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Abstract: Coastal wetlands play an important role in the global water and biogeochemical cycles.  26 

Climate change is making them more difficult to adapt to the fluctuation of sea levels and other 27 

environment changes. Given the importance of eco-geomorphological processes for coastal 28 

wetland resilience, many eco-geomorphology models differing in complexity and numerical 29 

schemes have been developed in recent decades. But their divergent estimates on the response of 30 

coastal wetlands to climate change indicate that substantial structural uncertainties exist in these 31 

models. To investigate the structural uncertainty of coastal wetland eco-geomorphology models, 32 

we developed a multi-algorithm model framework of eco-geomorphological processes, such as 33 

mineral accretion and organic matter accretion, within a single hydrodynamics model. The 34 

framework is designed to explore possible ways to represent coastal wetland eco-geomorphology 35 

in Earth system models and reduce the related uncertainties in global applications. We tested this 36 

model framework at three representative coastal wetland sites: two saltmarsh wetland (Venice 37 

Lagoon and Plum Island Estuary) and a mangrove wetland (Hunter Estuary). Through the model-38 

data comparison, we showed the importance to use a multi-algorithm ensemble approach for 39 

more robust predictions of the evolution of coastal wetlands. We also find that more observations 40 

of mineral and organic matter accretion at different elevations of coastal wetlands and evaluation 41 

of the coastal wetland models at different sites of diverse environments can help reduce the 42 

model uncertainty.  43 

Plain Language Summary: Coastal wetlands are a critical component of the earth system, 44 

strongly influencing global water and biogeochemical cycles. Although numerical models of 45 

coastal wetlands differ substantially in complexity and numerical methods, few studies have 46 

investigated the structural uncertainties of these models in a state-of-the-art way. To bridge this 47 

gap, we developed a multi-algorithm model framework for the eco-geomorphological processes 48 
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of coastal wetlands within a single hydrodynamics model. Through model-data comparison at 49 

three representative saltmarsh and mangrove sites, we demonstrated the importance to use a 50 

multi-algorithm ensemble approach for more robust predictions of the evolution of coastal 51 

wetlands. We also show the importance to include more comprehensive eco-geomorphology 52 

observations (e.g., observations along an elevation gradient and at different sites of diverse 53 

environments) for reducing the model uncertainty. 54 

 55 

1. Introduction 56 

Coastal wetlands, such as tidal marshes and mangroves, are valued for providing many 57 

important ecosystem services, including coastline protection, storm surge attenuation, wildlife 58 

habitat, and water quality improvement. Particularly, they are observed to sequester atmospheric 59 

carbon dioxide at a rate much higher than other ecosystems, thus offering a potential nature-60 

based solution for climate mitigation (Aburto-Oropeza et al., 2008; Macreadie et al., 2019; 61 

Temmerman et al., 2013; Teuchies et al., 2013). Despite the resilience of coastal wetlands to past 62 

fluctuations in sea level and climate over long periods of time (Cahoon et al., 2006; Saintilan et 63 

al., 2020; Törnqvist et al., 2020), recent observations of local wetland loss raise concerns over 64 

their acclimation to intensified natural and human-induced disturbances, such as sea level rise 65 

(SLR), storm surge, sediment supply reduction, eutrophication and drought (Blum & Roberts, 66 

2009; Crosby et al., 2016; Deegan et al., 2012; Kirwan & Megonigal, 2013; Törnqvist et al., 67 

2021).  68 

Eco-geomorphological processes, such as mineral accretion, organic matter (OM) 69 

accretion, landward migration and wave-action erosion, play crucial roles in the acclimation of 70 

coastal wetlands to natural and human-induced disturbances (Craft et al., 2009; Howes et al., 71 
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2010; Kirwan et al., 2016; Leonardi et al., 2016; Schuerch et al., 2018). Mineral accretion is a 72 

process of mineral sediment accumulation on the soil bed of coastal wetlands through either 73 

plant-mediated particle settling or direct capture of sediment by plant stems (Kirwan & Mudd, 74 

2012) and can help coastal wetlands build the elevation against rising sea levels (Cahoon et al., 75 

2021). With the accumulation of plant litter in the soil column, OM accretion can also help raise 76 

the bed elevation of coastal wetlands (Kirwan & Mudd, 2012). Wave-action erosion can 77 

accelerate the land loss at the shore which reduces the habitat area of coastal wetlands (Leonardi 78 

et al., 2016). In contrast, landward migration is a process by which coastal wetlands move to 79 

higher elevation and expand their habitat area (Schuerch et al., 2018). Due to the importance of 80 

these eco-geomorphologic processes, many eco-geomorphology models different in complexity 81 

and parameterization methods have been developed in recent decades (D'Alpaos et al., 2011; 82 

Fagherazzi et al., 2012; Kirwan et al., 2010; Marani et al., 2007; Mcleod et al., 2010; Rodríguez 83 

et al., 2017). The application of these models at the regional, continental, and global scales have 84 

greatly advanced our understanding in the evolution of coastal wetlands under intensified 85 

environmental changes and provided valuable insights on the management and conservation of 86 

this ecosystem (Kirwan & Mudd, 2012; Leonardi et al., 2016; Mariotti & Fagherazzi, 2010; 87 

Reyes et al., 2000).  88 

However, substantial structural uncertainty exists in these eco-geomorphology models as 89 

indicated by their inconsistent predictions on the fate of coastal wetlands under accelerated SLR 90 

(Craft et al., 2009; Kirwan et al., 2010, 2016; Rodríguez et al., 2017; Schuerch et al., 2018). For 91 

example, based on the Sea Level Affecting Marshes Model (SLAMM) that simulates the 92 

dominant processes (e.g., inundation, wave-action erosion, and salinity intrusion) but ignores the 93 

adaptation of salt marshes to SLR with accelerating rates of elevation change, Craft et al. (2009) 94 
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estimated that salt marshes will decline in area by 45% by 2100 under the worst 95 

Intergovernmental Panel on Climate Change (IPCC) SLR scenario. But based on a salt marsh 96 

model that represents the dynamic, eco-geomorphic feedbacks between tidal inundation and 97 

increased vertical accretion of mineral and organic sediments, a more recent study demonstrated 98 

that marshes could survive under a wide range of future SLR scenarios by building elevation at 99 

rates similar to or exceeding historical SLR (Kirwan et al., 2016). The structural uncertainty of 100 

the eco-geomorphology models has two sources. First, different eco-geomorphology models 101 

usually implement different parameterization schemes for the same process. For instance, there 102 

are at least seven different mineral accretion schemes implemented in various eco-103 

geomorphology models (D’Alpaos et al., 2007; Fagherazzi et al., 2007; French, 2006; Kirwan & 104 

Mudd, 2012; Morris et al., 2012; Temmerman et al., 2003b; van de Koppel et al., 2005). Second, 105 

very few eco-geomorphology models include all eco-geomorphologic processes critical to the 106 

dynamics of coastal wetlands. As stated above, the SLAMM model used by Craft et al. (2009) 107 

does not include the dynamic, eco-geomorphic feedbacks between tidal inundation and increased 108 

vertical accretion of mineral and organic sediments. Moreover, the landward migration of coastal 109 

wetlands and its limitation by human barriers have not been represented in eco-geomorphology 110 

models until very recently (Schuerch et al., 2018). 111 

To date, our understanding of the structural uncertainty of eco-geomorphology models is 112 

still limited, despite the importance of eco-geomorphological processes to the Earth system 113 

(Ward et al., 2020). A few studies have strived to understand the uncertainty of coastal wetland 114 

eco-geomorphology models through model comparison (Kirwan et al., 2010) or model review 115 

