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Abstract 

Precision monitoring of the subsurface carbon-dioxide plume ensures long-term, 

sustainable geological carbon storage. Carrigan et al. (2013) and Yang et al. (2014) 

showed that electrical resistivity tomography (ERT) can accurately map the evolution of 

the CO2 saturation during geological carbon storage. To better monitor the CO2 plume 

migration in a storage reservoir, we develop an unsupervised spatiotemporal clustering 

to process the CO2 saturation maps derived from the ERT measurements acquired over 

80 days by Carrigan et al. (2013). Using dynamic time wrapping (DTW) K-means 

clustering, four distinct clusters were identified in the CO2-storage reservoir. The four 

clusters exhibit a Davies-Bouldin (DB) index of 0.71, a Calinski-Harabasz (CH) index of 

262791, and a DTW-silhouette score of 0.58. Unlike traditional clustering methods, the 

DTW K-means incorporates a temporal distance metric. Traditional clustering methods, 

such as Euclidean K-means, agglomerative and meanshift clustering, exhibit a lower 

performance with DB index of 0.83, 0.95, and 1.01, respectively, and CH index of 157866, 

131593, and 69438, respectively. Subsequent statistical analysis indicates that contrast 

stretching and fast-Fourier transform are strong geophysical signatures of the 

spatiotemporal evolution of CO2 plume. We also identified a strong correlation between 

injection flow rate and the spatial evolution of regions with high CO2 content. Finally, the 

previously computed spatiotemporal clusters were further clustered to discover distinct 

temporal sequences emerging with respect to the overall CO2 plume distribution in the 

subsurface. Six distinct temporal clusters of CO2 plume evolution were detected over a 

period of 2 months. A tensor-based feature extraction was critical for processing the ERT 

data acquired over 80 days to capture both the temporal and spatial components relevant 

to the evolution of CO2 plume in the storage reservoir. 
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1. Introduction  

Subsurface monitoring of geological CO2 storage is critical to ensure storage 

integrity and efficiency. To identify and map potential pathways of CO2, appropriate 

imagining technologies are required. According to Davis et al. (2019), these can be 

divided into three main categories: surface, near-surface, and subsurface techniques. For 

subsurface mapping, a set of monitoring tools can be used to establish the CO2 location 

by providing a spatial image of the migrated CO2. A critical aspect of any CCS project is 

the real-time location of the injected CO2 and its migration. Numerous processes can 

affect the CO2 plume evolution such as geological heterogeneity, interfacial tension, 

geological structures, leaky pathways, and gravity forces. For instance, geological 

heterogeneity can significantly reduce the CO2 injection capacity due to regions of low 

permeability. Geological structures such as dips can also affect the migration of CO2 by 

obtaining a condensed supercritical fluid at the bottom of the seal. Hence, the 

understanding of these dynamic systems is vital to establish a safe long-term carbon 

storage and reduce potential CO2 leakage.  

Machine learning (ML) algorithms are ideal for uncovering hard-to-detect 

relationships between the fluid flow processes and the monitoring signals in complex and 

dynamic physical systems. Haghighat et al. (2013) demonstrated the use of ML using 

modeled CO2 leakage and real-time pressure data. Ni and Benson (2020) developed an 

unsupervised clustering model to identify capillary flow regimes on five CO2 coreflooding 

datasets.  Pires de Lima et al. (2019) used convolutional neural networks to model the 

amount of leaked CO2 using synthetic pressure and seismic data. Traditional studies of 

CO2 systems while using ML are often comprised of synthetic datasets and limited 

subsurface measurements, being key challenges to characterize CO2 movement. 

Moreover, subsurface imaging must be acquired for an extensive period of time in order 

to incorporate the respective spatial plume change. Therefore, spatiotemporal 

approaches are needed to be investigated to examine the injected CO2 growth. 



The main purpose of this work is to investigate the evolution of CO2 plume and 

associated fluid-flow mechanisms by processing the electrical resistivity tomography 

(ERT) of a geological carbon-storage reservoir using unsupervised learning methods. 

Dynamic time wrapping and k-means clustering were implemented to identify 

spatiotemporal patterns of CO2 plume migration. A novel tensor-based feature extraction 

processes the ERT data acquired over 80 days to capture both the temporal and spatial 

components relevant to the evolution of CO2 plume. To validate the quality of obtained 

clusters, Calinski-Harabasz, Davies-Bouldin, and silhouette scores were calculated. In 

addition, a comparison between traditional and tensor-based feature extraction was 

performed to corroborate the improvement of clustering performance when using tensor-

based feature extraction. A key aspect in this work is the uncovering of the most 

informative features associated with the spatiotemporal evolution of the CO2 plume. 

Hence, statistical tests such as ANOVA f-test, interquartile range, and post-hoc Tukey’s 

were applied. Lastly, we develop a second “temporal” clustering of the daily clustered 

results to gain insights into the stages of CO2 plume development where distinctive fluid 

mechanisms can be recovered for further analysis.  

1.1. Use of unsupervised methods for geological carbon storage 

Use of supervised learning on geophysical field data is constrained by the 

availability of targets/labels associated with measured signals. Consequently, 

unsupervised learning methods are valuable for analyzing geophysical data. 

Unsupervised learning help discover hidden relationships, generate new insights, and 

identify new patterns when working with datasets acquired in complex systems. 

Clustering partitions and categorizes the data in terms of similarity, dissimilarity, distance 

and density of samples and corresponding clusters.  

Spatiotemporal clustering is an extension of the spatial one where the time 

dimension is introduced. The spatiotemporal clustering will categorize the objects of 

similar spatial and temporal behaviors into well-defined groups. Spatiotemporal clustering 

has been implemented in traffic management, image processing, molecular biology, 

satellite measurements, seismology, medical imaging, and real-time monitoring. For 

instance, Liu et al. (2018) developed a spatiotemporal model to extract patterns of land 



surface temperatures using satellite images. Chen et al. (2015) examined the dynamic 

behavior of water bodies based on their change in size, shape, and signal. Anomaly 

detection has also shown the use of spatiotemporal clustering for marine remote sensing 

measurements (Liu et al., 2018) and traffic sensors (Cao et al., 2018). 

Spatiotemporal data contain signatures that evolve over time on a spatial domain. 

The spatial component relates to the location of a specific property or process, while the 

temporal component relates to the time dependent variation in the property or process. 

Challenges with unsupervised clustering of spatiotemporal datasets include: 1) lack of a 

clear separation/boundaries between clusters because the samples continuously vary in 

space and time, 2) data could contain redundant information within each temporal image, 

and 3) spatiotemporal changes can lead to computational complexity due to the dynamic 

states.  

