https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2047::AID-HYP54>3.0.CO;2-4
Leeder, M. R., & Bridges, P. H. (1975). Flow separation in meander bends. Nature, 253 (5490), 338-339.https://doi.org/10.1038/253338a0
Leite Ribeiro, M., Blanckaert, K., Roy, A. G., & Schleiss, A. J. (2012). Flow and sediment dynamics in channel confluences. Journal of Geophysical Research: Earth Surface, 117 (F1).https://doi.org/10.1029/2011JF002171
Li, H. Q., Yin, Y., Shi, Y., He, C. H., & Liu, X. Y. (2011). Micro-morphology and contemporary sedimentation rate of tidal flat in Rudong, Jiangsu Province (in Chinese). Journal of Palaeogeography, 13 (02), 150-160.
Liaghat, A., Mohammadi, K., & Rahmanshahi, M. (2014). 3D investigation of flow hydraulic in U shape meander bends with constant, decreasing and increasing width. Journal of river engineering, 2 (3), 12-23.
Liu, Z. X., Huang, Y. C., & Zhang, Q. N. (1989). Tidal current ridges in the Southwestern Yellow Sea. Journal of Sedimentary Petrology, Vol. 59 , 432-437.https://doi.org/10.1306/212F8FB7-2B24-11D7-8648000102C1865D
McLachlan, R. L., Ogston, A. S., Asp, N. E., Fricke, A. T., Nittrouer, C. A., & Gomes, V. J. C. (2020). Impacts of tidal-channel connectivity on transport asymmetry and sediment exchange with mangrove forests.Estuarine, Coastal and Shelf Science, 233 , 106524.https://doi.org/10.1016/j.ecss.2019.106524
Morales, J. A. (2022). Tide-Dominated Systems II: Tidal Flats and Wetlands. In J. A. Morales (Ed.), Coastal Geology (pp. 289-307). Cham: Springer International Publishing.https://doi.org/10.1007/978-3-030-96121-3_20
Murray, N. J., Phinn, S. R., DeWitt, M., Ferrari, R., Johnston, R., Lyons, M. B., et al. (2019). The global distribution and trajectory of tidal flats. Nature, 565 (7738), 222-225.https://doi.org/10.1038/s41586-018-0805-8
Murray, N. J., Worthington, T. A., Bunting, P., Duce, S., Hagger, V., Lovelock, C. E., et al. (2022). High-resolution mapping of losses and gains of Earth’s tidal wetlands. science, 376 (6594), 744-749.https://doi.org/10.1126/science.abm9583
Nidzieko, N. J., Hench, J. L., & Monismith, S. G. (2009). Lateral Circulation in Well-Mixed and Stratified Estuarine Flows with Curvature.Journal of Physical Oceanography, 39 (4), 831-851.https://doi.org/10.1175/2008JPO4017.1
Parsons, D. R., Ferguson, R. I., Lane, S. N., & Hardy, R. J. (2004). Flow structures in meander bends with recirculation zones: implications for bend movements. In C. Greco & D. Morte (Eds.), River Flow(pp. 49-57). London: Taylor & Francis.
Parsons, D. R., Jackson, P. R., Czuba, J. A., Engel, F. L., Rhoads, B. L., Oberg, K. A., et al. (2013). Velocity Mapping Toolbox (VMT): a processing and visualization suite for moving-vessel ADCP measurements.Earth Surface Processes and Landforms, 38 (11), 1244-1260.https://doi.org/10.1002/esp.3367
Passarelli, C., Hubas, C., & Paterson, D. M. (2018). Mudflat Ecosystem Engineers and Services. In P. G. Beninger (Ed.), Mudflat Ecology(pp. 243-269). Cham: Springer International Publishing.https://doi.org/10.1007/978-3-319-99194-8_10
Pein, J., Valle-Levinson, A., & Stanev, E. V. (2018). Secondary Circulation Asymmetry in a Meandering, Partially Stratified Estuary.Journal of Geophysical Research: Oceans, 123 (3), 1670-1683.https://doi.org/10.1002/2016JC012623
Perillo, G. M. E., Minkoff, D. R., & Piccolo, M. C. (2005). Novel mechanism of stream formation in coastal wetlands by crab–fish–groundwater interaction. Geo-Marine Letters, 25 (4), 214-220.https://doi.org/10.1007/s00367-005-0209-2
Pilkey, O. H., & Cooper, J. A. G. (2004). Society and sea level rise.science, 303 (5665), 1781-1782.https://doi.org/10.1126/science.1093515
Prandtl, L. (1926). Bemerkung zu dem Aufsatz von A. Einstein: Die Ursache der Mäanderbildung und das sogenannte Baersche Gesetz.Naturwissenschaften, 14 (26), 619-620.https://doi.org/10.1007/BF01507352
