loading page

Seismic signatures of fluctuating fragmentation in volcanic eruptions
  • Katherine R Coppess,
  • Fredric Y. K. Lam,
  • Eric M Dunham
Katherine R Coppess
Stanford University
Author Profile
Fredric Y. K. Lam
Stanford University
Author Profile
Eric M Dunham
Stanford University

Corresponding Author:[email protected]

Author Profile

Abstract

Fragmentation plays a critical role in eruption explosivity by influencing the eruptive jet and plume dynamics that may initiate hazards such as pyroclastic flows. The mechanics and progression of fragmentation during an eruption are challenging to constrain observationally, limiting our understanding of this important process. In this work, we explore seismic radiation associated with unsteady fragmentation. Seismic force and moment tensor fluctuations from unsteady fragmentation arise from fluctuations in fragmentation depth and wall shear stress (e.g., from viscosity variations). We use unsteady conduit flow models to simulate perturbations to a steady-state eruption from injections of heterogeneous magma (specifically, variable magma viscosity due to crystal volume fraction variations). Changes in wall shear stress and pressure determine the seismic force and moment histories, which are used to calculate synthetic seismograms. We consider three heterogeneity profiles: Gaussian pulse, sinusoidal, and stochastic. Fragmentation of a high-crystallinity Gaussian pulse produces a distinct very-long-period (VLP) seismic signature and associated reduction in mass eruption rate, suggesting joint use of seismic, infrasound, and plume monitoring data to identify this process. Simulations of sinusoidal injections quantify the relation between the frequency or length scale of heterogeneities passing through fragmentation and spectral peaks in seismograms, with velocity seismogram amplitudes increasing with frequency. Stochastic composition variations produce stochastic seismic signals similar to observed eruption tremor, though computational limitations restrict our study to frequencies less than 0.25 Hz. We suggest that stochastic fragmentation fluctuations could be a plausible eruption tremor source.
06 Mar 2024Submitted to ESS Open Archive
15 Mar 2024Published in ESS Open Archive