(Fagherazzi et al., 2012; Mcleod et al., 2010). However, unlike the state-of-the-art methods used 116 

to compare some other Earth system processes (Guseva et al., 2020; Huntzinger et al., 2013; Jin 117 
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et al., 2016; Schellnhuber et al., 2014; Tan et al., 2018), model comparison and review can only 118 

provide an incomplete evaluation of model uncertainty (Fisher & Koven 2020). For model 119 

review, the related studies mostly focused on analyzing high-level features of eco-120 

geomorphology models, such as capability and complexity, inputs requirements, spatial- and 121 

temporal-scale accountability, and practical applicability, but did not consider the real 122 

performance of the eco-geomorphology models in simulating coastal wetland dynamics under 123 

diverse environmental conditions (Fagherazzi et al., 2012; Mcleod et al., 2010). For model 124 

comparison, previous studies usually performed the comparison of eco-geomorphology models 125 

at the ecosystem level with a focus on the overall response of coastal wetlands to SLR and the 126 

participant models were commonly not configured under a consistent protocol. As a result, the 127 

model uncertainty associated with individual processes cannot be isolated and not all estimated 128 

model uncertainty can be attributed to eco-geomorphologic processes (Kirwan et al., 2010). In 129 

addition, these model comparison studies were only conducted at specific or very few sites 130 

(Kirwan et al., 2010). It is thus unclear how well the knowledge gained at a specific site can be 131 

transferred to other environmental conditions. 132 

Algorithm-level model comparison approaches have shown promising skills for assessing 133 

the uncertainty of a particular process in large-scale models (Donatelli et al., 2014; Jin et al., 134 

2016; Tan et al., 2018). Motivated by these studies, we developed an algorithm-level model 135 

comparison framework to investigate the structural uncertainty of coastal wetland eco-136 

geomorphology models. The framework’s efficacy is evaluated at the coastal wetland sites of 137 

distinct environmental conditions. Through this work, we aim to evaluate the algorithm-level 138 

uncertainties of coastal wetland eco-geomorphology modeling related to mineral and OM 139 

accretion and explore possible ways to reduce the related uncertainties in global applications. 140 
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2. Materials and methods 141 

2.1. Model description 142 

We developed a Multi-Algorithm Coastal wetland Eco-geomorphology Simulator 143 

(MACES) model framework to assess the structural uncertainty of eco-geomorphology models. 144 

The MACES framework consists of two components (Figure 1): a one-dimensional (1-D) 145 

transect-based hydrodynamic module (MACES-hydro) and an algorithm-level model comparison 146 

module that implements different eco-geomorphologic process algorithms (MACES-geomor). 147 

MACES-hydro simulates water level, tide velocity, significant wave height, bottom shear stress, 148 

suspended sediment and other hydrodynamic conditions along a 1-D coastal transect that varies 149 

from low-elevation open water at the ocean side to high-elevation upland at the land side (Figure 150 

2). All eco-geomorphology algorithms in MACES-geomor (Table 1) use the same hydrodynamic 151 

conditions simulated by MACES-hydro to model eco-geomorphologic processes, such as 152 

mineral and OM accretion, at each grid cell of the coastal transect. At the end of each year, 153 

MACES updates the transect elevation profile and land cover. A design feature of MACES is 154 

that a new coastal wetland eco-geomorphology model can be easily created by configuring 155 

MACES-geomor with a different combination of eco-geomorphologic algorithms. Although we 156 

focus on mineral and OM accretion in this work, the developed framework can be extended to 157 

other eco-geomorphologic processes, such as landward migration and wave-action erosion. 158 

Landward migration and wave-action were not tested for this study due to data limitations. 159 

The 1D transect-based coastal hydrodynamics model MACES-hydro was developed 160 

mainly based on the work of Tambroni & Seminara (2012) and Carniello et al. (2005) for cross-161 

section averaged physical variables on the coastal landscape. It simulates tide and storm surge 162 
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propagation, wave generation and propagation, and particle transport. Tide and storm surge 163 

driven water flow is governed by the 1-D Saint Venant Equations (Tambroni & Seminara, 2012): 164 

డ௛డ௧ + డሺ௎௛ሻడ௫ = 0,          (1) 165 

డ௎డ௧ + 𝑈 డ௎డ௫ + 𝑔 డுడ௫ + 𝑔 ௎|௎|஼೥మ௛ = 0,        (2) 166 

where h is water flow depth (m), U is water flow velocity (m s-1), H is water surface elevation (m) 167 

relative to the Mean Sea Level (MSL), g is the acceleration due to gravity (m2 s-1), and Cz is the 168 

Chézy’s friction coefficient (m1/2 s-1). The friction coefficient Cz is a function of bed roughness, 169 

vegetation stem size and vegetation density, described in detail in Section 1.1 of Text S1. Wave 170 

generation and propagation in shallow waters is described by the conservation of the wave action 171 

N, which is defined as the ratio of wave energy E (J m-2) to the relative wave frequency σ. By 172 

using the linear wave theory, the wave action conservation equation can be simplified as 173 

(Carniello et al., 2005):  174 

డேడ௧ + డ൫௖೒ே൯డ௫ = ௌఙ.          (3) 175 

The wave group celerity 𝑐௚ is given as (Mariotti & Fagherazzi, 2010): 176 𝑐௚ = ఙଶ௞ ቀ1 + ଶ௞௛ୱ୧୬୦ሺଶ௞௛ሻቁ,         (4) 177 

where k is the wave number (𝑘 = 2𝜋 𝜆⁄ , where λ is wavelength). The wave energy source term S 178 

is determined by the wind wave generation Swg, the wind wave dissipation through bottom 179 

friction Sbf, the white capping Swc, and the depth induced breaking Sbrk: 180 𝑆 = 𝑆௪௚ − 𝑆௕௙ − 𝑆௪௖ − 𝑆௕௥௞.         (5) 181 

The detailed definitions of the gain and loss terms of wave energy can be found in Section 1.2 of 182 

Text S1. Both tide and storm surge induced water flow and wind induced waves contribute to the 183 

production of bottom shear stress τb, which is important for the modeling of sediment deposition 184 
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and resuspension over the coastal landscape. Suggested by Soulsby (1997), the nonlinear 185 

interaction between these two forces can be evaluated using the below empirical formulation: 186 

𝜏௕ = 𝜏௪௔௩௘ + 𝜏௖௨௥௥ ൤1 + 1.2 ቀ ఛೢೌೡ೐ఛ೎ೠೝೝାఛೢೌೡ೐ቁଷ.ଶ൨,      (6) 187 

where 𝜏௖௨௥௥ is the bottom shear stress induced by water flow only and 𝜏௪௔௩௘ is the bottom shear 188 

stress induced by wave only. As detailed in Section 1.3 of Text S1, the shear stress 𝜏௖௨௥௥ is a 189 

function of water flow velocity U and water depth h and the shear stress 𝜏௪௔௩௘ is a function of 190 

significant wave height Hw, water depth h and wave period T. The transport of suspended 191 

sediment in the water column is governed by the advection-dispersion continuity equation (Maan 192 

et al., 2015): 193 

డ௖ೞೞ௛డ௧ + డሺ௎௖ೞೞ௛ሻడ௫ − డడ௫ ቀ𝐾ℎ డ௖ೞೞడ௫ ቁ = −𝑄௠,       (7) 194 

where css is the depth-averaged suspended sediment concentration (SSC) (kg m-3), K is the 195 

dispersion coefficient (m2 s-1), and Qm is the net sediment deposition rate (kg m-2 s-1). The net 196 

sediment deposition is defined as sediment deposition minus sediment resuspension and the 197 

long-term average of Qm equals to mineral accretion. For salinity and nutrients, it is assumed that 198 

their concentrations do not change during transport over the coastal landscape and thus the 199 

dynamics are directly controlled by inundation. 200 

As listed in Table 1, MACES-geomor implements seven widely used algorithms for 201 

mineral accretion (D’Alpaos et al., 2007; Fagherazzi et al., 2007; French, 2006; Kirwan & Mudd, 202 

2012; Morris et al., 2012; Temmerman et al., 2003b; van de Koppel et al., 2005) and four 203 

algorithms for OM accretion (D’Alpaos et al., 2007; Kakeh et al., 2016; Kirwan & Mudd, 2012; 204 

