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Key Points:18

• The Geostationary Operational Environmental Satellites-R Series can estimate gross19

primary productivity every half hour.20

• A light response curve provides the best agreement with gross primary produc-21

tivity estimated at an Ameriflux oak savanna site.22

• Diurnal satellite-based estimates of gross primary productivity follow the shift to-23

wards the mornings during the dry summers at the site.24
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Abstract25

Gross Primary Productivity (GPP) is the largest flux in the global carbon cycle and satellite-26

based GPP estimates have long been used to study the trends and inter-annual variabil-27

ity of GPP. With recent updates to geostationary satellites, we can now explore the di-28

urnal variability of GPP at a comparable spatial resolution to polar-orbiting satellites29

and at temporal frequencies comparable to eddy covariance (EC) tower sites. We used30

observations from the Advanced Baseline Imager on the Geostationary Operational En-31

vironmental Satellites - R series (GOES-R) to test the ability of sub-daily satellite data32

to capture the shifts in the diurnal course of GPP at an oak savanna EC site in Califor-33

nia, USA that is subject to seasonal soil moisture declines. We optimized parameters for34

three models to estimate GPP. A light response curve (LRC) achieved the lowest test35

mean absolute error for winter (1.82 µmol CO2 m
−2 s−1), spring (2.51 µmol CO2 m

−2 s−1),36

summer (1.45 µmol CO2 m
−2 s−1), and fall (1.25 µmol CO2 m

−2 s−1). The ecosystem37

experienced the largest shift in daily peak GPP in relation to the peak of incoming so-38

lar radiation towards the morning hours during the dry summers. The LRC and the light-39

use efficiency model were in agreement with these patterns of increasing shift of GPP40

towards the morning hours during the summer months. Our results can help develop di-41

urnal estimates of GPP from geostationary satellites that are sensitive to fluctuating en-42

vironmental conditions during the day.43

Plain Language Summary44

Gross Primary Productivity (GPP) quantifies the draw down of atmospheric CO245

through ecosystem scale photosynthesis. Large scale estimates of GPP are a crucial com-46

ponent of carbon cycle science and can be estimated using satellites. Motivated by the47

recent advances in the spectral coverage and spatial resolution of geostationary (”weather”)48

satellites, we demonstrate how the Advanced Baseline Imager (ABI) on the Geostation-49

ary Operational Environmental Satellites - R series can provide satellite-based, half-hourly50

GPP estimates at the Tonzi Ranch Ameriflux eddy covariance site in California, USA.51

We found that a light response curve is able to achieve the best agreement between ABI-52

based estimates of GPP and GPP partitioned from gas exchange measurements at the53

eddy covariance site. Previous research has demonstrated that the diurnal peak of GPP54

shifts increasingly towards the morning at Tonzi Ranch as the year progresses into the55

dry season. We found that ABI can capture this characteristic seasonal shift of peak di-56

urnal GPP which highlights its ability to measure ecosystem dynamics in addition to the57

weather patterns that help cause them.58

1 Introduction59

Gross primary productivity (GPP) is a critical flux in the global carbon cycle be-60

cause it represents the CO2 that is drawn down from the atmosphere by ecosystems through61

gross photosynthesis. Remotely-sensed observations of the Earth have provided critical62

inputs for global carbon cycle studies and model inter-comparisons, and have revolution-63

ized our understanding of the carbon cycle (Anav et al., 2015; M. Chen et al., 2017; Cramer64

et al., 1999; Field et al., 1995; Jung et al., 2020; Keenan et al., 2012; O’Sullivan et al.,65

2020; Prince & Goward, 1995; Ruimy et al., 1996; Running et al., 2004; Xiao et al., 2019;66

Zhang et al., 2016; Zscheischler et al., 2014). The diurnal to inter-annual variability of67

GPP is determined by limiting resources, climate, weather conditions, disturbance, phe-68

nology, and extreme events (Beer et al., 2010; Gu et al., 2002; Kannenberg et al., 2020;69

Randazzo et al., 2020; Roby et al., 2020; Zscheischler et al., 2014; Stoy et al., 2005). How-70

ever, with existing polar-orbiting satellites we have been largely limited to studying the71

multi-day to inter-annual variability of GPP rather than its dynamic response to envi-72

ronmental variability across the course of a day. With recent advances in the spectral73

coverage and spatial resolution of geostationary imagers commonly used for weather mon-74
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itoring, we argue that we can estimate GPP from space-based observations at sub-daily75

temporal frequencies (Khan et al., 2021; Xiao et al., 2021). This opens up new oppor-76

tunities to study the diurnal cycles of GPP and its response to environmental conditions77

in near real-time (Khan et al., 2021; Xiao et al., 2021). Our ability to develop diurnal78

estimates of carbon fluxes that can respond to changing environmental conditions will79

allow us to provide space-based GPP estimates for future model inter-comparison stud-80

ies and model ensemble estimates at a comparatively higher temporal frequency.81

To start estimating GPP at a sub-daily temporal resolution from space-based ob-82

servations, we can look towards various formulations of GPP’s response to light and en-83

vironmental variability. The development of space-based GPP estimates has largely re-84

lied on relationships between the fraction of photosynthetically active radiation (PAR)85

absorbed by plants (fAPAR) and vegetation indices and Light Use Efficiency (LUE) mod-86

els that can convert absorbed PAR (APAR) to net primary production (NPP) or GPP87

(Anderson et al., 2000; Cramer et al., 1999; Field et al., 1995; Joiner et al., 2018; Ma-88

hadevan et al., 2008; Running et al., 2004; Xiao et al., 2019; Yuan et al., 2014). Vege-89

tation indices developed from remotely sensed reflectance in visible to near-infrared wave-90

lengths, such as the Normalized Difference Vegetation Index or the Enhanced Vegeta-91

tion Index, have served as indicators of fAPAR and are often used to estimate APAR92

in LUE models (Joiner et al., 2018; Mahadevan et al., 2008; Running et al., 2004; Xiao93

et al., 2019; Yuan et al., 2007). Based on the idea that the near infrared radiation re-94

flected by plants is proportional to the PAR absorbed by plants, the near infrared re-95

flectance of vegetation (NIRv) has shown strong linear relationships with GPP and can96

be correlated with fAPAR (Badgley et al., 2017, 2019; Baldocchi et al., 2020; Wu et al.,97

2020). Furthermore, a radiance based (NIRv) was also correlated with GPP and APAR98

across agricultural sites and tropical forest canopies (Merrick et al., 2021; Wu et al., 2020).99

On the ground, temperature-respiration relationships and light response curves calcu-100

lated from solar radiation incident on the surface are widely used to partition Net Ecosys-101

tem Exchange (NEE) from eddy covariance towers into GPP and ecosystem respiration102

(Reco)(Reichstein et al., 2012; Desai et al., 2008; Lasslop et al., 2010; Stoy et al., 2006).103

In terms of capturing the impact of environmental variability, this is mainly accomplished104

by developing environmental stressors from vapor pressure deficit (VPD), air temper-105

ature, land surface temperature (LST), and other variables that can capture moisture106

or temperature stress on GPP (Field et al., 1995; Joiner & Yoshida, 2020; Lasslop et al.,107

2010; X. Li et al., 2021; Running et al., 2004; Yuan et al., 2007).108

The models used to estimate GPP from space-based observations have demonstrated109

a bias during times of soil moisture stress (Sims et al., 2014; Stocker et al., 2019). How-110

ever, models that can couple transpiration and carbon uptake have shown success in cap-111

turing the response of carbon uptake to soil moisture stress (Anderson et al., 2000). Sub-112

daily observations from the Advanced Baseline Imager (ABI) on the Geostationary Op-113

erational Environmental Satellites - R Series (GOES-R) provide an ideal set of obser-114

vations to test whether space-based GPP estimates capture the effects of water limita-115

tion on GPP. This is because the diurnal course of carbon uptake and water loss shift116

in a distinct way that can be indicative of soil moisture deficits due to stomatal regu-117

lation of water loss (Baldocchi, 1997; Tuzet et al., 2003; Schulze & Hall, 1982). With on-118

going projections of increasing drought conditions and heat stress, a key priority for space-119

based GPP estimates is to capture the impact of water stress. The proper investigation120

of diurnal water-use efficiency requires that diurnal relationships between GPP and wa-121

ter fluxes are appropriately captured (Nelson et al., 2018) and this should extend to di-122

urnal space-based GPP estimates as well (Xiao et al., 2021).123

As we begin to leverage the wealth of sub-daily temporal information available from124

the ABI that has similar spectral sensitivity to MODIS and Landsat (Schmit & Gun-125

shor, 2020), we need to assess how the diurnal patterns of ecosystem carbon uptake es-126

timated from remote sensing compare with our current understanding of diurnal patterns127
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in ecosystem carbon uptake. Stomatal regulation through adjustments in stomatal con-128

ductance is the dominant mechanism by which carbon uptake and water loss are cou-129

pled in plants(Cowan & Farquhar, 1977). There are various physiological and environ-130

mental signals that exert a control on stomatal conductance such as CO2 concentrations131

inside the leaf, sugar accumulation, leaf and guard cell water potential, VPD, and PAR132