Carbon sequestration requires an on-going surveillance to ensure a safe long-term 

storage. In particular, subsurface monitoring can be used to establish the location and 

evolution of the injected CO2. Time-lapse mapping of the CO2 signals from the subsurface 

is commonly acquired to investigate the CO2 migration over an extensive period of time. 

Spatiotemporal clustering has the capability of grouping large amounts of geophysical 

signals for the real-time detection of moving CO2 plume. 

2. Methodology 

2.1. Use of electrical resistivity tomography (ERT) for geological carbon storage sites 

ERT is a geophysical method that involves the application of a direct electric 

current at a certain point in the subsurface to measure the electric potential at various 

other locations in the subsurface. In our study, ERT measurements were performed daily 

for several months across two wells drilled into a geological CO2 storage site. The 

crosswell ERT source/sensor or transmitter/receiver configuration of electrodes is 

displayed in Figure 1. The electrodes are placed along the two monitoring wells at a 

specific electrode spacing. The ERT measurement involves the injection of electrical 

current from one of the electrodes in the first well (well F2). The current travels through 

the carbon-storage reservoir and finally reaches to the electrodes in the second well (F3), 



resulting in a voltage gradient across the electrodes in the second well. These 

potential/voltage differences constitute the raw ERT dataset. The two monitoring wells F2 

and F3 are 98 feet away from each other. The current injection in well F2 and the voltage 

measurements in well F3 are repeated across multiple electrodes over multiple days 

resulting in the time-lapse measurements of the changes in the electric-current pathways 

as the CO2 plume moves in the storage site. All this generates the time-lapse ERT data 

that is subsequently processed to obtain a spatiotemporal resistivity map of the geological 

storage site. Next, the resistivity maps are inverted to obtain the CO2 saturation map 

between the wells. 

 

Figure 1. Schematic representation of the crosswell ERT acquisition, where the electric potential measured 

across multiple electrodes in the well F3 as a result of the current injection in one of the electrodes in the 

well F2. Wells F2 and F3 are 98 feet in distance. I = electric current injected in well F2, V= measured voltage 

gradient in well F3. 

 

Electrical techniques are particularly suitable for monitoring the displacement of 

fluids and changes in fluid properties in the subsurface. ERT is suitable for monitoring 

changes in chemical and physical properties of the subsurface due to the interaction of 

the injected CO2 with the connate fluids, such as brine and oil, especially the effects of 

fluid displacement. To investigate the evolution and movement of CO2, crosswell ERT is 

ideal. The supercritical CO2 can be easily visualized due to the high resistivity contrast 



with respect to the brine reservoirs, which is approximately five times more resistive than 

their surroundings. The resulting ERT provides an image of the location of CO2 plume 

content at a particular time and at a certain distance. The use of crosswell designs 

improves the estimation of CO2 saturations and extends the range to a higher imaging 

resolution (Yang et al., 2014).  

2.2. Dataset description  

In this work, the dataset was retrieved from the Southeast Regional Carbon 

Sequestration Partnership (SECARB), which is considered one of the main geo-

sequestration programs across the United States (SECARB, 2017). In particular, the 

Cranfield project from SECARB was created to investigate carbon sequestration at a 

CO2-EOR field. The overall goal is to demonstrate the feasibility of CO2 injection and safe 

long-term storage. An extensive monitoring program was conducted to evaluate the 

movement and location of supercritical CO2 at deep and near-surface scales (Carrigan et 

al., 2013; Yang et al., 2014). Measurement techniques such as time-lapse seismic, 

crosswell seismic and ERT, pressure, groundwater, and soil-gas monitoring were 

acquired to assess CO2 distribution.  

The dataset utilized in this study contains 80 daily ERT measurements collected 

from 21 December of 2009 to 12 March of 2010. The ERT acquisition was configured in 

two monitoring wells, wells F2 and F3, with the placement of 14 electrodes in well F2 and 

7 electrodes in well F3 (figure 2). The electrodes in well F2 inject current. The electrodes 

in well F3 record the voltage differences. The injection well is set to a distance of 

approximately 229 feet from well F2 and 327 feet from well F3. On the other hand, the 

reservoir depth is set at a range of ~10449.5 to ~10521.5 feet at a thickness of 72 feet 

(figure 3). Each ERT map in this study represent an interwell distance of 32 meters 

between the monitoring wells F2 and F3 along the x-axis and a reservoir thickness of 57 

meters along the y-axis. In Figure 2, the x-coordinates represent the distance between 

well F-2 and F-3, and the top and bottom y-coordinates represent the first and last 

electrodes. For purposes of clustering, we focus on a subset of the original ERT map 

comprising 25 meter along y axis (i.e. depth) and 30 meters along x axis (interwell 

distance).   



Processing of the data was previously carried out by Carrigan et al. (2013) where 

three major steps were performed:  

1) Removal of noisy data points using multiple thresholds. 

2) Modeling baseline measurements to construct a reference dataset.  

3) Time-lapse inversion to obtain CO2 saturations from the daily resistivity 

changes.  The processing approach was based on the ratio inversion scheme 

and Archie’s law.  

 

The raw resistivity is converted to carbon saturation by applying the following 

equation: 

𝑆𝐶𝑂2 = 1 − (
𝜌0
𝜌
)

1
𝑛
 (1) 

where  𝜌0 the baseline resistivity, 𝜌 the measured inverted resistivity and 𝑛 the saturation 

exponent. The baseline dataset was acquired before the CO2 injection. The CO2 data are 

presented as percentages in Figure 3, where a value of zero is the lowest response and 

25 is the highest saturation observed in the 80-day window.  

 

Figure 2. Diagram of the injection well (F1) and two monitoring wells (F2 and F3). Well “F2” has 14 

electrodes and well “F3” has 7 electrodes. 



 

Figure 3. Three days of CO2 saturation maps between wells F2 and F3. The CO2 saturation map is derived 

from ERT measurements. The illuminated reservoir volume of interest for purposes of CO2 monitoring has 

a thickness of ~22 m and a length of ~32 m. The CO2 saturation ranges from 0 to 22.5 %.  

 

2.3. Spatiotemporal clustering of the electrical resistivity tomography of a geological 

CO2 storage site 

Conventional method for locating/assessing the injected CO2 plume in the 

subsurface assumes a geophysical model to assess the spatial distribution of CO2 

content. The geophysical model is specific to sensor configuration, sensor type, 

engineering design, and reservoir properties. The assumed geophysical model may not 

be applicable to all types of CO2-injection reservoirs and scenarios. We developed a 

novel and reliable unsupervised learning methodology, based on spatiotemporal 

clustering, for the visualization of the CO2 plume in the subsurface. This approach is 

adaptive and scalable without incorporating a pre-defined geophysical model. The 

unsupervised learning facilitates sensor-agnostic, geophysical-model-free, rapid 

monitoring of the CO2 content and distribution in subsurface. Appendix A provides more 

information on the efficacy of the proposed unsupervised learning as compared to that of 

traditional thresholding based data partitioning method.  