Morris et al., 2012), respectively. Correspondingly, the change of transect elevation η (m) is 205 

calculated using the Exner equation: 206 
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ሺ1 − 𝜆ሻ ௗሺఘೞఎሻௗ௧ = 𝑄௠ + 𝑄௢௠,         (8) 207 

where λ is the sediment porosity, ρs is the sediment wet bulk density (kg m-3), and Qom is the OM 208 

accretion rate (kg m-2 s-1). The detailed descriptions of these eco-geomorphologic algorithms can 209 

be found in Sections 2 and 3 of Text S1. It should be noted that for OM accretion, we included 210 

one more algorithm corresponding to the null hypothesis that OM accretion is negligible for the 211 

transect elevation change. Here, the algorithms of mineral and OM accretion were selected based 212 

on three criteria through literature review. First, the selected algorithms must have been 213 

successfully applied in multiple studies (ideally for coastal wetlands in different environmental 214 

conditions). Second, the selected algorithms are substantially different between each other in 215 

mathematical formulations and conceptual understanding. Third, the selected algorithms can be 216 

implemented using 1-D hydrodynamics. Table 1 summarizes all the MACES-geomor algorithms 217 

and their characteristics. The free parameters of mineral and OM accretion algorithms are listed 218 

in Tables S1 and S2, respectively. 219 

We chose the 1-D hydrodynamic model over more advanced two-dimensional (2-D) or 220 

three-dimensional (3-D) hydrodynamic models (e.g., Delft3D) that can resolve detailed coastal 221 

hydrodynamics for two reasons. First, the prominent features of coastal wetlands that 2-D and 3-222 

D hydrodynamic models can represent, such as tidal channels and microtopography, are usually 223 

at spatial scales of meters, which are much finer than the spatial resolutions that current and even 224 

future Earth system models (ESMs) can afford (Feng et al., 2022; Ward et al., 2020). Second, 225 

detailed 2-D and 3-D hydrodynamic models usually require intense labor work of mesh 226 

delineation to ensure model stability. As a result, it is difficult to configure such advanced 227 

models at continental or global scales, particularly when coupling them with eco-geomorphology 228 

models which dynamically alter the mesh bottom elevation. Third, while it is possible to model 229 
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eco-geomorphology at continental or global scales using simplified 2-D hydrodynamics models 230 

which do not resolve water flow and wave dynamics and only use semi-analytical approaches for 231 

suspended sediment is possible (Langston et al., 2020), the adoption of such 2-D approximations 232 

would exclude many widely used eco-geomorphic algorithms for comparison as they need water 233 

flow and wave as inputs (Cao et al., 2021; D’Alpaos et al., 2007; Leonardi et al., 2016). It should 234 

be noted that testing the applicability of multiple eco-geomorphologic algorithms on the same 235 

hydrodynamics platform is not new. For example, Delft3D has already implemented different 236 

mineral accretion algorithms in its morphodynamic module D-Morphology (Deltares, 2022). But 237 

as discussed above, compared to these models, our work is more relevant to representing coastal 238 

wetland geomorphology in ESMs. Moreover, our multi-algorithm framework extends the 239 

comparison of eco-geomorphologic algorithms to biogeochemical and ecological processes, such 240 

as OM accretion, which are usually not included in 2-D and 3-D coastal models (Zhang et al., 241 

2020). It should also be noted that, because 1-D hydrodynamics models do not represent channel 242 

processes, the 1-D discretization does not entirely preserve the site characteristics. As such, it is 243 

recognized that the MACES simulated hydrodynamics can provide less detail than 2-D and 3-D 244 

coastal models, however, as discussed above the results obtained in MACES are satisfactory for 245 

the purposes of Earth system modeling. 246 

2.2. Numerical methods 247 

We employed a 1-D Godunov-type central-upwind scheme (Kurganov & Levy, 2002) to 248 

discretize the spatial domain of the Saint Venant equations which include source terms due to 249 

bottom topography, the wave equation and the particle transport equation. This finite volume 250 

scheme introduces a linear piecewise approximation to each grid cell with the Superbee slope 251 

limiter (Roe, 1986) to achieve the solutions of both second-order accuracy in space and 252 
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diminishing total variation. Because this scheme is very effective in suppressing spurious 253 

oscillation of the simulated water level at the periodically flooded areas, it has been widely used 254 

as the numerical solver for coastal hydrodynamics (Liang & Marche, 2009). After spatial 255 

discretization, we employed a fourth-order adaptive Runge-Kutta-Fehlberg method to discretize 256 

the hydrodynamic equations in the time domain to achieve second-order accuracy in time 257 

(Burden et al., 1978). In addition, to avoid negative particle concentrations, we incorporated a 258 

scheme described by Tan et al. (2015) into the Runge-Kutta-Fehlberg method to recursively 259 

curtail the running time step when large negative concentrations occur, until the negative values 260 

are small enough to be assigned safely as zero.   261 

One prominent feature of MACES is the use of a hybrid Fortran and Python 262 

programming approach to balance computational efficiency and software usability. The 263 

computational-intensive hydrodynamic module was written in Fortran and then converted to a 264 

Python package using f2py (Python Software Foundation, Fredericksburg, VA, USA). All the 265 

other modules, including eco-geomorphology, I/O and settings, were written in Python 3 directly. 266 

As such, new algorithms of eco-geomorphology can be easily integrated into MACES in the 267 

future. Model input and output files are written in the NetCDF and Excel format and model 268 

settings are written in the user-friendly XML (Extensible Markup Language) format.     269 

2.3. Model calibration and evaluation 270 

Model calibration of different MACES-geomor algorithms is conducted using the 271 

Python-version Parameter ESTimation tool (PyPEST). The PyPEST tool was developed by Liao 272 

et al. (2019) based on the model-independent parameter estimation code PEST (Doherty et al., 273 

1994). PyPEST carries out the calibration process iteratively with six steps (parameter generation, 274 

model configuration, input data generation, model run in parallel, output extraction, and output 275 
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post-processing) until the user-defined cost function threshold criteria are met (Figure S1). 276 

Depending on data availability at different sites, different combinations of observed datasets are 277 

used to calibrate different geomorphology module algorithms with consideration of module 278 

dependency. For example, observed long-term mineral accretion rate and SSC are used to 279 

calibrate the mineral accretion algorithms. Observed long-term OM accretion rate and 280 

aboveground biomass are used to calibrate the OM accretion algorithms. When calibrating the 281 

mineral and OM accretion algorithms, only the algorithm-specific parameters (Tables S1–S2) are 282 

adjusted while the parameters related to flow and waves are maintained. 283 

MACES-hydro is validated against observed or benchmark water level, significant wave 284 

height, and/or bottom shear stress without calibration. In the experiments to validate MACES-285 

hydro, we configured the model with null mineral and OM accretion algorithms and chose the 286 

method of Morris et al. (2012) to calculate aboveground biomass. In the experiments to validate 287 

the simulated suspended sediment, we only compared mineral accretion algorithms and used 288 

only one OM accretion algorithm at each site that simulates the most realistic aboveground 289 

biomass. Because the related observations and benchmark estimates usually cover only a few 290 

days, the related validation is only run for a few weeks. For MACES-geomor, because we expect 291 

that most of the algorithms can reproduce the observed accretion rates by calibration, our 292 

analysis does not focus on validating the individual algorithms explicitly. Instead, we focus on 293 

analyzing the uncertainty of mineral and OM accretion algorithms across the 1-D wetland 294 

transects, which is important for explaining their divergent predictions in coastal wetland 295 

evolution under SLR (Tambroni & Seminara, 2012). 296 

2.4. Model input and evaluation data 297 
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We evaluate the model at three representative coastal wetland sites with two located in 298 

midlatitude and one located in subtropics: Venice Lagoon, Plum Island Estuary and Hunter 299 

Estuary (Table 2). Venice Lagoon is a microtidal wetland with a large central waterbody and 300 

extensive intertidal salt marshes. The dominant saltmarsh species include Limonium serotinum, 301 

Puccinellia palustris, Arthrocnemum fruticosum and Spartina maritima. The long-term mineral 302 

and OM accretion rate of the saltmarsh are 3.5 mm yr-1 and 132 gC m-2 yr-1, respectively 303 

(Bellucci et al., 2007; Roner et al., 2016). Plum Island Estuary is a macrotidal wetland with 304 

extensive areas of productive, tidal marshes. The dominant saltmarsh species include Spartina 305 

alterniflora at lower elevations and Spartina patens at higher elevations. The long-term mineral 306 

accretion rate can be as high as 6.9±0.9 mm yr-1 (Wilson et al., 2014) and the long-term OM 307 

accretion rate is 69.9±9.4 gC m-2 yr-1 (Wang et al., 2019). Hunter Estuary is a microtidal wetland 308 

with grey mangrove Avicennia marina at lower elevations and Sporobolus virginicus–309 