(Grossiord et al., 2020; Jalakas et al., 2021; Lawson, 2009; Matthews et al., 2017; Meinzer133

et al., 2017; Novick et al., 2016). PAR and VPD have been recognized as the dominant134

environmental drivers of NEE and GPP at diurnal scales if soil moisture, temperature,135

and vegetation phenology do not limit photosynthesis (Stoy et al., 2005). However, dur-136

ing times of soil moisture stress, the diurnal course of stomatal conductance, carbon up-137

take, and water loss do not always follow the symmetric course of solar radiation due to138

additional controls on stomatal conductance (Schulze & Hall, 1982). Diurnal asymme-139

try in ecosystem fluxes of carbon and water have been identified across various climates140

and plant functional types resulting in differences in these fluxes between the morning141

and afternoon and a shift in peak GPP to morning hours (Anderson et al., 2008; Bal-142

docchi, 1997; Bucci et al., 2019; Lasslop et al., 2010; Lin et al., 2019; Konings, Yu, et al.,143

2017; Matheny et al., 2014; Nelson et al., 2018; K. B. Wilson et al., 2003). The diurnal144

shift of peak GPP and evapotranspiration (ET) has been shown to vary closely with mois-145

ture availability because the increased VPD during the afternoons in the face of low soil146

moisture can result in stomatal closure during the afternoon (Matthews et al., 2017; Nel-147

son et al., 2018; Schulze & Hall, 1982). If geostationary satellites can capture these dy-148

namics, we can strengthen our basis for estimating sub-daily GPP from space.149

Here, we provide diurnal estimates of GPP at a 30-minute temporal resolution us-150

ing five-minute mulitspectral data from the Advanced Baseline Imager (ABI) on board151

the Geostationary Operational Environmental Satellites - R Series (GOES-R) and other152

sub-daily products from the GOES-R ABI along with estimates of GPP from the Tonzi153

Ranch (US-Ton) Ameriflux eddy covariance tower in California, USA. During the dry154

summers, the Tonzi Ranch experiences low precipitation and low soil moisture charac-155

teristic of its Mediterranean climate. This provides an ideal case study to test the abil-156

ity of widely-used models and ABI-based estimates of APAR to ask: How well can di-157

urnal estimates of GPP based on radiation inputs from ABI capture diurnal and seasonal158

patterns in GPP at a site experiencing seasonal soil moisture deficits? We analyze the159

diurnal peaks of GPP and latent heat flux (LE) to test whether ABI-based GPP esti-160

mates can capture the shifting diurnal patterns of CO2 uptake and water loss that can161

be indicative of soil moisture stress at this site. We also focus our discussion on oppor-162

tunities to extend GPP estimation using ABI to other ecosystems including key uncer-163

tainties that need to be addressed to advance our ability to monitor GPP in near-real164

time.165

2 Materials and Methods166

2.1 Study site167

Our study site is an oak savanna Ameriflux eddy covariance site located at the Tonzi168

Ranch at the foothills of the Sierra Nevada mountain range near Ione, CA (38.4309 N,169

-120.9660 W, 177 m asl). The annual mean air temperature from 1926 - 2016 near the170

site was reported as 16.6◦C and the average annual precipitation was reported as 546171

mm (Ma et al., 2020). The rainy season can last from October to April and is charac-172

terized by lower levels of incoming solar radiation, net radiation, VPD, and lower diur-173

nal variation in temperatures (i.e. the difference between daily maximum and minimum174

temperatures) (Baldocchi et al., 2004; Xu & Baldocchi, 2003). The site experiences clear175

days, the highest levels of incoming solar radiation, and very little to no precipitation176

during the summer months (Baldocchi et al., 2004; Xu & Baldocchi, 2003). The site also177

experiences the highest VPD during the year along with rapidly declining soil moisture178

during the summer (Baldocchi et al., 2004, 2021; Xu & Baldocchi, 2003). Diurnal vari-179
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ation in temperature also increases during the summer months (Xu & Baldocchi, 2003).180

For our study, we characterized the seasons experienced at our site according to Ma et181

al. (2016) as: winter (Jan. - Mar.), spring (Apr. - Jun.), summer (Jul. - Sep.), and fall182

(Oct. - Dec.).183

Blue oak trees (Quercus douglassi) make up the deciduous overstory of the oak sa-184

vanna while the understory consists of C3 annual grassses and herbs (Baldocchi et al.,185

2004; Ma et al., 2020). The tree canopy is dormant during the rainy winter and leafs out186

during the spring and reaches full photosynthetic capacity (Xu & Baldocchi, 2003). The187

rainy season provides soil moisture for the trees which is drawn down gradually through188

transpiration into the summer months (Baldocchi et al., 2004; Ma et al., 2016). The tree189

canopy is able to maintain photosynthesis and transpiration during the dry season through190

the ability to regulate water loss and access of some roots to ground water (Baldocchi191

et al., 2004). The trees lose their leaves in late autumn and the understory grasses ger-192

minate after the first rainfall of autumn (Baldocchi et al., 2004; Ma et al., 2016). The193

understory grows throughout the winter and spring, but dies before the dry summer months194

(Ma et al., 2020; Baldocchi et al., 2004). Both GPP and evapotranspiration peak dur-195

ing the spring after the trees become photosynthetically active (Baldocchi et al., 2021;196

Ma et al., 2016, 2020). The soil is an Auburn very rocky silty loam with 37.5 - 48 % sand,197

42 - 45 % silt, and 10 - 17.5 % clay depending on under canopy or open space areas (Baldocchi198

et al., 2004).199

2.2 Data200

2.2.1 ABI201

We used the GOES-R ABI Level 1b top-of-atmosphere (TOA) radiances (ABI-L1b-202

RadC) from GOES-16 and GOES-17. ABI-L1b-RadC is delivered at a five-minute tem-203

poral resolution over the conterminous United States (CONUS). The spatial resolution204

of the near-infrared (NIR) band (central wavelength: 0.86µm) is 1 km at nadir and the205

spatial resolution of the red band (central wavelength: 0.64µm) is 0.5 km at nadir (Schmit206

& Gunshor, 2020). The red band TOA radiance was aggregated to the 1 km at nadir207

scale using the median TOA radiance. ABI-L1b-RadC is available on Amazon Web Ser-208

vices and was accessed with S3Fs, a python module for accessing Amazon S3 buckets209

with ABI data. The TOA radiances (Ltoa) were converted to TOA reflectance factors210

(ρftoa) as described in the GOES-R Product Definition and User’s Guide (PUG) (NASA,211

2019):212

ρftoa = κLtoa (1)213

κ =
πd2

Esun
(2)214

where d is the Earth-Sun distance (Astronomical Units) and Esun is the solar ir-215

radiance for a given band (Wm−2µm−1) (NASA, 2019). κ, d, and Esun are provided in216

the product metadata for each band (NASA, 2019). The five-minute ABI Level 2 Clear217

Sky Mask for CONUS (ABI-L2-ACMC) was used to identify clear observations. ABI-218

L2-ACMC and the hourly Downward Shortwave Radiation (DSR) (ABI-L2-DSRC) (NASA,219

2018) were downloaded through the National Oceanic and Atmospheric Administration’s220

Comprehensive Large Array-Data Stewardship System (CLASS). At the coordinates of221

the Tonzi Ranch, we extracted the TOA reflectance factors for the NIR band and the222

red band calculated from ABI-L1b-RadC along with DSR values from ABI-L2-DSRC223

and clear/cloudy flags from ABI-L2-ACMC. Quality flags provided in the metadata of224

ABI-L1b-RadC and the clear sky flag from ABI-L2-ACMC were used to identify clear225
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Table 1: Number of clear sky and good quality observations available from 5-minute
ABI-L1b-RadC and hourly ABI-L2-DSRC by season and the ABI on GOES-16 (16) and
GOES-17 (17).