Few benefits of using unsupervised methods as compared to traditional 

thresholding methods or geophysical models include:  

1. Unsupervised learning workflow can process sensor data irrespective of the 

sensor types, transmitter/receiver configurations, sensor-data processing, engineering 



designs, CO2 injection schedules, and geological properties of the CO2 injection 

reservoir. 

2. Rapid spatiotemporal monitoring of CO2 plume movement can be achieved 

for any type of geophysical data acquired from any type of geological carbon storage site 

without requiring a specific assumption of the geophysical model or specific source-

sensor configuration. 

3. The unsupervised learning workflow will allow pathways for improved 

assimilation of expert domain knowledge in form physical interpretations and the infusion 

physical principles. 

The proposed workflow is designed to monitor the spatiotemporal alterations in a 

geological carbon-storage reservoir due to the CO2 plume migration. The workflow also 

identifies few geophysical signatures that are most relevant to the spatiotemporal 

evolution of the CO2 plume. The workflow also uncovers specific fluid-transport processes 

corresponding to the CO2 plume migration. The proposed workflow is presented in figure 

4. Similar robust workflows for regression tasks are presented by Li and Misra (2021) and 

Osogba et al. (2020) and those for classification tasks are presented by Ganguly et al. 

(2020). The key steps implemented in the workflow are summarized as follows:  

 

Figure 4. Workflow used for the spatiotemporal clustering of ERT for monitoring the CO2 plume migration. 

The workflow involves six important steps to process, implement, evaluate, and validate the CO2 plume 

migration between the two monitoring wells. The workflow is explained in section 2.3. 

 



Step 1: Data preprocessing: The dataset was gathered and cleaned by identifying 

the missing and irrelevant data points to increase the robustness and generalization of 

the data-driven model.  

Step 2: Spatiotemporal feature extraction: For each region in the storage reservoir, 

the features are developed by considering the previous, current, and subsequent states 

of the region of interest and its neighboring regions. Statistical parameterization 

compresses temporal-information of the features to single value. In total, for each region 

at a specific time, 12 features were extracted from a 3D feature tensor centered at the 

time and region of interest.  

Step 3: Data scaling and feature selection: MinMax scaling was applied to 

transform the features to a comparable scale for the unsupervised clustering algorithm. 

MinMax scaler estimation is presented as:  

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 −min⁡(𝑥)

max(𝑥) − min⁡(𝑥)
 (2) 

where “min” and “max” represent the feature range and “x” the feature vector. This 

standardization will transform the samples to range from 0 and 1.  From the extracted 

features, we selected the most impactful ones based on their pairwise correlations and 

the association with the moving spatial clusters.  

Step 4: Spatiotemporal Clustering. K-means clustering was implemented using the 

time series distance metric: dynamic time warping (DTW). The optimal number of clusters 

was determined using the internal metric scores of Davies-Bouldin, Calinski-Harabasz, 

and DTW silhouette. For evaluating the DTW k-means approach, three “traditional” 

clustering algorithms were employed: agglomerative, mean-shift, and Euclidean k-

means. We established their performance and compared them to each other with the 

internal measures of Davies-Bouldin and Calinski-Harabasz. 

Step 5: Geophysical Signatures. Statistical analyses were developed to validate 

the clustering results and retrieve the features that best describe the CO2 content and its 

distribution. For this, ANOVA (analysis of variance) and post-hoc Tuckey’s test were 

applied to capture the statistical differences of selected features for various clusters. All 



this led to the identification of relevant and informative geophysical signatures strongly 

associated with the CO2 plume migration.  

Step 6: Physical interpretation. Using the wellbore measurements (temperature, 

pressure, and flow rate) of the injection well, we compared the daily clusters count with 

the injection phases. The goal is to correlate the behavior of each cluster to the wellbore 

responses by examining their temporal changes. Subsequently, a second clustering 

model was developed to temporally categorize the previous spatiotemporally clustered 

maps. The data is reshaped to a daily format to discover the distinct CO2 fluid regimes.    

2.4. Feature extraction 

To identify the local information of a specific object, different aspects of an image 

need to be extracted. An image can be seen as a set of connected regions where unique 

characteristics are observed (e.g. shape, edges, intensity, texture, noise). The use of 

multiple features separates the CO2 main attributes to process the clustering at a deeper 

and more efficient level. It incorporates all the extracted information on a single model, 

improving their accuracy and giving a more interpretable feature description. For 

purposes of feature engineering, the pixel intensities of each region and its neighboring 

pixels are processed using several feature extraction techniques. Informative, relevant, 

and independent features help build robust unsupervised learning models. Twelve 

features were extracted from the tensors created out of the ERT maps. Each extracted 

feature represents a specific characteristic of the resistivity change in a region with 

respect to its neighboring regions.  

To reliably incorporate the temporal and spatial changes of moving CO2 plume, we 

adopt a tensor-based feature extraction approach. The extraction procedure begins by 

splitting the original 25m-by-30m CO2 map for each day into 30 regions. Each region is 

5m by 5m (figure 5). For a given location, 5m-by-5m regions for the three consecutive 

days, namely previous, current and next day, are combined to build a tensor, as illustrated 

in figure 6. The 3D tensor corresponding to a certain location has a shape of 3x5x5, which 

incorporates the temporal responses of the previous, current, and next days. 

Subsequently, the feature extraction was performed on each slice of the 3D array and the 

final representation of the feature was obtained by averaging the three values for each 



spatial location in the 5m-by-5m region. This 3D tensor attempts to capture the 

spatiotemporal flow dynamics; thereby by enhancing the monitoring of the CO2 dynamics. 

The tensor-based feature extraction was conducted and repeated for each of the 30 

regions constituting the 25m-by-30m CO2 storage reservoir. In doing so, each sample in 

space and time has 12 distinct features. In total, there were 78×25×30 samples that will 

be subsequently clustered based on the 12 features per sample.  

 

Figure 5. The ERT map of the 25m-by-30m storage reservoir for each day is split into 30 regions. Creation 

of 30 5m-by-5m regions out of the 25m-by-30m reservoir for the carbon storage. ERT data specific to a 5m-

by-5m region for three consecutive days constitutes a 3D tensor for the subsequent tensor-based feature 

extraction, illustrated in figure 6. 



 

Figure 6. Tensor-based feature extraction design for the 3D tensor of 3x5x5 dimension. To account for the 

temporal and spatial components of ERT measurements, four steps were implemented: 1) regions are 

arranged in 3D tensors, 2) feature extraction on each tensor slice, 3) transformation of 3D to a 2D array by 

averaging, and 4) repetition of the process on all tensor regions.   