Sarcocornia quinqueflora mixed saltmarsh at higher elevations. The mineral accretion of 310 

mangroves and saltmarsh are 3.66 mm yr-1 and 3.37 mm yr-1, respectively (Howe et al., 2009). 311 

The OM accretion of mangroves and saltmarsh are 105 gC m-2 yr-1 and 137 gC m-2 yr-1, 312 

respectively (Howe et al., 2009).   313 

To simulate the hydrodynamics and eco-geomorphology of coastal wetlands, MACES is 314 

driven by the seaward-side water level and SSC and averaged wind speed and air temperature 315 

over the coastal transect. We extracted water level and wind conditions from high-frequency (10-316 

minute or 15-minute) measurements for the three sites. The seaward boundary SSC is set based 317 

on the high-frequency (15-minute) analytical estimates for Hunter Estuary and as fixed values 318 

extracted from the global coastal Database for Impact and Vulnerability Analysis to sea-level 319 

rise (DIVA) (Schuerch et al., 2018; Vafeidis et al., 2008) for the other two sites. Daily air 320 
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temperature was extracted from measurements for Venice Lagoon and Plum Island Estuary and 321 

the European Center for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis (ERA-322 

Interim) (Dee & Uppala, 2009) for Hunter Estuary.  323 

For each site, we constructed its 1-D transect from high-resolution Digital Elevation 324 

Model (DEM) and land cover maps (Hopkinson & Valentine, 2005; Rodríguez et al., 2017; 325 

Tambroni & Seminara, 2012; Ye & Pontius, 2016) by: 1) dividing all grid cells into 17 elevation 326 

groups spanning from -12.5 m to 16.5 m (some elevation groups can be empty); 2) calculating 327 

the average slope and land cover fractions of each elevation group; 3) calculating the transect 328 

length of each elevation group based on its slope and elevation range. For the first step, the 329 

elevation range of the 17 groups is the largest (i.e., 4 m) near to the land and sea edges and the 330 

smallest (i.e., 0.5 m) near to the sea level. For the third step, the slope of a grid cell is calculated 331 

by dividing its elevation by its distance to the nearest channel network. The constructed 1-D 332 

transects of the three sites are shown in Figure 3.  333 

For Venice Lagoon, we use observed water level, SSC and significant wave height and 334 

benchmark bottom shear stress estimates from a 2-D hydrodynamic model Wind Wave Tidal 335 

Model (WWTM) (Carniello et al., 2011) at two tidal flat stations (1BF: -1.1 masl; 2BF: -2.1 masl) 336 

for model evaluation. For Plum Island Estuary, we use observed water level at the channel (-0.73 337 

masl) and marsh edge (1.25 masl) of Nelson Island, observed SSC at the channel (-1.45 masl) 338 

and marsh interior (1.69 masl) of Law’s Point, observed mineral accretion at three saltmarsh 339 

stations (LAC: a Spartina alterniflora-dominated high saltmarsh with an elevation of 1.1 masl; 340 

LPC: a Spartina patens-dominated high saltmarsh with an elevation of 1.4 masl; MRS: a 341 

Spartina alterniflora-dominated high saltmarsh with an elevation of 0.89 masl), and observed 342 

aboveground biomass at LAC and MRS for model evaluation. For Hunter Estuary, we use the 343 
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benchmark estimates of water level and SSC at four stations (channel: 0.22 mAHD; mangrove 344 

edge: 0.05 mAHD; mangrove interior: 0.38 mAHD; saltmarsh edge: 0.65 mAHD) of the wetland 345 

for model evaluation. For a specific site, when validating our model over a station, we always 346 

choose the grid cell with the closest elevation to the station for comparison. In the model, the 347 

total accretion (mm yr-1) is calculated by the Exner equation based on the simulated long-term 348 

net sediment deposition (kg m-2 yr-1), the simulated long-term net OM deposition (kg C m-2 yr-1), 349 

sediment bulk density (kg m-3), and sediment porosity. Correspondingly, mineral accretion (mm 350 

yr-1) is also estimated using the Exner equation by excluding the contribution of OM deposition.    351 

3. Results 352 

3.1. Simulated hydrodynamics at the three coastal wetland sites 353 

The MACES model can reproduce the observed hydrodynamics at the three coastal 354 

wetland sites. The simulated hydrodynamics at Venice Lagoon were validated in the two periods 355 

of very different tide and wind conditions: 12/10/2002–12/11/2002 and 4/2/2003–4/4/2003 356 

(Figure 4). Specifically, the spring period in 2003 has the high tide of 64 cm asl and the 357 

maximum wind speed of 17.3 m s-1 (Figure S2). In contrast, the winter period in 2002 has the 358 

much smaller high tide and maximum wind speed: only 38 cm asl and 11.6 m s-1, respectively 359 

(Figure S2). The 1-D MACES hydrodynamics module MACES-hydro performs reasonably well 360 

in capturing the observed tide and wave dynamics in both periods (Figure 4), with low root-361 

mean-square-errors (RMSE) of simulated water depth and significant wave height at the 1BF and 362 

2BF stations. During the low wind and tide period when observations are available (Figures 4a–363 

4d), the RMSE of simulated water depth at 1BF and 2BF are 5.8 cm and 4.2 cm, respectively, 364 

which correspond to only 5% and 2% of the observed mean water depth, and the RMSE of 365 

simulated significant wave height at 1BF and 2BF are 4.7 cm and 4.6 cm, respectively, which 366 
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correspond to 35% and 19% of the observed mean significant wave height. The model also 367 

captures the temporal variability of the bottom shear stress benchmark at 1BF and 2BF during 368 

the high tide and wind period, with the RMSE of 0.13 Pa and 0.15 Pa, respectively. It should be 369 

noted that as the simulated bottom shear stress is compared to the WWTM model benchmark 370 

instead of observations, the evaluation could be marked by substantial uncertainty.  371 

For both periods, the simulated significant wave height mainly followed the wind 372 

dynamics (Figure 4). The wind-induced bottom shear stress is also the dominant component of 373 

the total bottom shear stress (Figure 4). In the morning of 12/10/2002 when wind speed exceeded 374 

11 m s-1, the simulated significant wave height reached its peak value at the two stations: 22.6 375 

cm and 39.4 cm, respectively. Correspondingly, the simulated bottom shear stress also reached 376 

its peak value at the two stations: 0.19 Pa and 0.31 Pa, respectively. On April 3, 2003, when 377 

wind speed frequently exceeded 15 m s-1, the simulated significant wave height reached its peak 378 

value at the two stations: 31.4 cm and 52.4 cm, respectively. The contribution of the current-379 

induced bottom shear stress to the total bottom shear stress never exceeded 10% in both periods 380 

(Figures 4e–4f and 4k–4i), showing that wind action dominates the generation of bottom shear 381 

stress. Both the observations and simulations show that 2BF has larger significant wave height 382 

values than 1BF. This difference could be explained by the attenuation of wave energy by 383 

friction when wave moves toward land as 2BF is deeper and closer to the seaward boundary than 384 

1BF. 385 

The simulated hydrodynamics at Plum Island Estuary were validated in the summer and 386 

fall periods of 2017 (7/19–7/22 and 10/7–10/10) when tide and wind conditions were different 387 

(Figure 5). In the summer period, the tide level varied substantially, while the wind speed never 388 

exceeded 6 m s-1 (Figure S3). In contrast, in the fall period, the wind speed sometimes exceeded 389 
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8 m s-1, while the tide level varied moderately (Figure S3). For both periods, MACES-hydro 390 

captures the observed dynamics of water depth at a river channel station (-0.73 masl) and a 391 

saltmarsh station (1.25 masl) reasonably well (Figure 5). The RMSE of the simulated water 392 

depth at the river channel station were 9.1 cm and 7.5 cm for the summer and fall periods, 393 

respectively. The RMSE of the simulated water depth at the saltmarsh station were 2.2 cm and 394 

1.5 cm for the summer and fall periods, respectively. 395 

The simulated hydrodynamics at Hunter Estuary were validated in the period of 396 

9/28/2004–9/30/2004 for both low-elevation locations where mangrove species reside and high-397 

elevation locations where saltmarsh species reside (Figure 6). MACES-hydro well reproduced 398 

the water depth benchmark at four representative locations: a river channel station at an elevation 399 

of -0.22 mAHD (Figure 6a), a mangrove-dominated station at an elevation of 0.05 mAHD 400 