Season ABI ABI-L1b-RadC ABI-L2-DSRC

Winter 16 18494 1233
Winter 17 15366 1216
Spring 16 24761 1853
Spring 17 25877 1867
Summer 16 35324 1828
Summer 17 31798 1825
Fall 16 32467 1108
Fall 17 24644 1102

and good quality observations from ABI-L1b-RadC to estimate surface reflectance. Ta-226

ble 1 shows the number of good quality clear observations from ABI-L1b-RadC and ABI-227

L2-DSRC for each season.228

The surface bidirectional reflectance was estimated from TOA bidirectional reflectance229

factors from ABI using the radiative transfer equations of Qin et al. (2001) as previously230

used by He et al. (2019) to estimate surface reflectance from ABI TOA data. Similar231

to previous efforts with ABI and MODIS data (He et al., 2012, 2019), we used The Sec-232

ond Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer model233

with the python-based Py6S (R. Wilson, 2013) to estimate the following atmospheric pa-234

rameters with the assumption of a Lambertian ground reflectance: path reflectance, spher-235

ical albedo, atmospheric transmittance, direct fraction of incoming radiation, diffuse frac-236

tion of incoming radiation, and spectral irradiance. The surface anisotropy of reflected237

radiation was characterized by the Ross-Thick volumetric kernel, Kvol, and the Li-Sparse238

geometric kernel, Kgeo (Wanner et al., 1995). The Bidirectional Reflectance Distribu-239

tion Function (BRDF) was estimated as:240

R(θs, θv, ϕr) = fiso + fvol Kvol(θs, θv, ϕr) + fgeo Kgeo(θs, θv, ϕr) (3)241

where θs is the solar zenith angle (SZA), θv is the the view zenith angle (VZA),242

and ϕr is the relative azimuth angle. We estimated fiso, fvol, and fgeo through minimiz-243

ing a least squares cost function between the TOA reflectance factor observed by the ABI244

on GOES-16 and GOES-17 and the TOA reflectance factor estimated by the radiative245

transfer model of Qin et al. (2001). The BRDF coefficients were estimated using obser-246

vations collected at an SZA less than 70 degrees for each day when there were at least247

10 observations available during the day for the red and NIR ABI bands. For each day,248

the VZA from GOES-16 and GOES-17 along with diurnally varying SZA at five-minute249

intervals was used to fit the BRDF model. We used discrete values of aerosol optical depth250

at 550 nm (AOD) as explained in He et al. (2019) with different aerosol types (biomass251

burning, continental, maritime, urban, and stratospheric) to estimate atmospheric pa-252

rameters from 6S. The AOD and and aerosol type combination that resulted in the small-253

est least squares cost function between observed and estimated TOA reflectance was used254

as the values for AOD and aerosol type for the day. To approximate surface reflectance255

at nadir viewing, we calculated the geometric and volumetric kernels at each SZA value256

during the day with a fixed VZA of 0 degrees. Then, we used the BRDF kernel coeffi-257

cients (fiso, fvol, fgeo) to estimate the surface reflectance at nadir throughout the day.258
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2.2.2 Ameriflux eddy covariance tower259

Instrumentation to measure micrometeoriological variables and fluxes were installed260

on a 23 m tower ∼ 10 m above the tree canopy and a separate set of understory flux261

measurements were collected 2 m above the ground (Baldocchi et al., 2021; Ma et al.,262

2001). Wind velocity was measured with a three-dimensional ultrasonic anemometer (Wind-263

Master, Gill Instruments) and CO2 and water vapor fluxes were measured at 10 - 20 times264

per second using an open-path infrared absorption gas analyzer (LI-7500A, LICOR) (Baldocchi265

et al., 2004, 2021). NEE was calculated using the eddy covariance technique and the par-266

titioned GPP and Reco were provided to Ameriflux (Baldocchi et al., 2021; Ma et al.,267

2001). Upward and downward facing quantum sensors (PAR-LITE, Kipp & Zonen) and268

a net radiometer consisting of upward and downward facing pyranometers and pyrge-269

ometers (CNR1, Kipp & Zonen) (Baldocchi et al., 2021) measure broadband radiation270

flux densities in photosynthetically active (400 - 700 nm), shortwave (305 - 2800 nm),271

and longwave (5000 - 50,000 nm) regions. Incident and reflected narrow band radiation272

in the red (central wavelength: 650 nm) and NIR (central wavelength: 810 nm) regions273

was measured with spectral reflectance sensors (SRS-Ni NDVI, Decagon-METER) with274

a hemispherical 180◦ field of view (Baldocchi et al., 2020). Air temperature and relative275

humidity were measured with a platinum resistance temperature detector and humicap276

(HMP45AC, Vaisala). A set of segmented time domain reflectometry probes (Moisture277

Point PRB-K, Environmental Sensors Inc.) and Theta probes (ML2x, Delta-D Devices)278

measure volumetric soil moisture content at depths of 5 - 60 cm (Baldocchi et al., 2021;279

X. Chen et al., 2008).280

The cumulative daytime footprint around the overstory tower from where 80 % of281

the fluxes originate covers oak trees, the understory layer, and open spaces of the savanna282

(Ma et al., 2020). The footprint fetch is asymmetric around the tower and varied between283

318 - 384 m during the daytime and 648 - 866 m during nighttime for 2014 - 2017 (Chu284

et al., 2021). The area of the footprint varied between 234,771 m2 - 230,237 m2 during285

the day and 419,838 m2 - 656,611 m2 at night (Chu et al., 2021). The dominant land286

cover type is classified as grassland/herbaceous in the National Landcover Database and287

makes up a little over 50 % of the area that is 1000 - 3000 m around the tower (Chu et288

al., 2021). The site’s footprint’s representativeness of its surroundings is classified as medium289

at scales of 1000 - 3000 m around the tower during the day (Chu et al., 2021). Previ-290

ous analysis of energy balance closure at the site with a linear regression between net291

radiation and the sum of sensible heat flux, latent heat flux, soil heat flux, and canopy292

heat storage has resulted in an intercept of -10.6 W m−2 and a slope of 1.04 (r2 = 0.94)293

(Baldocchi et al., 2004). Data collected under heavy rainfall (> 10 mm) were removed294

(Baldocchi et al., 2021).295

The hourly ABI DSR data were linearly interpolated to the half-hour temporal res-296

olution of the Ameriflux data. Vegetation indices were calculated from the clear sky, 5-297

minute, nadir-adjusted surface reflectance estimates. The midday medians of the veg-298

etation indices for each day were calculated between hour 10 and 14. Finally, we used299

all available daytime data with a solar zenith angle of less than 70 degrees from 2019 -300

2020 from ABI and Ameriflux for GPP estimation.301

2.3 Estimating GPP302

GPP was estimated using a light-use efficiency model (LUE-NDVI), a linear rela-303

tionship between the product of NIRv and PAR (NIRvP) and GPP (LIN-NIRvP), and304

a light response curve between NIRvP and GPP. The normalized difference vegetation305

index (NDVI) calculated from ABI surface reflectance was used in the LUE-NDVI model306

(Running et al., 2004). NIRv calculated from ABI surface reflectance was used in the307

LIN-NIRvP model and the light response curve between NIRvP and GPP (Baldocchi et308

al., 2020; Dechant et al., 2020). The midday median value of NDVI and NIRv were used.309
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The LUE-NDVI model was specified as (Running et al., 2004):310

GPP = ϵmax Tscale Wscale APAR (4)311

where ϵmax is the maximum canopy LUE (µmol CO2 J
−1) under ideal environmental con-312

ditions and APAR is absorbed photosynthetically active radiation (PAR) (W m−2) and313

is calculated as:314

APAR = fAPAR × PAR (5)315

where fAPAR is the fraction of absorbed PAR and is approximated by the daily mid-316

day median NDVI. NDVI was calculated as:317

NDV I =
ρNIR − ρRed

ρNIR + ρRed
(6)318

where ρNIR is the reflectance in the ABI NIR band and ρRed is the reflectance in the319