Several feature extraction methods were applied on the 3 slices in the 3D tensor. 

Each feature extraction generates three slices per region, which are then averaged into 

a 2D array for each feature (figure 6). The 12 feature extraction applied on the 3D tensors 

were: Sobel, gray-level co-occurrence matrix, fast-Fourier transform, linear binary 

pattern, Hessian matrix, the difference of Gaussians, structure tensor, entropy, height 

bellow, height above, contrast stretching, and CO2 saturation change (explained in Table 

1). 5 out of 12 features were selected for the subsequent clustering and cluster analysis. 

The 5 features were selected based on their statistical correlation with the clusters and 

the sensitivity of the clustered objects to the variations in the features.   

Table 1. Brief description of the 12 feature extraction techniques that were applied on the 3D 

tensors created from the ERT data.  



Feature Description 

Sobel (Edges) Gradient of pixels intensity for edge detection. It captures sharp 
changes in intensity due to even edges. 

Gray-Level Co-Occurrence 
Matrix (GLCM) 

Statistical analysis of spatial relations between pixels. Statistical 
methods include contrast, dissimilarity, homogeneity, energy, 
correlation, and ASM.  

Fast-Fourier transform Transformation of the image from spatial to the frequency 
domain. Low and high pass filters permit to pass certain image 
frequencies.   

Linear binary pattern (LBP) Texture operator which labels pixels based on the intensity of 
the central point   

Hessian matrix Second-order derivative of the Gaussian kernel for region 
detector. It is applied in the Hxx, Hxy, and Hyy direction. It is 
suited for detecting local structures, like blobs and ellipsoids, 
where there exist odd edges.  

Difference of Gaussians Difference between a high-blurred and a low-blurred version of 
the original image. Two Gaussian kernels are applied at different 
standard deviations.  

Structure tensor Estimation of the weighted sum of squared differences in a 
centered pixel window. It captures the orientation and size of 
image gradients. 

Entropy Statistical measure computed using base 2 logarithm. It 
represents the level of complexity of a neighboring region 
around a corresponding pixel. 

Height below Difference between the highest elevation point and current 
point. It is used to enhance the highest pixel values.  

Height above Difference between the lowest elevation point and current point. 
It is used to enhance the lowest pixel values.  

Contrast stretching Image enhancement method that spreads out the most frequent 
intensity values. It rescales the pixels that fall within the 2nd and 
98th percentiles. 

SCO2 difference Difference between the saturations of CO2 for the previous date 
and current date. It serves to identify the daily changes of the 
signal. 

2.5. Dynamic time wrapping and k-means 

In this study, we used dynamic time wrapping (DTW) as the distance metric for the 

spatiotemporal clustering. DTW evaluates the optimal aligning between two time-

dependent signals (Muller, 2007). This is a technique suitable for time-series datasets 

due to the ability to capture the similarity and dissimilarity of temporal distances that do 

not line up in time, speed, or length. In other words, they are invariant to time shifts. These 

pairwise distances are warped in a nonlinear regime to approximate both sequences.  

The use of k-means clustering and DTW can be divided into two major steps where the 

algorithm is going to:   



• First, arrange the time-series to similar shapes by using DTW. 

• And second, compute the clusters centers with respect to DTW. This will provide 

an average shape of signals without getting affected by their temporal shifts in their 

respective cluster. 

2.6. Physical interpretation of spatiotemporal clusters 

To provide a physical context to the spatiotemporal clusters, we examined the 

association between cluster counts and the wellbore measurements acquired in the CO2 

injection well (figure 7). In addition, the maps containing the spatiotemporal clusters were 

temporally clustered to uncover the temporal patterns pertaining to specific CO2 flow 

regime. As illustrated in figure 8, the clustered maps were arranged sequentially and then 

temporally clustered. For the initial spatiotemporal clustering using DTW KMeans, there 

were 78×25×30 samples representing each unit in space and time, where each sample 

is described using 12 features. For the second temporal clustering using KMeans, there 

were 78 samples representing the 78 consecutive days, where each sample is described 

using 25×30 features, i.e. the cluster number assigned to each grid point in the daily ERT 

map. The temporal clusters obtained after second clustering represents the stages of CO2 

plume development that can be correlated with distinctive fluid transport mechanisms. 

 

 

 



 

Figure 7. Wellbore measurements: a) flow rate, b) temperature and c) pressure measured in the CO2 

injection well; and d) daily clusters occurrences. We investigated the correlations between changes in the 

counts of each cluster with the wellbore measurements in Section 3.5.  

 

Figure 8. For the second temporal clustering using KMeans, there were 78 samples representing the 78 

consecutive days, where each sample is described using 25×30 features, i.e. the cluster number assigned 

to each grid point in the daily ERT map. We investigated the temporal clustering in Section 3.6. 



3. Results 

Continuous rapid monitoring of injected CO2 is necessary to verify the long-term 

storage and identify potential leakage paths. Data-driven models facilitate rapid 

monitoring. Unsupervised clustering methods can categorize the subsurface signals 

based on the content, distribution and movement of CO2 plume (as shown by Gonzalez 

and Misra, 2021). Domain expertise is needed to derive novel fundamental insights from 

the unsupervised spatiotemporal clusters (Chakravarty et al., 2021).  

3.1. Validation of the spatiotemporal clusters 

Davies-Bouldin, Calinski-Harabasz, and DTW-Silhouette scores are used to 

evaluate the performance of the proposed spatiotemporal clustering. An important 

requirement for robust clustering is to determine the number of clusters in the dataset. 

The number of clusters should be consistent and reliable. To that end, we used the elbow 

plot, silhouette score, Davies-Bouldin index, and Calinski-Harabasz index that confirmed 

the existence of five clusters in the dataset. The optimal cluster number is defined 

according to four scoring metrics with the purpose of generating dense and well-

separated clusters. For instance, a silhouette score close to one indicates a perfect 

performance, while for Davies-Bouldin the best values are close to zero. An optimal 

number of clusters and consistency/reliability were also validated by evaluating the 

similarity of spatial clustering computed by three different clustering methods. K-means, 

agglomerative and mean-shift clustering were compared using the adjusted rand score 

and homogeneity score. 

Clustering metrics, such as Davies-Bouldin, Calinski-Harabasz, and DTW-

Silhouette scores, called internal validation measures. These metrics assess the 

goodness of the data partitioning without the use of any external information. These 

scores serve as heuristic tools to evaluate the clustering performance. These scores are 

based on the compactness (similarity) of each cluster and the separation (distinction) 

between the clusters. A higher value of Calinski-Harabasz score and lower value of 

Davies-Bouldin score indicates a robust clustering. For the DTW-Silhouette score, the 

range of performance is set from -1 to 1, where 1 represents the best clustering 

performance.  