(Figure 6b), a mangrove-dominated interior station at an elevation of 0.38 mAHD (Figure 6c), 401 

and a saltmarsh-dominated station at an elevation of 0.65 mAHD (Figure 6d). The RMSE of the 402 

simulated water depth at the four stations were 4.6 cm, 5.4 cm, 2.7 cm and 0.4 cm, respectively. 403 

Importantly, as shown by our simulations, the water level across a coastal wetland 404 

transect is far from being spatially uniform if the seaward boundary is not extremely close to the 405 

shoreline. For instance, at Venice Lagoon and Plum Island Estuary where the distance from the 406 

seaward boundary to the shoreline is more than 18 km and 0.7 km, respectively, the water level 407 

peaks in the wetland interiors clearly lagged those at the boundary (Figures 4–5), showing the 408 

effect of bed roughness on water flow. In contrast, at Hunter Estuary where the seaward 409 

boundary is very close to the shoreline (only 20 m in distance), the difference between the 410 

simulated water level and the boundary condition is negligible (Figure 6).  411 

3.2. Simulated suspended sediment dynamics at the three coastal wetland sites 412 
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The MACES model can also capture the dynamics of suspended sediment at the three 413 

coastal wetland sites reasonably well when appropriate mineral accretion algorithms are selected. 414 

For Venice Lagoon, the observed SSC at 1BF during the low wind and tide period ranged from 415 

7.3 mg l-1 to 92.0 mg l-1 (Figure 7), with one larger peak value occurring on the windy morning 416 

of 12/10/2002 and one smaller peak value occurring on the morning of 12/11/2002 (Figure 4). 417 

Three out of the seven mineral accretion algorithms, including M12, F07 and DA07, can 418 

reproduce the observed two SSC peaks (Figure 7). Among the algorithms, the F07 algorithm has 419 

the lowest RMSE of 12.0 mg l-1 as well as the lowest normalized RMSE (NRMSE) of 0.45. But 420 

even the three best performing algorithms overestimated SSC at the mid-day of 12/10/2002. A 421 

possible reason is that the model does not reproduce the rapid decrease of wave energy after the 422 

windy morning on 12/10/2002. The simulated SSC by F06, T03 and KM12 is almost constant 423 

because these algorithms do not represent sediment resuspension (Section 2.1, 2.2 and 2.3 of 424 

Text S1) and there is limited sediment deposition at 1BF. As a result, the SSC is almost entirely 425 

determined by the seaward boundary (9.4 mg l-1) which was extracted from the DIVA database. 426 

It should be noted that the dynamics of suspended sediment in the coast is notoriously difficult to 427 

model (Le Hir et al., 2007; Temmerman et al., 2003). Thus, the performance achieved by our 1-428 

D model is satisfactory.  429 

For Plum Island Estuary, the MACES model reproduces the temporal variability of SSC 430 

at a river channel station (-1.45 masl) and the decrease of SSC from the river channel to a 431 

saltmarsh station (1.69 masl) in the summer period of 2017 reasonably well (Figure 8). Because 432 

the river channel station is close to the model boundary (Figure 3), its suspended sediment 433 

dynamics is strongly regulated by the SSC boundary condition (Figure S3) and the difference 434 

between different algorithms is mainly caused by the simulated sediment deposition rather than 435 
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the simulated sediment resuspension. Among the algorithms, the M12 algorithm has the lowest 436 

RMSE of 7.4 mg l-1 as well as the lowest NRMSE of 0.57 at the river channel station. There are 437 

several SSC peaks at the river channel that our model fails to capture (Figure 8), which could be 438 

attributed to the uncertainty of the boundary condition. For the saltmarsh station, the 439 

performance of different algorithms is similar, implying that all the algorithms predicted 440 

reasonable sediment deposition over the saltmarsh planform. 441 

The MACES model also captures the temporal variability of SSC along the elevation 442 

gradient of Hunter Estuary from the river channel, the mangrove edge, the mangrove interior to 443 

the saltmarsh edge (Figure 9). Because the river channel station in this case is even closer to the 444 

model boundary than in Plum Island Estuary (Figure 3), the dynamics of suspended sediment is 445 

strongly regulated by the boundary condition (Figure S4) before being fully deposited at the 446 

saltmarsh edge. The four more complex algorithms, including M12, F07, VDK05 and DA07, 447 

outperform the three simpler algorithms (i.e., F06, T03 and KM12). Overall, the M12 algorithm 448 

has the best performance at the four stations: the RMSE of 1.6 mg l-1 at the river channel, 0.9 mg 449 

l-1 at the mangrove edge, 2.8 mg l-1 at the mangrove interior and 0.4 mg l-1 at the saltmarsh edge, 450 

respectively (we removed data points in the comparison when the simulated water depth was 451 

zero). This result may indicate that more sophisticated mineral accretion algorithms are needed 452 

to reasonably represent sediment deposition at this wetland site. But we should note that these 453 

algorithms seem to underestimate sediment deposition in the mangrove wetland area. It is 454 

possibly because mineral accretion algorithms were usually developed based on the saltmarsh 455 

studies and are less applicable to mangrove wetlands. 456 

3.3. Simulated mineral and OM accretion at the three coastal wetland sites 457 
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Once carefully calibrated, most of the MACES mineral and OM accretion algorithms can 458 

reproduce the observed long-term mineral and OM accretion rates at the three coastal wetland 459 

sites, especially when the accretion rates are only measured at single locations. But different 460 

algorithms demonstrate remarkable variations in the simulated mineral and OM accretion along 461 

the elevation gradient. Moreover, our ensemble simulations show that the variations of the 462 

simulated mineral and OM accretion along the elevation gradient differ substantially among the 463 

coastal wetland sites. 464 

For Venice Lagoon, all of the seven mineral accretion and four OM accretion algorithms 465 

can predict the observed long-term mineral accretion rate of 3.54 mm yr-1 and the observed long-466 

term OM accretion rate of 132 gC m-2 yr-1, respectively, at the observation station that is about 467 

0.2 km from the marsh shore edge (Figure 10). The good model performance does not rely on 468 

which OM accretion or mineral accretion algorithm is combined. For example, for the F06 469 

mineral accretion algorithm, its combination with the M12 OM accretion algorithm performs 470 

comparably to that with the DA07 OM accretion algorithm. Despite the convergence of different 471 

algorithms at the observation station, the simulated summer aboveground biomass, OM accretion 472 

and mineral accretion along the elevation gradient differ substantially among the algorithms 473 

(Figure 10). For the summer aboveground biomass at the saltmarsh, the M12 algorithm predicts 474 

an increasing trend with elevation, while the other three algorithms predict slight decreases 475 

(Figure 10a). Also, the marsh aboveground biomass simulated by M12 is much higher than those 476 

by the other algorithms (Figure 10a), even though the estimates are all within the reported range 477 

of 1–3 kg m-2 (Tambroni & Seminara, 2012). Driven by the change of aboveground biomass, the 478 

M12 algorithm predicts an increase of OM accretion with elevation and the algorithms of DA07 479 

and K16 predicts a decrease (Figure 10b). However, KM12 predicts an increase of OM accretion 480 
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with elevation despite the decrease of simulated aboveground biomass. It is because KM12 481 

simulates a much larger increase of the root:shoot quotient along the elevation gradient. For 482 

mineral accretion, the algorithms of F06 and KM12 predict a moderate increase with elevation, 483 

the algorithms of F07 and VDK05 predict its moderate decrease, and the other algorithms predict 484 

its rapid decrease (Figure 10c). As a result, the simulated mineral accretion differs remarkably at 485 

both the marsh shore edge and the marsh-upland interface. For example, at the saltmarsh edge, 486 

the estimate by T03 is over 6 mm yr-1 but that by F06 is less than 4 mm yr-1. In contrast, at the 487 

1.5 km to the edge, the estimate by T03 falls close to zero but that by F06 is over 4 mm yr-1. 488 

Importantly, our model can provide the multi-algorithm ensemble estimate of mineral and OM 489 

accretion over the saltmarsh, which shows that the total accretion gradually decreases along the 490 

elevation gradient with the importance of OM accretion moderately increasing (Figure 10d). 491 