ABI red band. PAR was estimated as (Meek et al., 1984; Weiss & Norman, 1985):320

PAR = 0.45DSR (7)321

where DSR is the linearly interpolated ABI Downward Shortwave Radiation from ABI-322

L2-DSRC. We calculated Tscale and Wscale according to the MODIS LUE model (Running323

& Zhao, 2015). Tscale was calculated as (Huang et al., 2021; Running & Zhao, 2015):324

Tscale =


0, if Tair ≤ Tmin

Tair−Tmin

Tmax−Tmin
, if Tmin < Tair < Tmax

1, if Tair ≥ Tmax

(8)325

where Tair(
◦ C) is the air temperature measured at the EC tower. Tmin(

◦ C) is the326

temperature at which LUE is minimum (LUE = 0µmol CO2 J
−1) at any VPD value and327

Tmax(
◦ C) is the temperature, under ideal VPD, at which LUE is maximum (LUE = ϵmax)328

(Running & Zhao, 2015). Wscale was calculated as (Huang et al., 2021; Running & Zhao,329

2015):330

Wscale =


1, if V PD ≤ V PDmin

V PDmax−V PD
V PDmax−V PDmin

, if V PDmin < V PD < V PDmax

0, if V PD ≥ V PDmax

(9)331

where V PD(hPa) is the vapor pressure deficit from the EC tower. V PDmin(hPa) is the332

VPD at which LUE is maximum (LUE = ϵmax) and V PDmax(hPa) is the VPD at which333

LUE is minumum (LUE = 0µmol CO2 J
−1) (Running & Zhao, 2015). The linear rela-334

tionship between NIRvP and GPP was approximated as:335

GPP = ϵref NIRvP (10)336

where ϵref is the slope between GPP and NIRvP . NIRvP was calculated as (Dechant337

et al., 2020):338

NIRvP = NIRv × PAR (11)339

NIRv was calculated as (Badgley et al., 2017):340

NIRv = ρNIR NDV I (12)341

We estimated the GPP term using a light response curve between EC tower partitioned342

GPP and ABI NIRvP:343

GPP =
αNIRvP β

β + αNIRvP
(13)344

where α is the canopy LUE before light saturation is reached (µmol CO2 J
−1) or the ini-345

tial slope of the relationship between GPP and NIRvP and β is the maximum CO2 up-346

take rate at the point of light saturation (µmol CO2 m
−2 s−1) (Reichstein et al., 2012;347
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Lasslop et al., 2010). Light response curves can be used to partition NEE into GPP and348

Reco using incoming solar radiation at the surface (Lasslop et al., 2010). In this case, α349

is directly approximated as the initial LUE of the incident light response. When replac-350

ing incoming solar radiation with NIRvP, a more specific description of α would be the351

initial amount of CO2 taken up with increases in NIRvP (Figure 1). NIRvP’s propor-352

tionality with APAR is the basis by which an NIRvP-based α could approximate an APAR353

based α. The impact of increasing VPD and the resulting stress on the maximum CO2354

uptake rate at light saturation, β, was estimated according to Lasslop et al. (2010) (Fig-355

ure 2):356

β =

{
β0 exp(−k (V PD − V PD0 )), if V PD > V PD0

β0, otherwise
(14)357

where k is the sensitivity of the maximum CO2 uptake rate at light saturation, β, to VPD.358

β0 is the maximum CO2 uptake rate at light saturation during conditions of ideal VPD359

(V PD < V PD0). V PD0 was set as 10 hPa (Lasslop et al., 2010). Atmospheric VPD360

from the EC tower was used here.361

We estimated ϵmax, Tmin, Tmax, V PDmin, V PDmax, ϵref , α, β0, and k through362

minimization of a cost function implemented in the Python-based open-source software,363

SciPy (Virtanen et al., 2020) as:364

minimize 0.5×
n∑

i=1

ρi (15)365

To reduce the influence of outliers, the Huber loss function was used to calculate366

the vector ρ which is also implemented in the Python-based open-source software, SciPy367

(Virtanen et al., 2020) as:368

ρ =

{
z if z ≤ 1

2
√
z − 1 otherwise

(16)369

where z is a vector of the squared errors between estimated GPP and EC tower GPP370

for a daytime half hour i in 1, ..., n during the month for the two years of data. We es-371

timated parameters for each month separately using 2 years of diurnal observations. Sev-372

enty percent of the data for a given month was used for estimating the parameters and373

30 % was used to test GPP estimates from the models against EC tower GPP. The data374

was split into test and training data using the python module Scikit-learn (Pedregosa375

et al., 2011). To test the impact of NEE partitioning, we also estimated all parameters376

using GPP partitioned from two different NEE partitioning approaches in addition to377

the Ameriflux provided GPP (Appendix B).378

2.4 Model evaluation379

We used a robust regression implemented in Python’s statsmodels module to fit380

a linear model between the ABI GPP estimates and the EC tower GPP estimates us-381

ing our test and training data (Seabold & Perktold, 2010). For each model used to es-382

timate GPP from ABI inputs, a linear model was fit by gathering the training and test383

data used for each month into one training and test set for the 2 year study period. Fur-384

thermore, the training and test data used for each month were also pooled into seasonal385

training and test data for each model. We used these seasonal pools of training and test386

data to calculate the mean absolute error , the normalized mean absolute error, and the387

mean error between ABI GPP estimates and EC tower GPP estimates for each season.388

These error summaries were calculated as:389

MeanError =

∑n
i=1 ĜPPi −GPPi

n
(17)390

391

MeanAbsoluteError =

∑n
i=1 |ĜPPi −GPPi|

n
(18)392
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Figure 1: Eddy covariance tower GPP vs. ABI normalized difference vegetation index
(NDVI) × photosynthetically active radiation (NDVIP) × the environmental stresses
developed for the LUE-NDVI model (first column). The black line displays the GPP es-
timates from the LUE-NDVI model. The response of eddy covariance tower GPP to the
ABI near-infrared reflectance of vegetation × PAR (NIRvP) (second column). The dashed
black line displays the GPP estimates using the LIN-NIRvP model. The solid black line
displays the GPP estimates from the LRC-VPD model with β = β0. The response of GPP
to the photosynthetic photon flux density measured at the eddy covariance tower (third
column).
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Figure 2: The response of GPP to vapor pressure deficit (VPD) (1st column). The black
lines shows the values of β estimated using equation 14. The air temperature (2nd col-
umn) and VPD stress (3rd column) on ϵmax from the LUE-NDVI model. A value of 1
means there is no stress and 0 means the stress on ϵmax is maximum.
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393

NormalizedMeanAbsoluteError =
MeanAbsoluteError

GPP
(19)394

where ĜPPi is the ABI-based estimate of GPP and GPPi is the EC tower estimate of395

GPP for a daytime half hour i in 1, ..., n in a given season. GPP is the seasonal mean396

of daytime EC tower estimates of GPP.397

A reflectance based NIRv could be proportional to the fraction of absorbed PAR398

and NIRvP could be proportional to a radiance-based NIRv which has shown propor-399

tionality to APAR (Wu et al., 2020). Therefore, the difference between NIRvP and in-400

cident PAR could be indicative of the differences between incident PAR and APAR. We401

tested if using NIRvP in the light response curve rather than incident PAR contributed402

to the errors between ĜPP and GPP . We compared the errors from each model to the403

difference between a PPFD based NIRvP and incident PPFD measured at the EC tower404

as: NIRvPPPFD−PPFD. To match the units of tower PPFD, PAR (Wm−2) calcu-405

lated from ABI DSR was converted to PAR in PPFD units (µmol Photonsm−2 s−1) as406

(Thimijan & Heins, 1983):407

PPFDABI = 4.57µmol Photons J−1 × PAR (20)

NIRvPPPFD was calculated as:408

NIRvPPPFD = NIRv × PPFDABI (21)

2.5 Diurnal centroids409

The diurnal centroid method (Nelson et al., 2018; K. B. Wilson et al., 2003) was410

used to compare diurnal patterns in water loss and carbon uptake between ABI estimates411

of GPP and EC tower estimates. A diurnal centroid for a given flux was calculated as412