Davies-Bouldin index is the maximum of the ratios of sum of within-cluster scatters 

for the two clusters in a cluster pair to the inter-cluster distance between the two clusters 

in the cluster pair. A lower Davies-Bouldin index indicates good clustering. Calinski-

Harabasz index is also known as the variance ratio criterion. Calinski-Harabasz index is 

the ratio of the weighted variance of cluster centers with respect to a global cluster center 

to the weighted sum of within-cluster variances. This index does not have an upper 

acceptable cut-off. Higher values of Calinski-Harabasz index indicates good clustering.  

In the DTW K-means implementation, four robust clusters were identified using the 

Davies-Bouldin and Calinski-Harabasz scores. Figure 9 displays the ERT-based CO2 

saturation and the corresponding spatiotemporal clusters for a specific day in the time-

lapse dataset. Clusters are primarily related to CO2 content, ranging from zero (0) to high 

(3). In addition, unlike simple thresholding, the spatiotemporal clusters also consider the 

temporal changes in a specific spatial region due to the spatiotemporal feature extraction 

that was implemented prior to the clustering. Unlike traditional threshold-based methods 

to categorize spatial data, the proposed spatiotemporal clustering takes into account the 

rate of change of CO2 as a function of distance and time, and the regional as well as 

temporal distribution of the fluids. The proposed clustering better honors the regional and 

temporal variations and movement of the CO2 plume as compared to the simple 

threshold-based categorization methods.  

 

Figure 9. Left: Distribution of CO2 content as derived from the ERT measurement on 03/03/2010. Right: 

The spatiotemporal clusters computed using the DTW K-means clustering. Clusters strongly correspond to 

no-CO2 (cluster 0), low CO2 (cluster 1), medium CO2 (cluster 2), and high CO2 (cluster 3). Injection well 



"F2" is set on the left at a distance of 229 feet from the "F1" monitoring well, and “F3” on the right at a 

distance of 327 feet. 

 

As shown in Figure 9, the clusters allow us to define the shape and boundaries of 

the CO2 movement in the subsurface storage reservoir. The optimal number of clusters 

is four as confirmed by a Davies-Bouldin index of 0.71, a Calinski-Harabasz of 262791, 

and a DTW-silhouette score of 0.58. These clusters do not merely represent regions; 

rather the clusters represent objects evolving in space and time. The scores support the 

effectiveness of the spatiotemporal clustering. With the time-lapse clustered data, the 

evolution of CO2 can be distinguished where an early stage only displays clusters of “0” 

(non-CO2), “1” (low-CO2), and “2” (medium-CO2). The shapes of clusters continuously 

change, being cluster “3” (high-CO2) the one with the highest spatiotemporal change of 

CO2 occurrences and displacements. We also can distinguish slow access of certain 

reservoir regions from the clustered plume shape where movement is observed at the 

clusters “1”, “2”, and “3”. These moving clusters will serve to extract further information at 

a much more granular level (see Appendix B for details). Appendix B presents the 

spatiotemporally clustered ERT maps for days 1, 10, 20, 30, 40, 50, 60, 70, and 78. The 

spatiotemporal clusters are within a 25m-by-30m region between the F2-F3 monitoring 

wells. From days 1 to 30, a steady increase of high CO2 is observed and linked to the 

early development of the CO2 plume. From days 40 to 78, the shape of the CO2 plume 

drastically changes with a clear CO2 movement at all levels. 

3.2. Comparison of DTW K-means against three traditional clustering methods 

To test the efficacy of DTW K-means on spatiotemporal datasets, the performance 

of DTW K-means was compared against three traditional clustering methods, namely K-

means with Euclidean distance, agglomerative, and mean-shift clustering methods. All 

clustering methods processed the same tensor-based features to obtain 4 clusters. K-

means, meanshift and agglomerative display poor clustering performance as presented 

in figure 10. Qualitatively, meanshift clustering fails to adequately describe the spatial 

distribution of CO2 content. Clusters obtained using the agglomerative and Euclidean k-

means clustering are similar during the late-time CO2 storage but very different during the 

early-time CO2 storage (figure 11). Specifically, agglomerative displays a drastic 



reduction of cluster “0” (non-CO2) and an increase of cluster “1” (low-CO2), which 

indicates the poor temporal performance at certain injection phases. 

In addition, Davies-Bouldin and Calinski-Harabasz scores were calculated to 

quantitatively compare the clustering performance and validate the efficacy of DTW-

KMeans as compared to traditional clustering approaches. The quantitative comparison 

aims to find the most appropriate clustering approach based on the lowest Davies-Bouldin 

index and the highest Calinski-Harabasz index. Table 2 presents the scores of each 

method, wherein DTW K-means achieves the highest clustering performance, followed 

by Euclidean k-means, and agglomerative clustering. Meanshift clustering displays the 

worst scores in the clustering task. In summary, the use of temporal distances, such as 

DTW, in KMeans along with tensor-based feature extraction can capture the variations in 

CO2 with time and distance; thereby enhancing the spatiotemporal clustering of moving 

objects.  

 

Table 2. Internal metric scores for the clustering using various algorithms, namely DTW k-means, 

Euclidean k-means, meanshift, and agglomerative techniques. A low Davies-Bouldin index and 

high Calinski-Harabasz index indicates a better clustering performance. DTW k-means has the 

lowest Davies-Bouldin and highest Calinski-Harabasz score. DTW k-means is best performing 

method while Meanshift is the worst performing method for the ERT-based monitoring of CO2 

plume movement. 

 

 

 

 

 

  

Clustering algorithms 
Score 

Davies-Bouldin Calinski-Harabasz 

DTW K-means 0.71 262791 

Euclidean K-means 0.83 157866 

Agglomerative 0.95 131593 

Meanshift 1.01 69438 



  

Figure 10. Clusters obtained using a) DTW k-means, b) Euclidean k-means, c) meanshift and d) 

agglomerative clustering. Qualitatively k-means and agglomerative display a similar behavior of low 

migration movements, while meanshift display a poorly clustering performance. DTW k-means provides a 

better granularity.  

 

Figure 11. DTW k-means, Euclidean k-means and agglomerative clustering results for “2009-12-21”, at the 

very initial stage of geological storage.  Agglomerative displays 3 classes of non-CO2 (cluster 0), low CO2 

(cluster 1), and medium CO2 (cluster 2), while Euclidean k-means shows high CO2 (cluster 3) away from 

the injection site. Differences are also linked to non-CO2 and low CO2 content.  