However, mineral accretion is almost always the dominant source over the saltmarsh platform. It 492 

should be noted that this more robust signal would be difficult to discern using single-algorithm 493 

simulations.  494 

For Plum Island Estuary, when comparing with more spatiotemporally resolved 495 

validation data, some mineral and OM accretion algorithms show clearly better performance than 496 

the others. For instance, while all the OM accretion algorithms provide satisfactory simulations 497 

of the summer aboveground biomass distribution along the elevation gradient, M12 seems to 498 

capture the higher saltmarsh biomass at the edge more reasonably (Figure 11a). Also, the 499 

algorithms of DA07 and KM12 can simulate the seasonality of the saltmarsh biomass at the high 500 

marsh station LAC (1.1 masl), while the algorithms of M12 and K16 cannot simulate any 501 

seasonality (Figure 11c). All the OM accretion algorithms successfully predict the observed 502 

long-term OM accretion rate (69.9±9.4 gC m-2 yr-1) within the elevation range of 0–1.5 masl 503 
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(Figure S3). Furthermore, we find that all the mineral accretion algorithms except F06 and 504 

KM12 can reproduce the observed long-term mineral accretion rates at the Spartina alterniflora-505 

dominated low marsh station MRS (6.9±0.9 mm yr-1), the Spartina alterniflora-dominated high 506 

saltmarsh station LAC (5.3±0.1 mm yr-1) and the Spartina patens-dominated high saltmarsh 507 

station LPC (2.3±0.1 mm yr-1) (Figure 11d), which shows the decline of mineral accretion along 508 

the elevation gradient. It implies that the use of F06 and KM12 at Plum Island Estuary may lead 509 

to biased predictions of the saltmarsh’s resilience to SLR. Like Venice Lagoon, the multi-510 

algorithm ensemble estimate indicates that the total accretion gradually decreases along the 511 

elevation gradient with the importance of OM accretion increasing (Figure 11e). However, 512 

different from Venice Lagoon, OM accretion can dominate the total accretion at some high 513 

marsh areas of Plum Island Estuary. This is possibly because the platform of Plum Island Estuary 514 

has a much larger elevation gradient than that of Venice Lagoon (Figure 3) that impairs the 515 

landward transport of suspended sediment. 516 

For Hunter Estuary, different mineral and OM accretion algorithms can also reproduce 517 

the observed long-term mineral accretion rate (3.66 mm yr-1) and OM accretion rate (105 gC m-2 518 

yr-1) at the mangrove-dominated station (0.56 mAHD) after calibration (Figure 12). All the four 519 

OM accretion algorithms predict the decrease of aboveground biomass along the elevation 520 

gradient and from the mangrove-dominated area at low elevations to the saltmarsh-dominated 521 

area at high elevation (Figure 12a). The simulated aboveground biomass is consistent with the 522 

reported values that are 1000 g m-2 and 900 g m-2 for mangrove and saltmarsh, respectively 523 

(Rodríguez et al., 2017). Driven by aboveground biomass, the simulated OM accretion by M12, 524 

DA07 and K16 decreases along the elevation gradient (Figure 12b). The simulated OM accretion 525 

by KM12 increases with elevation despite the negative relationship between aboveground 526 
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biomass and elevation. As discussed for Venice Lagoon, it is caused by a much larger increase of 527 

the root:shoot quotient along the elevation gradient parameterized in KM12. The discontinuity of 528 

the simulated OM accretion at the mangrove-saltmarsh boundary by the DA07 is because the 529 

root:shoot quotient of saltmarsh species in the DA07 is set to be higher than that of mangrove 530 

species (Kakeh et al., 2016), but these quotient ratios may also vary depending on the 531 

hydrodynamic conditions and salinity gradient (Sandi et al., 2021). In Hunter Estuary, the 532 

simulated mineral accretion on the platform shows two spatial patterns: the nearly constant rate 533 

by the algorithms of F06, T03 and KM12 and the decline rate by the other algorithms (Figure 534 

12c). Notably, in the latter group, the simulated mineral accretion rate at the wetland shore edge 535 

is well above 10 mm yr-1, which is much higher than that at Venice Lagoon and Plum Island 536 

Estuary, but the variation of accretion across the section follows a similar general as other of 537 

recent eco-geomorphic simulations in the Hunter Estuary using a simplified 2-D domain (Breda 538 

et al. 2021). The multi-algorithm ensemble estimates show that mineral accretion dominates the 539 

total accretion in all the areas of the platform except the area close to the wetland-upland 540 

boundary (Figure 12d). As explained for Plum Island Estuary, it is mainly because the large 541 

platform slope at Hunter Estuary impairs the landward transport of suspended sediment (Figure 542 

3).  543 

4. Discussion 544 

4.1. Algorithm-level uncertainties of modeling coastal wetland eco-geomorphology  545 

It is not surprising that significant algorithm-level uncertainties exist in the modeled eco-546 

geomorphology at the three coastal wetland sites. However, our study shows that a multi-547 

algorithm ensemble simulation approach may provide more robust signals about the evolution of 548 

coastal wetlands in different environments and thus help reduce the prediction uncertainty. For 549 



 25

example, the multi-algorithm ensembles reveal that it is critical to represent OM accretion in the 550 

coastal wetland eco-geomorphology models to realistically predict coastal wetland resilience 551 

under future SLR. This is because while OM accretion may only account for 10% of the total 552 

accretion at low-elevation saltmarsh or mangrove, its contribution in the higher elevation areas is 553 

much larger and even surpasses the contribution from mineral accretion. As a result, ignoring 554 

OM accretion would cause a significant underestimation of coastal wetland survival.  555 

To reduce the algorithm-level uncertainty in the simulation of coastal wetland evolution, 556 

it is also important to constrain mineral and OM accretion algorithms using observations from at 557 

least two locations at different elevations of a coastal wetland site. For example, if mineral 558 

accretion was only observed at the Spartina patens-dominated high saltmarsh station LPC and 559 

the algorithm of F06 or KM12 was chosen for modeling, the prediction on the resilience of 560 

coastal wetlands to SLR would be severely biased. Thus, new observations should be prioritized 561 

to capture the elevation and vegetation gradients of mineral and OM accretion. Although we 562 

focus on the model structural uncertainty and thus carefully calibrate the model parameters for 563 

each algorithm in this study, the use of multi-location observations at different elevations can 564 

also help reduce the parameter uncertainty of eco-geomorphology modeling. For instance, for 565 

Plum Island Estuary, if only the LPC station is benchmarked, even those good algorithms (i.e., 566 

T03, M12, F07, VDK05 and DA07), albeit reproducing the decline of mineral accretion with 567 

elevation, would produce widespread estimates of mineral accretion at the low-marsh station 568 

MRS.   569 

Although the existence of substantial algorithm-level uncertainties in coastal wetland 570 

eco-geomorphology models is expected, due to the variations of coastal wetland characteristics, 571 

such as tidal range, SSC, topography, and vegetation species, they cannot be fully learned by 572 
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analyzing the mathematical formulations only. Instead, these uncertainties must be carefully 573 

evaluated using a multi-algorithm approach like MACES. For example, as the mineral accretion 574 

algorithms of F06 and KM12 use spatially constant SSC to derive sediment deposition, it would 575 

be expected that the estimated mineral accretion by these two algorithms is uniform over coastal 576 

wetland platforms. However, with the simulated bottom shear stress declining with the water 577 

depth along the elevation gradient, the simulated force to resuspend sediment decreases in higher 578 

elevation wetland and correspondingly sediment deposition is simulated to increase along the 579 

elevation gradient. Furthermore, this effect varies among the coastal wetland sites due to the 580 

difference in tidal range, topography and vegetation species (Figures 10–12). Similarly, while it 581 

is expected that the simulated mineral accretion by M12, F07, VDK05 and DA07 would decrease 582 

with elevation because the modeled SSC in the interior areas decreases due to deposition and 583 

sediment resuspension is weak over the vegetated platform, it is still difficult to discern which 584 

algorithm simulates the strongest declining effect without testing the algorithms in a united 585 

hydrodynamics model.  586 

4.2. Modeling coastal wetland eco-geomorphology in diverse environments 587 

Coastal wetlands are an important ecosystem type spanning broad geographic regions, 588 

from tropical and subtropical mangroves, midlatitude saltmarshes to arctic coastal tundra (Keddy, 589 