(Nelson et al., 2018; K. B. Wilson et al., 2003):413

Cflux =

∑15
t=9 fluxt t∑15
t=9 fluxt

(22)414

where t is the time in decimal hours from the daylight hours of 9 - 15. We only used days415

when continuous cloud-free observations were available between these hours to calculate416

the diurnal centroid. Cflux has been used as an indicator of diurnal asymmetry in ecosys-417

tem fluxes of water and CO2 (Nelson et al., 2018; K. B. Wilson et al., 2003). For exam-418

ple a Cflux less than 12 would indicate a shift of the flux towards the morning hours and419

a Cflux of greater than 12 would indicate a shift of the flux towards the afternoon (K. B. Wil-420

son et al., 2003). Furthermore, the difference between the diurnal centroids of different421

fluxes was used to study the (mis)alignment of peak fluxes throughout year (K. B. Wil-422

son et al., 2003). To compare the departure of peak GPP from diurnal peak solar radi-423

ation, we took the difference between the diurnal centroids of all GPP estimates from424

the diurnal centroid of incoming shortwave (SW) radiation measured at the EC tower425

(Nelson et al., 2018).426

CGPP ∗ = CGPP − CSWin (23)427

The shift of both peak GPP and ET to morning hours could imply declining soil428

moisture (K. B. Wilson et al., 2003). To test whether the (mis)alignment of diurnal peak429

GPP and LE using ABI-based GPP estimates agreed with EC tower (mis)alignment of430

the diurnal peaks of these two fluxes with varying soil moisture throughout the year, we431

also calculated the daily diurnal centroid of EC tower LE. For each GPP estimate, the432

difference between the centroids of GPP and EC tower LE was calculated as:433

CGPP−LE = CGPP − CLE (24)434
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3 Results435

3.1 Model evaluation436

Estimates of GPP using LRC-VPD achieved the lowest mean error, mean ab-437

solute error, and normalized mean absolute error for the training data during all438

seasons (Table 2). The lowest training normalized mean absolute error (0.26) was439

achieved during the spring season and the highest (0.45) was during the fall. Among440

the test data, LRC-VPD GPP estimates also achieved the lowest mean error, mean441

absolute error, and normalized mean absolute error during all seasons (Table 2).442

Similar to the training data, the lowest test normalized mean absolute error (0.26)443

was during the spring and the highest test normalized mean absolute error was dur-444

ing the fall (0.43). All models used resulted in an underestimate of GPP compared445

to EC tower GPP during all seasons among the training and test data with the446

exception of winter test data (Table 2).447

Diurnal GPP estimates from LRC-VPD and LUE-NDVI follow the diurnal448

course of EC tower estimates of GPP more closely compared to the LIN-NIRvP449

GPP during the spring and summer (Figure 3). LRC-VPD GPP estimates appear to450

follow the shift of peak GPP towards the morning hours during the summer. None451

of the models are able to capture some of the higher diurnal peaks in GPP during452

all four seasons (Figure 3). The LRC-VPD GPP estimates also show better agree-453

ment with the course of seasonal half-hourly means of GPP from EC tower estimates454

during all seasons during the study period (Figure 4).455

The robust regression between GPP estimated with ABI inputs and EC tower456

GPP revealed a similar divergence from a 1:1 relationship among all three models457

and training and test data (Figure 5). At low EC tower GPP values, GPP esti-458

mates from all three models were slightly higher and at high EC tower GPP values,459

GPP estimates from all three models were lower (Figure 5). A robust regression460

between the daily median GPP estimates resulted in relationships that were closer461

to the 1:1 line for all three models (Figure 5). The errors between EC tower GPP462

and estimates of GPP from the LRC-VPD show a tendency of the LRC-VPD to463

underestimate EC tower GPP during times of much higher incident PPFD relative464

to NIRvPPPFD (NIRvPPPFD − PPFD < −1500µmol Photonsm−2 s−1)(Figure465

6). These pattern are consistent when using both ABI NIRvPPPFD and EC tower466

NIRvPPPFD (Figure 6).467

3.2 Diurnal centroids468

Data on GPP, LE, and soil water content in the top 15 cm from the EC tower469

reveal that the soil water content in this layer declines rapidly from April to June470

and the lowest soil water content occurs during July - November (Figure 7). CGPP471

is shifted increasingly earlier in the day matching the rapid decline in soil water con-472

tent through May, June, and July (Figure 7). During times of low soil water content,473

CLE also shifted to earlier in the day; it occurred after CSWin
during the spring and474

early summer and before CSWin
during the months with the lowest soil water con-475

tent (Figure 7). Since VPD peaks during the afternoon throughout the year, CLE476

and CGPP became increasingly aligned as soil water content decreased (Figure 7).477

Below we discuss the results for how these diurnal patterns in the (mis)alignment478

of CLE and CGPP compare with our estimates of GPP from the LRC-VPD, LIN-479

NIRvP, and LUE-NDVI models.480

The diurnal centroids of EC tower GPP and GPP estimates from the LRC-481

VPD and LUE-NDVI models reveal shifting peaks in GPP towards earlier in the day482

as the ecosystem experiences decreasing soil moisture with the progression into the483

summer months (Figure 7). The EC tower GPP estimates resulted in the largest484
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Figure 3: Subsets of seasonal time series of estimates of GPP from all models compared
to estimates of GPP from the eddy covariance tower. The bottom plot shows 8-day means
for all GPP estimates for the study period.
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Figure 4: Seasonal diurnal means of estimates of GPP from all models and diurnal means
of estimates of GPP from the eddy covariance tower. The purple shaded region shows ±2
standard error of the mean eddy covariance tower GPP. The data spans from Jan 2019 -
Dec 2020. The mean diurnal cycle estimated from LRC-VPD GPP estimates is best able
to respond to the increasing diurnal asymmetry in GPP in the summer months. LUE-
NDVI GPP estimates result in mean diurnal cycles that are able to shift slightly towards
morning peaks during the summer. LIN-NIRvP GPP estimates result in symmetric mean
diurnal cycles throughout the year.
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Table 2: Comparison of mean error (ME), mean absolute error (MAE), and normalized
MAE (NMAE) between ABI based GPP estimates and eddy covriance tower GPP esti-
mates. The units for ME and MAE are µmol CO2 m

−2 s−1.

Training data Test data

Season Model ME MAE NMAE ME MAE NMAE

Winter LIN-NIRvP −0.764 2.340 0.388 −0.629 2.313 0.402
Winter LUE-NDVI −0.504 2.042 0.339 −0.380 2.072 0.360
Winter LRC-VPD −0.189 1.772 0.294 0.041 1.816 0.316

Spring LIN-NIRvP −1.152 3.454 0.372 −1.491 3.549 0.371
Spring LUE-NDVI −0.967 2.953 0.318 −1.230 3.066 0.320
Spring LRC-VPD −0.210 2.384 0.257 −0.419 2.506 0.262

Summer LIN-NIRvP −1.252 2.287 0.599 −1.269 2.382 0.610
Summer LUE-NDVI −1.013 2.010 0.526 −0.991 2.068 0.529
Summer LRC-VPD −0.162 1.444 0.378 −0.187 1.448 0.371

Fall LIN-NIRvP −0.474 1.629 0.548 −0.391 1.449 0.504
Fall LUE-NDVI −0.379 1.486 0.500 −0.345 1.375 0.478
Fall LRC-VPD −0.194 1.348 0.454 −0.186 1.249 0.434

(a) (b)

(c) (d)

(e) (f)

Figure 5: For each pair of plots a - f, scatter plots of test data (left) and training data
(right) with eddy covariance tower estimates of GPP versus GPP estimated from LUE-
NDVI (a - b), LIN-NIRvP (c - d), and LRC-VPD (e - f). The diurnal observations were
used for plots a, c, and e. The daily medians of diurnal GPP estimates were used in plots
b, d, and f. The black line shows the 1:1 line. The gray line shows the robust regression
line.
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Figure 6: Errors between estimates of GPP vs. difference between NDV IPPPFD and
tower incoming photosynthetic photon flux density (PPFD) (A). Errors between estimates
of GPP and difference between NIRvPPPFD and tower incoming photosynthetic pho-
ton flux density (PPFD) (B - C). NDV IPPPFD and NIRvPPPFD calculated from eddy
covariance tower NIRv, NDVI and PPFD are used in the right column. NDV IPPPFD

and NIRvPPPFD calculated from ABI NIRv, NDVI and ABI PPFD are used in the left
column. The units for the x-axis are µmol Photonsm−2 s−1 and the units for the y-axis
are µmol CO2 m