 

 



3.3. Comparison between traditional and tensor-based feature extraction 

We implement a tensor-based feature extraction to ensure all the samples contain 

sufficient spatial and temporal aspects of the fluid movement. To further validate and 

investigate the use of tensor-based feature extraction, a comparison between tensor-

based and “traditional” feature extraction is conducted in this section. The traditional 

approaches extract only spatial features for each daily image, without considering both 

the temporal and regional variations of the time-series dataset. In figure 12, clustering 

performance using the tensor-based features is compared against that using traditional 

features for three days.  

For date “2009-12-25”, which is the early stage of CO2 injection, the clustering 

using traditional features displays high degree of tortuous paths with several isolated 

regions without CO2 (figure 12 right). In addition, the clustering using traditional features 

produces regions of high CO2 during the early stage of CO2 injection. All these 

observations from the right-hand side subplots in figure 10 indicates the unreliable 

clustering obtained using traditional features. For “2010-02-10”, which represents the mid-

stage of CO2 injection, the shapes of the clusters obtained using traditional and tensor-

based features are distinct. The clustering using traditional features exaggerates the 

presence of cluster 3 (high CO2), as shown in the bottom two rows of subplots on the right 

in Figure 11. Lastly, for the final time-lapse results on the 90th day (“2010-03-08”) of ERT 

measurements, the traditional model fails to separate the CO2 levels. Clusters display an 

overestimation of high CO2 and unclear boundaries at all levels. 



 

Figure 12. DTW k-means clustering using tensor-based features and traditional spatial features. The 

clustering performance using traditional features is lower than that using tensor-based features. Injection 

well "F2" is set on the left at a distance of 229 feet from the "F1" monitoring well, and “F3” on the right at a 

distance of 327 feet.  

3.4. Discovering new geophysical signatures for monitoring geological carbon storage 

In this section, we examine the relevance and association of various ERT-based 

features with the spatiotemporal clusters. By doing this, we discover the most-informative 

geophysical signatures that can assist the monitoring of geological carbon storage. The 

statistical significance of these geophysical signatures was tested using one-way ANOVA 

(analysis of variance) (figure 13). The ANOVA F-test measures the statistical differences 

between the means of the features of two or more groups. A low F-test value for a feature 

X1 indicates that the samples in various clusters have nearly similar values for the feature 

X1; in other words, the clusters overlap along the feature X1. A high F-test value for a 



feature X2 indicates that the samples belonging to different clusters will have different 

values for the feature X2; in other words, the clusters are well separated along the feature 

X2. A high F-test for the ERT-based monitoring of geological carbon storage reservoir, 

contrast stretching and fast-Fourier transform are the most-informative geophysical 

signatures that capture both the CO2 content and its displacement. According to the 

ANOVA F-test, contrast stretching and fast-Fourier transform are the two features whose 

means show the highest statistical differences between the 4 spatiotemporal clusters.  

  

Figure 13. One-way ANOVA test was implemented to compute the normalized F-test values. The 

normalized F-test values enabled the discovery of the most-informative ERT-based feature that can be 

used to monitor the geological carbon storage. Contrast stretching and fast-Fourier transform have the 

highest F-test value. This confirms that contrast stretching and fast-Fourier transform are the most-

informative, relevant geophysical signatures for the ERT-based monitoring of geological carbon storage. 

 

Post-hoc Tukey’s Honest Significant Difference (HSD) test was conducted to 

analyze the pairwise cluster differences for each feature (table 3). Tukey HSD test is 

performed after the ANOVA F-test. First, ANOVA F-test is used to identify the most-

informative features. Following that, Tukey’s HSD test computes the pairwise differences 

between clusters for each feature. A large difference between two clusters C1 and C2 for 

a feature X1 indicates that the samples in cluster C1 and the samples in cluster C2 have 

drastic separation along the feature X1; in other words, the values of feature X1 for 

samples in C1 and C2 are very different, i.e. distinct.  

The Tukey’s HSD test was performed on the two features with the highest ANOVA 

F-test values. The two features are contrast stretching and fast-Fourier transform. 

Clusters “0” and “3” are the most different. This large difference supports our claim that 

Feature  

Index 

Feature  

Name 

0 Structure tensor 

1 Fast-Fourier transform 

2 SCO2 difference 

3 Contrast stretching 

4 Height bellow 



cluster “0” represents the absence of alteration due to the injected CO2, representing 

absence of CO2. Along those lines, cluster “3” represents regions of large alterations due 

to the injected CO2, which corresponds to high CO2 content. Conversely, clusters “2” 

(medium-CO2) and “3” (high-CO2) reveal the lowest difference and highest similarity 

among other cluster pairs. Difference between clusters “0” and “1”, and that between 

clusters “1” and “2” is more than that between clusters “2” and “3”. The test also served 

to establish contrast stretching, as the strongest feature due to their high clusters 

difference.   

Table 3. Tukey HSD for post hoc analysis of the two most-informative features (contrast stretching 

and fast-Fourier transform) and CO2 saturation. Mean difference of a feature for a cluster pair 

indicates the significance of that feature in differentiating the two clusters. Cluster “0” indicates 

non-CO2 content, and clusters “1”, “2”, and “3” their respective level of saturation (low, medium, 

and high). 

 

Feature  Clusters being compared Mean 
difference  

Normalized 
difference 

Contrast 
stretching 

Cluster # Cluster # 

0 1 834395206 0.45 

0 2 158820770 0.85 

0 3 1867909636 1 

1 2 753812495 0.4 

1 3 1033514430 0.55 

2 3 279701934 0.15 

Fast Fourier 
Transform  

Cluster # Cluster #     

0 1 5.89 0.41 

0 2 11.09 0.76 

0 3 14.51 1 

1 2 5.2 0.36 

1 3 8.62 0.59 

2 3 3.42 0.24 

CO2 
Saturation 

Cluster # Cluster #     

0 1 5.77 0.40 

0 2 10.92 0.75 

0 3 14.50 1.00 

1 2 5.15 0.36 

1 3 8.73 0.60 

2 3 3.58 0.25 

 



To confirm the usefulness of the two above-mentioned features as the most-

informative geophysical signatures for ERT-based monitoring of geological carbon 

storage, we use boxplots and 2D KDE plot. In the boxplots (figure 14 left and center), the 

colored boxes represent the interquartile range, where 50% of the data resides. For the 

two dominant features, i.e. contrast stretching and fast-Fourier transform, the interquartile 

range do not overlap, confirming the significance of these two features in differentiating 

the clusters. The whiskers in the boxplot indicate 5th and 95th percentile, where 90% of 

the data resides. Considering the whiskers, contrast stretching provides a better 

separation of the spatiotemporal clusters and indicates a slight similarity/overlap between 

clusters “2” and “3”. The box plots validate the large statistical difference between clusters 

“0” and “3”.  Considering the whiskers for fast-Fourier-transform, clusters overlap is higher 

and their separation is lower as compared to that for contrast stretching. Finally, the 2D-

KDE (figure 14 right) shows the distribution of the clusters in a two-dimensional feature 

space made of contrast stretching and fast-Fourier transform. The 2D-KDE plot confirms 

the strengths of these two features in differentiating the spatial regions and time periods 

based on CO2 content, distribution, and displacement. All these plots validate the 

usefulness and relevance of contrast stretching and fast-Fourier transform as the 

geophysical signatures for monitoring the CO2 plume migration. 

