI-ESM1.2) and its response to increasing CO2. J Adv Model Earth Syst.
https://doi.org/10.1029/2018MS001400
Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M.,
Budich, R., & Marotzke, J. (2018). A higher‐resolution version of the
Max Planck Institute Earth System Model (MPI‐ESM1.2‐HR). Journal of
Advances in Modeling Earth Systems, 10(7), 1383– 1413.
https://doi.org/10.1029/2017MS001217
Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A.,
Colin, J., Decharme, B., Delire, C., Berthet, S., Chevallier, M.,
Sénési, S., Franchisteguy, L., Vial, J., Mallet, M., Joetzjer, E.,
Geoffroy, O., Guérémy, J., Moine, M., Msadek, R., Ribes, A., Rocher, M.,
Roehrig, R., Salas-y-Mélia, D., Sanchez, E., Terray, L., Valcke, S.,
Waldman, R., Aumont, O., Bopp, L., Deshayes, J., Éthé, C., and Madec,
G.(2019): Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of
Earth System Processes in Present-Day and Future Climate, J. Adv. Model.
Earth Syst., 11, 4182–4227, https://doi.org/10.1029/2019MS001791.
Sellar, A. A., Jones, C. G., Mulcahy, J., Tang, Y., Yool, A., Wiltshire,
A., O’Connor, F. M., Stringer, M., Hill, R., Palmieri, J., Woodward, S.,
Mora, L., Kuhlbrodt, T., Rumbold, S., Kelley, D. I., Ellis, R., Johnson,
C. E., Walton, J., Abraham, N. L., Andrews, M. B., Andrews, T.,
Archibald, A. T., Berthou, S., Burke, E., Blockley, E., Carslaw, K.,
Dalvi, M., Edwards, J., Folberth, G. A., Gedney, N., Griffiths, P. T.,
Harper, A. B., Hendry, M. A., Hewitt, A. J., Johnson, B., Jones, A.,
Jones, C. D., Keeble, J., Liddicoat, S., Morgenstern, O., Parker, R. J.,
Predoi, V., Robertson, E., Siahaan, A., Smith, R. S., Swaminathan, R.,
Woodhouse, M. T., Zeng, G., and Zerroukat, M. (2019): UKESM1:
Description and evaluation of the UK Earth System Model, J. Adv. Model.
Earth Syst., 11, 4513–4558, https://doi.org/10.1029/2019ms001739.
Sohrabi M.M., Ryu J.H., Asece M., Abatzoglou J., J. Trach (2015):
Development of Soil Moisture Drought Index to Characterize Droughts. J.
Hydrol. Eng. 20 (11): 04015025. DOI: 10.1061/(ASCE)HE.1943-5584.0001213.
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J.
F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S.,
Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen,
C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and
Winter, B.(2019): The Canadian Earth System Model version 5
(CanESM5.0.3), Geosci. Model Dev., 12, 4823–4873,
https://doi.org/10.5194/gmd-12-4823-2019.
Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T.,
Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S.,
Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K.,
Takata, K., O’ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka,
T., Watanabe, M., and Kimoto, M.(2019): Description and basic evaluation
of simulated mean state, internal variability, and climate sensitivity
in MIROC6, Geosci. Model Dev., 12, 2727–2765,
https://doi.org/10.5194/gmd-12-2727-2019.
Voldoire, A., SaintMartin, D., Sénési, S. D. B., Alias, A., &
Chevallier, e. a., M. (2019). Evaluation of CMIP6 DECK experiments with
CNRMCM61. Journal of Advances in Modeling Earth Systems, 11, 2177–2213.https://doi.org/10.1029/2019MS001683
Volodin Evgenii M., Evgeny V. Mortikov , Sergey V. Kostrykin , Vener Ya.
Galin, Vasily N. Lykossov , Andrey S. Gritsun , Nikolay A. Diansky ,
Anatoly V. Gusev , Nikolay G. Iakovlev , Anna A. Shestakova and Svetlana
V. Emelina (2018). Simulation of the modern climate using the INM-CM48
climate model. Russ. J. Numer. Anal. Math. Modelling 2018;
33(6):367–374. Doi: 10.1515/rnam-2018-0032
Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., Jie, W., Zhang, J.,
Liu, Y., Zhang, L., Zhang, F., Zhang, Y., Wu, F., Li, J., Chu, M., Wang,
Z., Shi, X., Liu, X., Wei, M., Huang, A., Zhang, Y., and Liu, X.(2019):
The Beijing Climate Center Climate System Model (BCC-CSM): the main
progress from CMIP5 to CMIP6. Geosci. Model Dev., 12, 1573–1600,
https://doi.org/10.5194/gmd-12-1573-2019.
Yukimoto, S., H. Kawai, T. Koshiro, N. Oshima, K. Yoshida, S. Urakawa,
H. Tsujino, M. Deushi, T. Tanaka, M. Hosaka, S. Yabu, H. Yoshimura, E.
Shindo, R. Mizuta, A. Obata, Y. Adachi, and M. Ishii (2019): The
Meteorological Research Institute Earth System Model version 2.0,
MRI-ESM2.0: Description and basic evaluation of the physical component.
J. Meteor. Soc. Japan, 97, 931–965, doi:10.2151/jmsj.2019-051.