−2 s−1
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median CGPP* during the summer months (July - September) with the largest shift485

of peak GPP in September at a median of 0.41 hours before the peak of incoming486

solar radiation. GPP estimates from LRC-VPD and LUE-NDVI resulted in the487

largest median CGPP* during the summer months of July and August in agreement488

with the EC tower (Figure 7).489

The lowest median CGPP* from EC tower estimates occurred during December490

and January when peak GPP was aligned with the peak of incoming solar radiation491

(Figure 7). The lowest median CGPP* according to the LRC-VPD estimates also492

occurred during January (Figure 7). The lowest median CGPP* according to the493

LUE-NDVI estimates occurred during November (Figure 7). GPP estimates from494

LIN-NIRvP resulted in very small shifts in peak GPP in relation to incoming short-495

wave radiation compared to the other GPP estimates throughout the year (Figure496

7).497

Using tower estimates of GPP, the largest median lag between CGPP and CLE498

occurred in July when CGPP lagged 0.46 hours before CLE and the smallest median499

lag occurred in November when median CGPP was aligned with median CLE (Figure500

7). GPP estimates from LRC-VPD and LUE-NDVI resulted in the largest median501

lag between CGPP and CLE during July as well and the smallest median lag during502

January. Estimates of GPP from the LIN-NIRvP model resulted in the largest me-503

dian lag between CGPP and CLE during May and the smallest median lag occurred504

in January (Figure 7).505

4 Discussion506

4.1 Diurnal environmental stresses507

The impact of environmental stresses on GPP at the Tonzi Ranch results from508

the seasonality in available resources along with the active vegetation type during509

any given season (grasses vs. tree canopy) (Baldocchi et al., 2004). Below we discuss510

how the models we tested were able or unable to capture the seasonal shifts from511

radiation limitation to water limitation on GPP. During the rainy winter, spring,512

and fall, the Tonzi Ranch receives the lowest global solar radiation and the oak sa-513

vanna has some of the lowest amounts of net radiation available during this time of514

the year (Baldocchi et al., 2004). Both the Tonzi Ranch and a nearby Mediterranean515

grassland is energy limited during the winter rainy season when precipitation ex-516

ceeds evaporative demand and evaporation is more sensitive to potential evaporation517

driven by radiation (Baldocchi et al., 2021; Ryu et al., 2008).518

The initial light-use efficiency before saturation is reached, α, was lower dur-519

ing the fall, winter and spring months compared to summer. We found the slope520

between GPP and NIRvP in the LIN-NIRvP model is the highest during the winter521

and fall months. Furthermore, according to the LUE-NDVI model, the air tem-522

perature and VPD stress on maximum LUE was negligible and absorbed radiation523

tended to be the main control on GPP during the wet winter months (Figure 2).524

Regardless of each model being able to respond to the increasing radiation limitation525

during the rainy season, LRC-VPD achieved the highest agreement with EC tower526

GPP.527

As previously discussed, the summer months at the Tonzi Ranch oak savanna528

are characterized by high incoming solar radiation, declining soil moisture, high air529

temperatures, and high VPD (Baldocchi et al., 2021). This is also the case for the530

nearby Vaira grassland which is water-limited during the summer months when high531

incoming solar radiation increases evaporative demand and evaporation is more sen-532

sitive to increases in precipitation (Ryu et al., 2008). At the Tonzi Ranch, low soil533

moisture can limit summertime ET and the stomatal response of the oak trees to534
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Figure 7: Difference in diurnal centroids of GPP estimates and incoming shortwave
radiation (SW) measured at the eddy covariance tower (CGPP*) (A). Difference in di-
urnal centroids of GPP estimates and eddy covariance tower latent heat flux (LE) (B).
Difference in diurnal centroids of eddy covariance tower GPP and incoming SW, eddy co-
variance tower LE and incoming SW, and eddy covariance tower VPD and incoming SW
(C). Volumetric soil water content at a depth of 0 - 15 cm (D)

.
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increasing VPD can serve as an indicator of soil moisture stress (Baldocchi et al.,535

2021). The best agreement was achieved between tower GPP and LRC-VPD GPP536

during the water-limited summer through a more accurate specification of the re-537

sponse of GPP to rising VPD during the day. Among the air temperature and VPD538

stressors of the LUE-NDVI model, the VPD stress on maximum light-use efficiency539

was the dominant stress on GPP during the summer.540

The linear relationship between EC tower GPP and NIRvP was the least suc-541

cessful in capturing diurnal asymmetry in GPP because it closely follows the course542

of solar radiation throughout the day and does not capture the impact of increasing543

diurnal VPD. We found the best agreement between the diurnal centroids of GPP544

from LIN-NIRvP and the diurnal centroids of GPP from the EC tower during De-545

cember and January. These months correspond to the rainy season when radiation546

can limit GPP and when peak diurnal GPP tended to be aligned with incoming547

solar radiation. This could explain why these are the only months when LIN-NIRvP,548

which only relies on a linear relationship between a potential indicator of absorbed549

PAR (NIRvP) and GPP, tended to agree with the diurnal course of GPP. It has550

been noted that linearities between GPP proxies and GPP are observed at coarse551

spatiotemporal scales because such scales integrate the structural components and552

physiological processes (the sun-exposed and shaded leaves on a canopy, the impact553

of light saturation, etc.) at fine spatiotemporal scales (Anderson et al., 2000; Mag-554

ney et al., 2020). Our results suggest that fine temporal scales even when the spatial555

scale is > 1 km could be enough to degrade a linear relationship between GPP and556

NIRvP because the impacts of high light and/or other non-linearities driven by mi-557

crometerological variation during the day are not captured by linear relationships558

between GPP and NIRvP.559

4.2 Diurnal dynamics of GPP in relation to soil moisture and evap-560

otranspiration561

The shift of the peak of GPP towards the morning hours with progression562

into the summer months that we found from the LRC-VPD and LUE-NDVI mod-563

els is consistent with reported shifts in the timing of peak photosynthesis at the564

Tonzi Ranch (Tang et al., 2005). The peak of photosynthesis at this site has been565

reported to shift to 9.5 h in July and 9 h during the day in September (Tang et al.,566

2005). Summertime understory measurements of NEE when the grasses are dead567

have shown that soil respiration at the Tonzi Ranch peaks during the afternoon in568

phase with soil temperature during the drought months, while soil respiration under569

tree cover has shown to peak later than soil temperature (Tang et al., 2005). Soil570

respiration under the tree has shown to peak 7 - 12 hours after photosynthesis (Tang571

et al., 2005). The diurnal variation of soil moisture during the summer months is572

small compared to temperature and photosynthesis which has suggested that both573

the diurnal variations of tree photosynthesis and soil temperature drive the diurnal574

variation in soil and stem respiration at the Tonzi Ranch (Tang et al., 2005). In line575

with EC tower GPP, the increasing shift of GPP towards the morning hours that576

we found using the light response curve and the LUE model have been previously577

explained by rising temperatures, increasing Reco, increasing VPD in the afternoon,578

and stomatal closure during the afternoons at the Tonzi Ranch (Tang et al., 2005).579

Seasonally, the peak in surface conductance, GPP, and ET all occur during580

the rainy spring months after the oak canopy becomes photosynthetically active581

(Baldocchi et al., 2004, 2021; Ma et al., 2020). During this time LE (λET ) tended582

to peak after incoming SW resulting in larger differences between the peak of EC583

tower LE and GPP compared to the late summer, fall, and winter months. The584

light response curve and the LUE model were slightly better at capturing the dif-585

ference. This indicates that the high surface conductance and soil moisture that586
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is characteristic of the rainy spring results in the ecosystem being able to respond587

and maintain LE during high afternoon VPD. On the other hand, the Tonzi Ranch588

savanna experiences the lowest surface conductance and LE during the dry summer589

months (Baldocchi et al., 2004). The oak trees also experience a decline in maximum590

net photosynthesis, maximum carboxylation rate, and maximum electron transport591

rate with progression into dry season (Xu & Baldocchi, 2003). With volumetric soil592

water contents below 15%, the ecosystem begins to experience sharp declines in593