2000). Through the application of a multi-algorithm model framework developed in this study, 590 

we show that the uncertainties of coastal wetland eco-geomorphology models should be 591 

evaluated for coastal wetlands in diverse environments. Previous studies that rely on the 592 

knowledge of a single type of coastal wetlands for the prediction of large-scale coastal wetland 593 

response to SLR may lead to unreliable conclusions. For example, while Venice Lagoon and 594 

Plum Island Estuary are both saltmarshes, due to the difference in environments, there are 595 
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substantial distinctions on the simulated mineral and OM accretion at the two sites, including the 596 

much more important role of OM accretion to the rise of saltmarsh bed against SLR at Plum 597 

Island Estuary. Correspondingly, a multi-algorithm approach that include diverse eco-598 

geomorphology algorithms can be more capable to predict large-scale coastal wetland evolution. 599 

As demonstrated in the study, MACES includes the mineral and OM accretion algorithms that 600 

can be applied to the most common plant species of coastal wetlands (Crase et al., 2013; Day Jr 601 

et al., 1999; Kirwan & Mudd, 2012; Liu et al., 2020; Morris et al., 2002; Mudd et al., 2010; 602 

Temmerman et al., 2003b): Spartina alterniflora, Spartina patens, Puccinellia palustris, 603 

Spartina maritima and Avicennia marina. Particularly, very few eco-geomorphology modeling 604 

studies have included both saltmarsh and mangrove. These algorithms can also be applied to 605 

different tidal ranges (microtidal and macrotidal) and climate (Mediterranean climate, humid 606 

continental climate and humid subtropical climate). Furthermore, although we have not validated 607 

the algorithms of wave-action erosion and landward migration in this study, they have been 608 

implemented in the MACES model. The inclusion of these processes in the multi-algorithm 609 

approach would further extend the model’s applicability to diverse environments.  610 

As the algorithm-level uncertainties of eco-geomorphology models are site dependent, 611 

this multi-algorithm model framework can also be used to select appropriate eco-geomorphology 612 

algorithms for specific coastal wetland environment. For example, our simulation indicates that it 613 

is better to avoid the use of F06 and KM12 to predict the evolution of coastal wetlands in an 614 

environment similar to Plum Island Estuary but these two mineral accretion algorithms can still 615 

be useful for coastal wetlands like Venice Lagoon. To extend this algorithm selection strategy to 616 

the global scale, it would need the related observations across diverse environments. Currently, 617 

there have already been many published datasets of mineral and OM accretion from coastal 618 
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wetlands across broad regions (Breithaupt et al., 2012; Chmura et al., 2003; Crosby et al., 2016; 619 

Lovelock et al., 2015; Parkinson et al., 2017). The next step would be to identify and survey 620 

geographic and ecological factors that are crucial for the classification of coastal wetlands. 621 

Nevertheless, the development of this multi-algorithm coastal wetland eco-geomorphology 622 

model will facilitate the reduction of algorithm-level uncertainties in global applications. 623 

4.3. Limitations and future work 624 

To prioritize computational efficiency and the representation of suspended sediment 625 

dynamics, we have chosen to model coastal wetland eco-geomorphology on a simplified 1-D 626 

coastal transect. As a result, the MACES model cannot resolve the detailed spatial heterogeneity 627 

of coastal wetland dynamics that are needed for decision making and damage mitigation. For 628 

instance, while the model can assess the overall wetland vulnerability under SLR, it cannot be 629 

used to locate specific areas for remedy. Additionally, because the simulated variables are not 630 

linked with specific locations, the impact of SLR and other climate extremes on the ecosystem 631 

services of coastal wetlands cannot be reasonably evaluated by the current MACES framework. 632 

A possible solution is to use the emerging machine learning techniques to downscale low-fidelity 633 

high-efficiency hydrodynamics models to emulate the high-fidelity low-efficiency 634 

hydrodynamics models (Feng et al., 2023; Fraehr et al., 2023). 635 

Although we intend to drive all the mineral and OM accretion algorithms with the same 636 

hydrodynamic conditions, particularly water level and SSC, due to the impact of vegetation on 637 

the transect surface roughness (Eq. S1.3), the simulated hydrodynamics would be changed by the 638 

choice of mineral and OM accretion algorithms. As a result, the simulated differences of mineral 639 

and OM accretion may not be fully caused by the algorithm-level uncertainties. 640 
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Another limitation of the model is the very simplified representation of the biological and 641 

biogeochemical processes in MACES that could limit the prediction accuracy of OM accretion. 642 

Despite the importance of macroclimatic drivers (particularly air temperature) to the evolution of 643 

coastal wetlands under climate change (Osland et al., 2016), the related effects are either 644 

neglected or only simply parameterized in the MACES algorithms (D’Alpaos et al., 2007; Kakeh 645 

et al., 2016; Kirwan & Mudd, 2012; Morris et al., 2012), which would cause biased estimates of 646 

sediment deposition, OM deposition and coastal wetlands resilience (Schoutens et al., 2019). In 647 

the future, it is thus necessary to adopt some advanced developments of vegetation dynamics and 648 

biogeochemistry from more complex land surface models (Oleson et al., 2013). In addition, it 649 

will be valuable to extend the framework to the other two processes (Table 1), including 650 

landward migration and wave-action erosion, which are also important for coastal wetland 651 

resilience (Mariotti & Fagherazzi, 2010; Schuerch et al., 2018) but have not been evaluated due 652 

to data limitation. 653 

Our future work will also include the application of the model framework to the global 654 

scale. One challenge is to delineate 1-D coastal wetland transects for different regions of the 655 

world which needs high-quality high-resolution digital terrain and land cover data. Some 656 

recently published datasets, such as 30-m resolution high-quality Forest And Buildings removed 657 

Copernicus Digital Elevation Model (FABDEM) (Hawker et al., 2022) and the high-resolution 658 

global distribution map of mangroves and saltmarshes compiled by US Geological Survey and 659 

the World Conservation and Monitoring Centre (http://data.unep-wcmc.org/), may facilitate the 660 

model’s global applications.  661 

5. Conclusion 662 
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We developed a multi-algorithm model framework MACES to evaluate the algorithm-663 

level uncertainties of mineral and OM accretion modeling based on consistent hydrodynamic 664 

conditions. This model framework was validated for hydrodynamics and mineral and OM 665 

accretion at three representative coastal wetland sites of diverse environments: the microtidal 666 

saltmarsh site of Venice Lagoon, the macrotidal saltmarsh site of Plum Island Estuary, and the 667 

microtidal mangrove and saltmarsh mixed site of Hunter Estuary. The MACES model can 668 

reproduce the observed dynamics of water depth, wave, and bottom shear stress and also the 669 

observed long-term mineral and OM accretion. As expected, our approach shows that there are 670 

significant algorithm-level uncertainties in coastal wetland eco-geomorphology models, which 671 

can lead to divergent estimates of the coastal wetland vulnerability under SLR. In contrast, multi-672 

algorithm ensemble estimates from MACES can provide more robust signals on the evolution of 673 

coastal wetlands. Additionally, our study indicates that more observations of mineral and OM 674 

accretion along the elevation gradient of coastal wetlands and the evaluation of the coastal 675 

wetland models at different sites of diverse environments can also help reduce the model 676 

uncertainty. The MACES framework provides a useful tool to realistically predict the fate of 677 

coastal wetlands under climate change at large scales. 678 

 679 

Open Research 680 

The MACES source code can be freely downloaded from Tan (2023) and will be routinely 681 

updated at https://github.com/tanzeli1982/MACES. The data used in this study are publicly 682 

available at Tan et al. (2023). 683 
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Figure Captions 977 

Figure 1. Model framework for algorithmic comparison of model response of coastal wetland to 978 

future environmental stresses. The model comparison platform builds on a 1-D coastal 979 

hydrodynamic model which simulates the dynamics of sediment, salinity, nutrients, water 980 

inundation, bottom shear stress and other hydrodynamic processes over three coastal landscapes. 981 