Ren, M. E., & Shi, Y. L. (1986). Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea. Continental Shelf Research, 6 (6), 785-810.https://doi.org/10.1016/0278-4343(86)90037-3
Rhoads, B. L., & Kenworthy, S. T. (1995). Flow structure at an asymmetrical stream confluence. Geomorphology, 11 (4), 273-293.https://doi.org/10.1016/0169-555X(94)00069-4
Rinaldo, A., Fagherazzi, S., Lanzoni, S., Marani, M., & Dietrich, W. E. (1999a). Tidal networks 2. Watershed delineation and comparative network morphology. Water Resources Research, 35 (12), 3905-3917.https://doi.org/10.1029/1999WR900237
Rinaldo, A., Fagherazzi, S., Lanzoni, S., Marani, M., & Dietrich, W. E. (1999b). Tidal networks: 3. Landscape-forming discharges and studies in empirical geomorphic relationships. Water Resources Research, 35 (12), 3919-3929.https://doi.org/10.1029/1999WR900238
Rogers, K., & Woodroffe, C. D. (2015). Tidal Flats and Salt Marshes. InCoastal Environments and Global Change (pp. 227-250).https://doi.org/10.1002/9781119117261.ch10
Rozovskiĭ, I. L. v. (1957). Flow of water in bends of open channels (in Russian) : Academy of Sciences of the Ukrainian SSR.
Schindfessel, L., Creëlle, S., & De Mulder, T. (2015). Flow Patterns in an Open Channel Confluence with Increasingly Dominant Tributary Inflow.Water, 7 (9), 4724-4751.https://doi.org/10.3390/w7094724
Schwarz, C., van Rees, F., Xie, D., Kleinhans, M. G., & van Maanen, B. (2022). Salt marshes create more extensive channel networks than mangroves. Nature Communications, 13 (1), 2017.https://doi.org/10.1038/s41467-022-29654-1
Sgarabotto, A., D’Alpaos, A., & Lanzoni, S. (2021). Effects of Vegetation, Sediment Supply and Sea Level Rise on the Morphodynamic Evolution of Tidal Channels. Water Resources Research, 57 (7), e2020WR028577.https://doi.org/10.1029/2020WR028577
Shi, B., Wang, Y. P., Du, X., Cooper, J. R., Li, P., Li, M. L., & Yang, Y. (2016). Field and theoretical investigation of sediment mass fluxes on an accretional coastal mudflat. Journal of Hydro-environment Research, 11 , 75-90.https://doi.org/10.1016/j.jher.2016.01.002
Shi, B., Wang, Y. P., Wang, L. H., Li, P., Gao, J., Xing, F., & Chen, J. D. (2018). Great differences in the critical erosion threshold between surface and subsurface sediments: A field investigation of an intertidal mudflat, Jiangsu, China. Estuarine, Coastal and Shelf Science, 206 , 76-86.https://doi.org/10.1016/j.ecss.2016.11.008
Sisulak, C. F., & Dashtgard, S. E. (2012). Seasonal Controls On the Development And Character of Inclined Heterolithic Stratification In A Tide-Influenced, Fluvially Dominated Channel: Fraser River, Canada.Journal of Sedimentary Research, 82 (4), 244-257.https://doi.org/10.2110/jsr.2012.21
Solari, L., Seminara, G., Lanzoni, S., Marani, M., & Rinaldo, A. (2002). Sand bars in tidal channels Part 2. Tidal meanders.Journal of Fluid Mechanics, 451 , 203-238.https://doi.org/10.1017/S0022112001006565
Somsook, K., Duka, M. A., Olap, N. A., Casila, J. C. C., & Yokoyama, K. (2020). Direct measurement of secondary circulation in a meandering macrotidal estuary. Sci Total Environ, 739 , 139503.https://doi.org/10.1016/j.scitotenv.2020.139503
Somsook, K., Olap, N. A., Duka, M. A., Veerapaga, N., Shintani, T., & Yokoyama, K. (2022). Analysis of interaction between morphology and flow structure in a meandering macro-tidal estuary using 3-D hydrodynamic modeling. Estuarine, Coastal and Shelf Science, 264 .https://doi.org/10.1016/j.ecss.2021.107687
Sullivan, J. C., Torres, R., Garrett, A., Blanton, J., Alexander, C., Robinson, M., et al. (2015). Complexity in salt marsh circulation for a semienclosed basin. Journal of Geophysical Research: Earth Surface, 120 (10), 1973-1989.https://doi.org/10.1002/2014JF003365
Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M., Ysebaert, T., & De Vriend, H. J. (2013). Ecosystem-based coastal defence in the face of global change. Nature, 504 (7478), 79-83.https://doi.org/10.1038/nature12859
Termini, D., & Piraino, M. (2011). Experimental analysis of cross-sectional flow motion in a large amplitude meandering bend.Earth Surface Processes and Landforms, 36 (2), 244-256.https://doi.org/10.1002/esp.2095
Thorne, C. R., Zevenbergen, L. W., Pitlick, J. C., Rais, S., Bradley, J. B., & Julien, P. Y. (1985). Direct measurements of secondary currents in a meandering sand-bed river. Nature, 315 (6022), 746-747.https://doi.org/10.1038/315746a0
Tu, J. B., Fan, D. D., Zhang, Y., & Voulgaris, G. (2019). Turbulence, Sediment‐Induced Stratification, and Mixing Under Macrotidal Estuarine Conditions (Qiantang Estuary, China). Journal of Geophysical Research: Oceans, 124 (6), 4058-4077.https://doi.org/10.1029/2018JC014281
van Maanen, B., Coco, G., & Bryan, K. R. (2015). On the ecogeomorphological feedbacks that control tidal channel network evolution in a sandy mangrove setting. Proc Math Phys Eng Sci, 471 (2180), 20150115.https://doi.org/10.1098/rspa.2015.0115
Vandenbruwaene, W., Schwarz, C., Bouma, T. J., Meire, P., & Temmerman, S. (2015). Landscape-scale flow patterns over a vegetated tidal marsh and an unvegetated tidal flat: Implications for the landform properties of the intertidal floodplain. Geomorphology, 231 , 40-52.https://doi.org/10.1016/j.geomorph.2014.11.020
Voulgaris, G., & Meyers, S. T. (2004). Temporal variability of hydrodynamics, sediment concentration and sediment settling velocity in a tidal creek. Continental Shelf Research, 24 (15), 1659-1683.https://doi.org/10.1016/j.csr.2004.05.006
Vousdoukas, M. I., Ranasinghe, R., Mentaschi, L., Plomaritis, T. A., Athanasiou, P., Luijendijk, A., & Feyen, L. (2020). Sandy coastlines under threat of erosion. Nature Climate Change, 10 (3), 260-263.https://doi.org/10.1038/s41558-020-0697-0
Wang, X. Y., & Ke, X. K. (1997). Grain-size characteristics of the extant tidal flat sediments along the Jiangsu coast, China.Sedimentary Geology, 112 (1-2), 105-122.https://doi.org/10.1016/S0037-0738(97)00026-2
Wang, Y., & Zhu, D. K. (1990). Tidal flats of China (in Chinsese).Quaternary Sciences, 10 (4), 291-300.
Wang, Y. P., Gao, S., Jia, J. J., Thompson, C. E. L., Gao, J., & Yang, Y. (2012). Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China. Marine Geology, 291-294 , 147-161.https://doi.org/10.1016/j.margeo.2011.01.004
Wang, Y. P., Voulgaris, G., Li, Y., Yang, Y., Gao, J. H., Chen, J., & Gao, S. (2013). Sediment resuspension, flocculation, and settling in a macrotidal estuary. Journal of Geophysical Research: Oceans, 118 (10), 5591-5608.https://doi.org/10.1002/jgrc.20340
Wang, Y. P., Zhang, R. S., & Gao, S. (1999a). Geomorphic and hydrodynamic responses in salt marsh-tidal creek systems, Jiangsu, China. Chinese Science Bulletin, 44 (6), 544-549.https://doi.org/10.1007/BF02885545
Wang, Y. P., Zhang, R. S., & Gao, S. (1999b). Velocity variations in salt marsh creeks, Jiangsu, China. Journal of Coastal Research, 15 (2), 471-477.http://www.jstor.org/stable/4298958
Wells, J. T., Adams, C. E., Park, Y.-A., & Frankenberg, E. W. (1990). Morphology, sedimentology and tidal channel processes on a high-tide-range mudflat, west coast of South Korea. Marine Geology, 95 (2), 111-130.https://doi.org/10.1016/0025-3227(90)90044-K
Wilson, A. M., & Morris, J. T. (2012). The influence of tidal forcing on groundwater flow and nutrient exchange in a salt marsh-dominated estuary. Biogeochemistry, 108 (1/3), 27-38.http://doi.org/10.1007/s10533-010-9570-y
Xin, P., Wilson, A., Shen, C., Ge, Z., Moffett, K. B., Santos, I. R., et al. (2022). Surface Water and Groundwater Interactions in Salt Marshes and Their Impact on Plant Ecology and Coastal Biogeochemistry.Reviews of Geophysics, 60 (1), e2021RG000740.