 

Figure 14. Left and center: Boxplots of clustered contrast stretching and fast-Fourier transform (FFT). The 

x-axis represents the cluster numbers. The whiskers on the boxplots are defined for a low 5th percentile 



and a high 95th percentile. Right: 2D-KDE of contrast stretching and FFT. Overlapping of clusters can be 

observed on the 2D-KDE and boxplots due to the CO2 plume migration. The bivariate KDE is mapped with 

their respective classes to show their conditional distribution. The outermost represents the high-CO2, the 

middle contour the medium (cluster 2) and low (cluster 1) -CO2, and the innermost the non-CO2 (cluster 0). 

 

3.5. A new correlation between injection rate and the spatiotemporal cluster count  

The physical relevance of the clusters is investigated by comparing the cluster 

counts against the pressure-rate-temperature measurements at the injection well. Figure 

15 displays the daily flow rate, temperature, pressure, and the daily count of cluster “3” 

(high CO2). Strong correlation in form of simultaneous decrease/increase of cluster “3” 

count and flow rate are observed for dates ranging from “2010-01-30” to “2010-03-09”. 

Such a correlation can be attributed to the drainage and imbibition processes associated 

with CO2 plume migration. The first decrease in flow rate from 5.2 kg/s to 2 kg/s leads to 

a reduction in cluster “3” count from 171 to 62. A subsequent increase of flow rate to a 

value of 5.6 kg/s leads to an increase in the cluster “3” count to 82. The following flow rate 

decrease to 0 kg/s leads to a drop in cluster “3” count to 10. Finally, with a significant 

increase in flow rate from 0 kg/s to 5.5 kg/s is associated with increase in cluster “3” count 

from 10 to 190. This final stage is followed by a decrease of flow rate to 2.6 kg/s and a 

drop in cluster count to 169 respectively. Existence of such correlation is a notable 

discovery. 



 

Figure 15. Wellbore measurements: a) flow rate, b) temperature and c) pressure of injection well; and d) 

daily count of cluster 3 (high SCO2).  The gray background corresponds to the dates from “2010-01-30” to 

“2010-03-09” where a change of all measurements is observed.  

3.6. A novel temporal clustering following the spatiotemporal clustering  

Temporal clustering of 78 days of spatiotemporally clustered ERT maps identified 

specific sequences of flow regimes developing in the CO2 injection reservoir. These 

temporal clusters are labeled as T0 to T5. Figure 16 shows the six temporal clusters. An 

optimal number of 6 clusters was determined by using Davies-Bouldin and Calinski-

Harabasz indices. A physics-based interpretation of the temporal clusters is presented in 

table 4, where each cluster is associated with distinct CO2 plume behavior. Each cluster 

displays a different number of daily clustered images: cluster “T0” comprises the first 4 

days, cluster “T1” contains 11 days, cluster “T2” contains 16 days, cluster “T3” contains 

9 days, cluster “T4” contains 20 days, and cluster “T5” contains the final 18 days. These 

temporal clusters can be associated with stages of CO2 plume evolution during the 

geological carbon storage, such as the plume early development, changes of plume 

shape, increases/decreases of CO2 saturation, and changes in certain plume 



constituents. Such observed changes over time can be associated with specific dominant 

CO2 flow mechanisms. For instance, movement at the top or bottom of CO2 may be 

related to gravitational and buoyancy forces, or capillary to geological heterogeneity. 

Lastly, the temporal clusters exhibit concordance with the injection well conditions. 

Unique sequences of temporal behaviors associated with CO2 flow regimes were 

uncovered and linked to the wellbore measurements at the injection well (figure 17). 

Drastic changes in the injection well lead to the flow regimes being captured by cluster 

“T4”, where the drastic displacement and reduction of the high-CO2 regions are observed.  

 

 

 

 

 

 



 

Figure 16. Temporal clusters “T0 to T5”” obtained by clustering the spatiotemporally clustered ERT maps 

shown in Figure 8. Six temporal clusters were determined that correspond to specific CO2 flow regimes. 

“T0”, “T1”, “T2”, “T3”, “T4”, and “T5” contains 4, 11, 16, 9, 20, and 19 maps corresponding to consecutive 

78 days.   

 



Table 4. Physics-based interpretation of the temporal clusters derived from the spatiotemporally 

clustered ERT Maps. The temporal clusters are shown in Figure 16.  

Temporal clusters Clustering analysis  

Cluster T0 Dominance of spatiotemporal clusters 1 and 2 (low and medium 

CO2 saturation) 

Cluster T1 Occurrence and increment of spatiotemporal cluster 3 (high 

CO2 saturation) 

Cluster T2 No significant changes in the spatiotemporal clusters 

Cluster T3 Slow spatial movement of cluster 3 and subsequent changes in 

the spatiotemporal cluster shapes 

Cluster T4 Quick fluctuations of spatiotemporal cluster 3 where multiple 

changes of high-CO2 saturations are observed.  

Cluster T5 Dominance of spatiotemporal cluster 3.  

 

 

Figure 17. Comparison of the wellbore measurements against the temporal clusters “T0 to T5” obtained by 

processing the spatiotemporally clustered ERT maps. The temporal clusters indicate flow regimes in the 



carbon-storage reservoir that seem to correlate with the drastic changes in flow rate, temperature, and 

pressure. Detailed description of the temporal clusters T0 to T5 is presented in Table 4. 

 

4. Conclusions 

Spatiotemporal clustering processed daily electrical resistivity tomography (ERT) 

maps to visualize the CO2 plume migration during a geological carbon storage. The ERT 

data is made available by SECARB (2017) and well described by Carrigan et al. (2013) 

and Yang et al. (2014). A novel unsupervised learning workflow was designed to 

incorporate spatial and temporal components of the moving CO2 content. Creation of 

neighboring regions, tensor-based feature extraction, and dynamic time warping (DTW) 

K-means are crucial for the proposed workflow. DTW as distance metric was used to 

compare temporal sequences of similar shapes where daily changes of spatial signals 

are associated with the evolution and movement of CO2 plume. A comparison between 

agglomerative, meanshift, and Euclidean k-means confirmed the efficacy of DTW 

distance metric for the spatiotemporal clustering. In the DTW K-means implementation, 

four robust clusters were identified using the Davies-Bouldin and Calinski-Harabasz 

scores. The optimal number of clusters is four as confirmed by a Davies-Bouldin index of 

0.71, a Calinski-Harabasz of 262791, and a DTW-silhouette score of 0.58. These clusters 

do not merely represent regions; rather the clusters represent objects evolving in space 

and time. Clusters are primarily related to CO2 content, ranging from zero (0) to high (3).  