ET/ETequilibrium (Baldocchi et al., 2004). During these months, LE shifts increas-594

ingly towards the morning and the differences between the peak of EC tower LE595

and GPP are some of the smallest. Morning shifts in GPP and ET have been previ-596

ously identified in Mediteranean/dry climates (Nelson et al., 2018; K. B. Wilson et597

al., 2003). The ability of the oak trees to access deep ground water resources, their598

ability to reduce leaf area index, and their ability to regulate water loss allows them599

to transpire well into the dry summer months possibly maintaining low stomatal600

conductance or stomatal closure in response to high afternoon VPD (Baldocchi et601

al., 2021, 2004; Tang et al., 2005). We found that the GPP estimates from the light602

response curve with a VPD stress and the LUE-NDVI model were best able to fol-603

low the increasing alignment of peak GPP and LE with decreasing soil moisture.604

Consistency between the diurnal (mis)alignment of peak GPP and LE (specifically605

transpiration, which we did not test) between estimates of GPP from space-based606

inputs and ecosystem gas-exchange measurements can contribute to understanding607

when stomatal reactions or non-stomatal reactions are active at large spatial scales608

(Nelson et al., 2018).609

4.3 Uncertainties and moving forward610

We found that a light response curve between GPP and NIRvP were able to611

capture the increasing diurnal asymmetry in GPP at the Tonzi Ranch. Previous612

research has suggested that the relationship between daily LUE and instantaneous613

LUE can vary with the time of day during which instantaneous LUE is estimated614

(Zhang et al., 2018). Midday light saturation could result in instantaneous LUE615

to be different from estimates of daily LUE (Zhang et al., 2018). However, the616

light-saturated part of the light response curve is hard to reach at the canopy level617

because entire canopies include both saturated and unsaturated leaves and space-618

based sensors capture the integrated response of larger areas that include multiple619

canopies, shaded leaves, and saturated leaves (Magney et al., 2020). The increasing620

saturation in the shape of a light response curve that we found during summer can621

result from high afternoon VPD during conditions of high light and the ecosystem622

regulating water loss during dry conditions through down regulation of transpiration623

through stomtal regulation rather than the sole impact of light saturation.624

Our analysis of model errors revealed that the light response curves tended625

to underestimate GPP compared to EC tower GPP when the differences between626

incident PPFD and NIRvPPPFD are very high. This could mean that LRC-VPD is627

unable to capture the higher EC tower GPP fluxes because of the light saturation628

point in LRC-VPD. On the other hand, the error patterns could also arise from the629

use of NIRvP as a radiation source for GPP and the resulting underestimation of630

GPP compared to EC tower GPP when there are large difference in incident PPFD631

and absorbed PPFD. The large differences between NIRvPPPFD and PPFD could632

occur when the ecosystem receives high PPFD, but NIRvPPPFD could be much633

lower due to seasonal variations in LAI lowering the estimated GPP. Since this pat-634

tern of errors is replicated with the use of NIRv from tower mounted sensors, the635

uncertainties associated with atmospheric and angular correction of ABI TOA re-636

flectances, the disagreement between ABI DSR and tower incoming SW, and the637

conversion of ABI downwelling shortwave radiation to PPFD do not seem to play a638

major role in these error patterns.639
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Finally, our atmospheric correction and BRDF correction could have intro-640

duced additional uncertainty in NIRvP estimates. We found that the diurnal shape641

of NIRv from our nadir approximation of surface reflectance matched the diurnal642

shape of NIRv from the tower mounted sensors at the Tonzi Ranch. However, we643

did find that magnitude of NIRv differed between the two sources. This could result644

from differences in the field of view of the sensors, calibration differences between645

the sensors, the difference between an albedo-based and reflectance-based NIRv, or646

the specification of the atmosphere by 6S in our atmospheric correction. We also647

used a simple least squares cost function between observed TOA and estimated648

TOA compared to cost functions that have been previously applied to ABI TOA649

relflectances which could impact atmospheric and angular correction (He et al.,650

2019).651

Higher-level surface reflectance products from efforts such as the GeoNEX652

pipeline will be crucial for large scale estimates of GPP from geostaionary satel-653

lites (S. Li et al., 2019). Various gap-filling and smoothing techniques need to be654

tested and developed for very high temporal resolution estimates from geostationary655

satellites in order to start providing integrated GPP at daily to longer timescales.656

Diurnal gridded estimates of meteorological variables from reanalysis datasets are657

also needed for large scale GPP estimates from ABI as have been used for diurnal658

space-based GPP estimates (X. Li et al., 2021). The response of GPP or Reco to659

land surface temperature could potentially be used to develop gridded estimates of660

GPP (X. Li et al., 2021) from ABI with ABI LST being offered hourly. Here, we661

have tested the use of ABI LST as opposed to VPD as an environmental stress on662

the maximum CO2 uptake rate of the light response curve (Appendix A). The re-663

sulting GPP estimates result in similar agreement to EC tower GPP compared to664

the LRC-VPD estimates (Figure A2).665

The approaches of partitioning NEE into GPP and ecosystem respiration can666

impact both fluxes (Lasslop et al., 2010; Stoy et al., 2006) and therefore, future667

studies that evaluate the use of multiple partitioning approaches for estimating GPP668

from remotely sensed inputs could be insightful. Here, we tested all three models669

with GPP partitioned using approaches that rely on nighttime data alone and both670

nighttime and daytime data (Appendix B). Using the LRC-VPD and LUE-NDVI,671

we found better agreement between GPP estimates and EC tower GPP using the672

Lasslop et al. (2010) approach that relies on both daytime and nighttime NEE data673

(Figure B1 - B2). The better agreement between LRC-VPD GPP estimates and the674

Lasslop et al. (2010) partitioned GPP is obvious since they both rely on the same675

underlying assumptions for the response of GPP to light and the VPD stress on676

GPP.677

Coupled carbon-water-energy dynamics could in principle be studied by esti-678

mating GPP using the Atmosphere-Land Exchange Inverse (ALEXI) model which is679

already used to estimate ET using GOES. In other words, there are opportunities to680

couple carbon and water fluxes using ABI observations that may improve our under-681

standing of both (Anderson et al., 2000, 2008). Finally, it has been suggested that682

plant strategies for regulating water loss through stomatal regulation in the face of683

drops in soil water potential can impact how sensitive plant productivity is to VPD684

or precipitation (Konings, Williams, & Gentine, 2017). Ecosystem water regula-685

tion strategies can be characterized on a continuum of isohydricity to anisohydricity686

based on both ground-based and space-based measurements (Konings & Gentine,687

2017; Novick et al., 2019). ABI based diurnal GPP estimates can help us investi-688

gate how quickly ecosystem carbon uptake is responding to water stress through689

diurnal shifts in GPP according to ecosystem water regulation strategies (Nelson690

et al., 2018) and the agreement in these dynamics between ground and space-based691

estimates.692
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5 Conclusion693

Diurnal estimates of GPP from geostationary satellites can provide us with694

observation-based estimates of GPP at very high temporal resolutions for studying695

diurnal dynamics at large scales. They can provide GPP estimates integrated at696

daily to longer timescales for intercomparison studies and provide near-real time697

estimates of GPP. Half-hour space-based estimates are also comparable to the698

timescale at which ecosystem gas exchange measurements from eddy covariance699

towers are reported. We tested three widely-used models to estimate GPP with700

5-minute inputs from the Advanced Baseline Imager on the GOES-R series in an701

oak savanna ecosystem that experiences seasonal moisture stress and shifts in re-702

source limitations throughout the year. We found that a light response curve with a703

proper VPD stress is in best agreement with ground-based ecosystem gas exchange704

measurements about the increasing diurnal asymmetry in GPP the ecosystem expe-705

riences during the dry summer season. We also found that GPP estimated with the706

light response curve is in best agreement with ground estimates during all other sea-707

sons highlighting the flexibility of the light response curve with proper environmen-708

tal stresses for diurnal estimates. However, we did find that the the light saturation709

point from light response curves underestimated GPP compared to GPP partitioned710

from gas exchange measurements during times of high incoming photosynthetic pho-711

ton flux density. We found that linearities between NIRvP and GPP appear to break712

down at the diurnal scale due to stomatal and non-stomatal responses to changing713

irradiance and other environmental variables during the day. Finally, we found that714