Processes tested in this paper include Mineral accretion and Organic matter accretion; Landward 982 

migration and Wave-action erosion will be tested in the future. 983 

Figure 2. Sketch of the coastal system and notations. L denotes the 1-D transect domain of 984 

coastal landscapes with Lf as the domain of tidal flats and Lw as the domain of coastal wetland. 985 

MSL is mean sea level, MHT is mean high tide water level, and WL is water level. The notations 986 

of H, h and η represent water level relative to MSL, water depth and bottom elevation relative to 987 

MSL. H0 is the water level at the seaward boundary and η0 is the bottom elevation at the seaward 988 

boundary. 989 

Figure 3. The elevation of 1-D MACES transects (solid lines) for Venice Lagoon, Plum Island 990 

Estuary and Hunter Estuary. Horizontal dash lines represent sea levels and vertical dash lines 991 

represent the ocean edge of coastal wetland. 992 

Figure 4. Dynamics of simulated (black solid line) and observed or benchmark (red solid line 993 

with dots) water level, significant wave height and bottom shear stress at the two stations (1BF 994 

and 2BF) of Venice Lagoon during two time periods: 12/10/2002–12/11/2002 and 4/2/2003–995 

4/4/2003. Black dashed lines in (a), (b), (g) and (h) represent the estimated water depth at the two 996 

stations by assuming the water level spatially uniform across the transect. Blue dashed lines in 997 

(c), (d), (i) and (j) represent the measured wind speed. Black dashed lines in (e), (f), (k) and (l) 998 

represent the simulated current-induced bottom shear stress.  999 
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Figure 5. Comparison of simulated (black solid line) and observed (red dashed line) water depth 1000 

at the channel station at an elevation of -1.45 masl (a and b) and the Spartina-dominated 1001 

saltmarsh station at an elevation of 1.69 masl (c and d) in Plum Island Estuary during two time 1002 

periods: 7/19/2017–7/22/2017 and 10/7/2017–10/10/2017. Black dashed lines represent the 1003 

estimated water depth at the two stations by assuming the water level spatially uniform across 1004 

the transect. 1005 

Figure 6. Comparison of simulated (black solid line) and benchmark (red dashed line) water 1006 

depth at the channel station at an elevation of -0.22 mAHD (a), the mangrove edge station at an 1007 

elevation of 0.05 mAHD (b), the mangrove interior station at an elevation of 0.38 mAHD (c) and 1008 

the saltmarsh edge station at an elevation of 0.65 mAHD (d) of Hunter Estuary during 1009 

9/28/2004–9/30/2004. Black dashed lines represent the estimated water depth at these stations by 1010 

assuming the water level spatially uniform across the transect. 1011 

Figure 7. Comparison of observed column-integrated suspended sediment concentration (black) 1012 

with simulated suspended sediment concentration simulated by seven mineral accretion 1013 

algorithms at the 1BF station of Venice Lagoon during 12/10/2002–12/11/2002. 1014 

Figure 8. Comparison of observed column-integrated suspended sediment concentration (black) 1015 

with suspended sediment concentration simulated by seven mineral accretion algorithms at the 1016 

channel station at an elevation of -1.45 masl (a) and the Spartina-dominated saltmarsh station at 1017 

an elevation of 1.69 masl (b) in Plum Island Estuary during the period of 7/19/2017–7/22/2017. 1018 

Figure 9. Comparison of benchmark column-integrated suspended sediment concentration 1019 

(black) with suspended sediment concentration simulated by seven mineral accretion algorithms 1020 

at the channel station at an elevation of -0.22 mAHD (a), the mangrove edge station at an 1021 

elevation of 0.05 mAHD (b), the mangrove interior station at an elevation of 0.38 mAHD (c) and 1022 
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the saltmarsh edge station at an elevation of 0.65 mAHD (d) in Hunter Estuary during 1023 

9/28/2004–9/30/2004. 1024 

Figure 10. Comparison of the simulated mean aboveground biomass in July 2002 by four 1025 

MACES algorithms (a), comparison of the simulated long-term OM accretion by four MACES 1026 

algorithms (b), comparison of the simulated long-term mineral accretion by seven MACES 1027 

algorithms (c), and the mean (solid line) and standard deviation (shared area) of the simulated 1028 

long-term total accretion and the contribution of OM accretion to total accretion (d) over the 1029 

saltmarsh of Venice Lagoon. Black stars in (b) and (c) represent the observed long-term OM and 1030 

mineral accretion, respectively. 1031 

Figure 11. Comparison of the simulated aboveground biomass in July 2018 at three elevation 1032 

zones by four MACES algorithms (a), comparison the simulated long-term OM accretion by four 1033 

MACES algorithms (b), comparison of the simulated monthly mean aboveground biomass 1034 

during 2017–2018 at the LAC station by four MACES algorithms (c), comparison of the 1035 

simulated long-term mineral accretion by seven MACES algorithms (d), and the mean (solid line) 1036 

and standard deviation (shared area) of the simulated long-term total accretion and the 1037 

contribution of OM accretion to total accretion (d) over the Plum Island wetland. Gray bars in (a), 1038 

(c) and (d) represent the mean and standard deviation of the observed summer aboveground 1039 

biomass, monthly mean aboveground biomass, and long-term mineral accretion, respectively. 1040 

Figure 12. Comparison of the simulated mean aboveground biomass in July 2004 by four 1041 

MACES algorithms (a), comparison of the simulated long-term OM accretion by four MACES 1042 

algorithms (b), comparison of the simulated long-term mineral accretion by seven MACES 1043 

algorithms (c), and the mean (solid line) and standard deviation (shared area) of the simulated 1044 

long-term total accretion and the contribution of OM accretion to total accretion (d) over the 1045 
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Hunter Estuary wetland. Black stars in (b) and (c) represent the observed long-term OM and 1046 

mineral accretion at the mangrove-dominated station of 0.56 mAHD in elevation, respectively. 1047 
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Table 1. Summary of the MACES-geomor eco-geomorphology algorithms. 1048 

Eco-geomorphology Category Algorithm 

Mineral accretion 

Only sediment deposition F06 (French, 2006); T03 (Temmerman et al., 2003) 

Both sediment deposition and vegetation trapping KM12 (Kirwan & Mudd, 2012) 

Both sediment deposition and erosion 
F07 (Fagherazzi et al., 2007); VDK05 (van de Koppel et 

al., 2005) 

Sediment deposition, vegetation trapping and erosion DA07 (D’Alpaos et al., 2007); M12 (Morris et al., 2012) 

OM accretion 

No growth seasonality and static shoot:root ratio M12 (Morris et al., 2012) 

Growth seasonality and static shoot:root ratio DA07 (D’Alpaos et al., 2007); K16 (Kakeh et al., 2016) 

Growth seasonality, dynamic shoot:root ratio and 

dynamic carbon turnover 
KM12 (Kirwan & Mudd, 2012) 

Storm surge erosion Linear function of wave power L16 (Leonardi et al., 2016) 

Landward migration Inundation and salinity thresholds 
R20 (Reyes et al., 2000); R17 (Rodríguez et al., 2017); 

S18 (Schuerch et al., 2018) 

  1049 

 1050 

 1051 

 1052 

 1053 

 1054 

 1055 
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Table 2. Characteristics and observational data of the three coastal wetland sites. 1056 

Site Name Location Tidal range Wetland Evaluation data Data source 

Venice Lagoon 45°33′N/12°27′E 0.84 m Salt marshes 

Water level, significant wave height, 

suspended sediment, bottom shear 

stress, long-term mineral accretion, 

long-term OM accretion 

Bellucci et al. (2007); Carniello 

et al. (2011, 2012); Roner et al. 

(2016)  

Plum Island 

Estuary 
42°49′N/70°49′W 4.45 m Salt marshes 

Water level, suspended sediment, 

aboveground biomass, long-term 

mineral accretion, long-term OM 

accretion 

Coleman & Kirwan (2020); 

Giblin (2018, 2019); Morris & 

Sundberg (2006, 2020); Vallino 

(2018); Wang et al. (2019); 

Wilson et al. (2014) 

Hunter Estuary 32°55′S/151°48′E 1.11 m 
Mangroves, salt 

marshes 

Water level, suspended sediment, 

long-term mineral accretion, long-

term OM accretion 

Howe et al. (2009); Sandi et al. 

(2018); Rodríguez et al. (2017) 
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