Unlike simple thresholding, the spatiotemporal clusters also consider the temporal 

changes in a specific spatial region due to the spatiotemporal feature extraction that was 

implemented prior to the clustering. The use of temporal distances, such as DTW, in 

KMeans along with tensor-based feature extraction can capture the variations in CO2 

with time and distance; thereby enhancing the spatiotemporal clustering of moving 

objects. We implement a tensor-based feature extraction to ensure all the samples 

contain sufficient spatial and temporal aspects of the fluid movement. We discovered a 

strong correlation between cluster “3” count and CO2 injection rate. Existence of such 

correlation is a notable discovery. 



ANOVA F-test, Tukey’s HSD, and kernel density estimation plots established 

contrast stretching and fast-Fourier transform as the most informative geophysical 

signatures. According to the ANOVA F-test, contrast stretching and fast-Fourier transform 

are the two features whose means show the highest statistical differences between the 4 

spatiotemporal clusters. The box plots validate the large statistical difference between 

clusters “0” and “3”. For fast-Fourier-transform, clusters overlap is higher and their 

separation is lower as compared to that for contrast stretching. The 2D-KDE plot confirms 

the strengths of these two features in differentiating the spatial regions and time periods 

based on CO2 content, distribution, and displacement. 
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Appendix A. Thresholding Methods vs. k-Means Clustering for 

Monitoring the Spatiotemporal Distribution of Carbon Dioxide in the 

Geological Carbon-Storage Reservoir 

Both thresholding and clustering methods can retrieve regions exhibiting similar flow 

characteristics and seismic properties. A thresholding method, called the multi-Otsu 

thresholding, is compared with k-Means clustering. The multi-Otsu thresholding is a 

multilevel method used to separate pixels based on their intensity level. The selection of 

threshold regions was developed as the maximum between-class variances.  

In this study, the multi-Otsu thresholding was implemented to create five unique regions 

from the CO2 image. Four threshold values were determined at a pixel intensity of 30, 90, 

154, and 218. The threshold-based clusters are compared against the clusters computed 

using the two-level k-means, meanshift, and agglomerative clustering. The comparison 

was performed using the adjusted random and homogeneity scores. Table A1 presents 

the estimated values of similarities between the clusters computed using the two-level k-

means, agglomerative, meanshift, and multi-Otsu thresholding, where a value equal to 

one represents a perfect match. Based on the pair-wise comparisons, the lowest scores 

were obtained for the multi-Otsu comparisons, achieving an average adjusted random of 

around 0.87 and an average homogeneity score of around 0.84.  

Table A1. Comparison of two-level clustering using K-means, meanshift and agglomerative clustering, and 

the multi-Otsu thresholding. A pair-wise score close to one indicates a high similitude between two 

clustering methods. Multi-Ostu thresholding has lower similarity with other clustering methods.   

Clustering comparison 

methods 

Adjusted random 

score 

Homogeneity 

score 

K-means and Agglomerative 0.979 0.899 

K-means and Meanshift 0.989 0.924 

K-means and Multi-Otsu 0.865 0.754 

Multi-Otsu and Meanshift 0.866 0.877 

Multi-Otsu and Agglomerative 0.871 0.870 

 

Need of feature extraction for the spatiotemporal characterization 

Threshold based methods are not flexible. The selection of optimum thresholds requires 
prior knowledge to be the most informative. Rigidity of the thresholds lead to bias and is 
a time-consuming process. Furthermore, thresholding generally considers one or two 
features that are not adequate to describe a spatial phenomenon. Feature extraction 



helps account for statistical information of the neighboring regions, rate of change of pixel 
intensity, presence of certain local structures, and many other spatial characteristics that 
cannot be accounted for by using only pixel intensity. Pixel intensity only focus on the 
magnitude at a specific location, while feature extraction allows for a much broader focus 
on spatial changes, variations, similarities, and their rates of change at specific location, 
in a region, and within regions. As compared to the use of only pixel intensity, feature 
extraction significantly improves the spatial characterization. Feature extraction leads to 
identification of generalizable geophysical signatures and patterns that can improve the 
scalability and generalization of the clustering methods. Pixel intensity cannot describe 
the entire spatial phenomenon, while feature extraction allows for a more generalized 
description of a spatial phenomenon. Most importantly, Figure 10 confirms the higher 
importance of extracted features, such as Fourier Transform and Wavelet Transform, as 
compared to the pixel intensity. 
 

Need of unsupervised clustering for spatiotemporal characterization 

Unsupervised clustering considers a set of local information of distinctive characteristics 

such as edges, shape, and texture, which extracts the desired distinctive characteristics 

at a more efficient and deeper level. Another key drawback of threshold method is the 

static component of the threshold regions. Hence, new thresholds are needed to be 

defined for each new image, new field, new sensors, and new configurations. Errors 

commonly appears under changing conditions due to factors of variable noise levels or 

different statistical distributions. Unsupervised clustering does not require performing a 

prior statistical investigation for each new data. It is flexible to dynamic objects and 

therefore does not need to set an arbitrary threshold, considering only the distances 

between observations.  

Few benefits of using unsupervised methods as compared to traditional thresholding 

methods or geophysical models include:  

1. Unsupervised learning workflow can process sensor data irrespective of the 

sensor types, transmitter/receiver configurations, sensor-data processing, 

engineering designs, CO2 injection schedules, and geological properties of the 

CO2 injection reservoir. 

2. Rapid spatiotemporal monitoring of CO2 plume movement can be achieved for 

any type of geophysical data acquired from any type of geological carbon storage 

site without requiring a specific assumption of the geophysical model or specific 

source-sensor configuration. 

3. The unsupervised learning workflow will allow pathways for improved assimilation 

of expert domain knowledge in form physical interpretations and the infusion 

physical principles. 

  



Appendix B. Spatiotemporal evolution of CO2 content and distribution  

 

Figure B1. Spatiotemporally clustered ERT maps for days 1, 10, 20, 30, 40, 50, 60, 70, and 78. The 

spatiotemporal clusters are within a 25m-by-30m region between the F2-F3 monitoring wells. From days 1 

to 30, a steady increase of high CO2 is observed and linked to the early development of the CO2 plume. 

From days 40 to 78, the shape of the CO2 plume drastically changes with a clear CO2 movement at all 

levels. 

 

 