GPP estimates from light response curves with a VPD stress and light-use efficiency715

models are in best agreement with the diurnal (mis)alignment of GPP and latent716

heat exchange in response to diurnal environmental variation. This agreement can717

be important for studying diurnal water-use efficiency and disentangling diurnal718

stomatal and non-stomtal responses to environmental stresses. Moving forward to719

estimating diurnal ABI based GPP at other ecosystems with eddy covariance towers,720

we find that it is important to test multiple GPP model forms at the diurnal scale to721

understand how seasonal resource availability and environmental conditions impact722

the diurnal GPP estimates. Surface reflectance and angular corrected reflectances723

could greatly facilitate the development of diurnal GPP estimates from remotely724

sensed inputs at regional to hemispheric scales.725

Appendix A Land surface temperature stress on maximum CO2726

uptake rate in the light response curve727

To test an LST stress on GPP, the light response curve of equation 13 was728

modified with GOES-R ABI LST (ABI-L2-LSTC) as an input. Similar to ABI DSR,729

we linearly interpolated the hourly ABI LST to half hour time steps to match the730

data from eddy covariance tower. Using a light response curve similar to Lasslop et731

al. (2010), GPP was estimated as:732

GPP =
αLST NIRvP βLST

βLST + αLST NIRvP
(A1)733

where αLST is the canopy LUE before light saturation is reached (µmol CO2 J
−1)734

or the initial slope of the relationship between GPP and NIRvP and βLST is the735

maximum CO2 uptake rate at the point of light saturation (µmol CO2 m
−2 s−1).736

The impact of increasing LST and the resulting stress on the maximum CO2 uptake737

rate at light saturation, βLST , was estimated as:738

βLST =
β0LST

1 + exp(−b× (LST − LST0))
(A2)739
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Table A1: Comparison of mean error (ME), mean absolute error (MAE), and normal-
ized MAE (NMAE) between ABI based GPP estimates and eddy covriance tower GPP
estimates. The units for ME and MAE are µmol CO2 m

−2 s−1.

Training data Test data

Season ME MAE NMAE ME MAE NMAE

Winter −0.262 1.844 0.319 −0.302 1.914 0.325
Spring −0.293 2.694 0.280 −0.260 2.582 0.275
Summer −0.177 1.708 0.443 −0.187 1.700 0.447
Fall −0.281 1.363 0.452 −0.153 1.450 0.498

where β0LST
is the maximum CO2 uptake rate at light saturation during condi-740

tions of ideal LST. The parameters αLST , β0LST
, b, and LST0 were optimized using741

EC tower GPP as described in equations 15 and 16 from section 2.3.742

The lowest training mean error was achieved during the summer (-0.18) and743

the lowest testing mean error was achieved during the fall (-0.15). The lowest train-744

ing and testing normalized mean absolute error were achieved during the spring745

(0.28) (Table A1). The error summaries are some of the lowest among all the models746

and are comparable to LRC-VPD (Table 2). Similarly, the linear relationship from747

a robust regression between GPP estimated from LRC-LST and EC tower GPP748

(Figure A1) was similar to the linear relationships between GPP estimated from749

the other three models and EC tower GPP (Figure 6). The diurnal means of GPP750

from LRC-LST were also most in agreement with EC tower GPP and LRC-VPD751

throughout the year (Figure A2). The disagreement between specifying an LST or752

VPD stress on the maximum CO2 uptake rate was most evident during summer753

late afternoon - early evening. As LST began to decrease in the early evening hours,754

LRC-LST GPP increased which was not in agreement with GPP partitioned at the755

EC tower.756

Appendix B Comparison of NEE partitioning approaches757

To test the impact of different EC tower NEE partitioning approaches on GPP758

estimates with ABI inputs, we tested optimizing the parameters of LRC-VPD, LUE-759

NDVI, and LIN-NIRvP with two different EC tower GPP estimates from partition-760

ing NEE using REddyProc (Wutzler et al., 2018). The first method has no explicit761

assumptions about the response of GPP to light and only uses nighttime data to762

estimate a temporally varying respiration-temperature relationship for vegetation763

that does not utilize Crassulacean acid metabolism as (Reichstein et al., 2005):764

Reco(T ) = RRef exp[E0(
1

TRef − T0
− 1

T − T0
)] (B1)765

where T is air temperature ◦C, E0 is the temperature sensitivity, T0 is held766

constant at −46.02◦C, and TRef is held at 15◦C (Reichstein et al., 2005; Wutzler et767

al., 2018). E0 is estimated using 15-day windows of nighttime data and the short-768

term E0 estimates are aggregated to an annual value (Reichstein et al., 2005; Wut-769

zler et al., 2018). Using the annual E0 estimate, the RRef parameter is estimated770

with 7-day windows that are shifted for 4 days. The resulting RRef is assigned to771

the central time point of the 4 days and linearly interpolated between estimates772
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Figure A1: The response of eddy covariance tower GPP to land surface temperature
(LST). The black lines shows the values of βLST estimated using equation A2.
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Figure A2: Seasonal diurnal means of estimates of GPP from the all models and diurnal
means of estimates of GPP from the eddy covariance tower. The purple shaded region
shows ±2 standard error of mean eddy covariance tower GPP. The data spans from Jan
2019 - Dec 2020.

Figure A3: Scatter plots of test data (left) and training data (right) with eddy covariance
tower estimates of GPP versus GPP estimated from LRC-LST. The black line shows the
1:1 line and the gray line shows the robust regression line.
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(Reichstein et al., 2005; Wutzler et al., 2018). The Reco and air temperature rela-773

tionship is extrapolated to daytime data to obtain estimates of Reco during the day.774

Finally, Reco estimates are used to estimate GPP as (Reichstein et al., 2005; Wutzler775

et al., 2018):776

GPP = Reco −NEE (B2)777

The second method includes a daytime light response function for GPP along778

with the response of Reco to air temperature and uses both nighttime data and779

daytime data to estimate NEE as (Lasslop et al., 2010; Wutzler et al., 2018):780

NEE =
αβRg

αRg + β
+ γ (B3)781

=
αβRg

αRg + β
+RRef exp[E0(

1

TRef − T0
− 1

T − T0
)] (B4)782

783

where α is the canopy LUE before light saturation is reached (µmol CO2 J
−1)784

and β is the maximum CO2 uptake rate at the point of light saturation785

(µmol CO2 m
−2 s−1), Rg is incoming shortwave radiation at the surface of the786

Earth, and γ (µmol CO2 m
−2 s−1) is Reco. The impact of increasing VPD and787

the resulting stress on the maximum CO2 uptake rate at light saturation, β, was788

estimated according to Lasslop et al. (2010) using equation 14. T0 is fixed ac-789

cording to the nighttime partitioning (Wutzler et al., 2018). TRef is fixed within790

moving windows to the median temperature in the window and E0 is estimated791

from nighttime data for windows shifted by 2 days (Wutzler et al., 2018). E0 es-792

timates are smoothed and a prior RRef is estimated from nighttime data for each793

window (Wutzler et al., 2018). Finally, the parameters of the light response curve794

(RRef , α, β0, k) are estimated using daytime data for each window (Wutzler et al.,795

2018).796

Both nighttime and daytime partitioning methods resulted in similar relation-797

ships with GPP estimates from ABI inputs using both diurnal observations and798

daily medians (Figure B1 and B2). Daytime partitioning resulted in relationships799

between diurnal EC tower GPP and LRC-VPD and LUE-NDVI GPP estimates that800

were slightly closer to a 1:1 line compared to nighttime partitioning (Figure B1 and801

B2). The slightly better linear relationship between GPP estimated from daytime802

partitioning and from LRC-VPD is expected considering that both GPP estimates803

are derived from the same equations as outlined by Lasslop et al. (2010).804
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(a) (b)

(c) (d)

(e) (f)

Figure B1: For each pair of plots a - f, scatter plots of test data (left) and training data
(right) with eddy covariance tower estimates of GPP using the NEE partitioning approach
based on nighttime NEE data versus GPP estimated from LUE-NDVI (a - b), LIN-NIRvP
(c - d), and LRC-VPD (e - f). The diurnal observations were used for plots a, c, and e.
The daily medians of diurnal GPP estimates were used in plots b, d, and f. The black line
shows the 1:1 line. The gray line shows the robust regression line.
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(a) (b)

(c) (d)

(e) (f)

Figure B2: For each pair of plots a - f, scatter plots of test data (left) and training data
(right) with eddy covariance tower estimates of GPP using the NEE partitioning approach
based on nighttime and daytime NEE data versus GPP estimated from LUE-NDVI (a
- b), LIN-NIRvP (c - d), and LRC-VPD (e - f). The diurnal observations were used for
plots a, c, and e. The daily medians of diurnal GPP estimates were used in plots b, d,
and f. The black line shows the 1:1 line. The gray line shows the robust regression line.
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