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S1. Accuracy metrics used to assess the performance for predicting binary inlet states 7 

 8 

After classifying the Δ-to-median series into binary open vs. closed inlet states, we first computed true 9 

positives (TP), false positives (FP), true negatives (TN) and false negatives (FN). We then calculated 10 

Accuracy as the fraction of all correct classifications over all samples in line with Equation 1 (Kotu and 11 

Deshpande, 2015). Open inlet states are considered ‘positives’ in these calculations. 12 

�������� =(��+�	)/(��+
�+
	+�	) (Eq. 1) 13 

The F1 score is essentially a weighted average of precision and recall, where the precision is the 14 

proportion of correct positive cases to the tested positive cases. It reflects how precise the prediction is 15 

(Kotu and Deshpande, 2015). 16 

�����
��� =��/(��+
�) (Eq. 2) 17 

In comparison, recall is the proportion of correct positive cases to real positive cases. It represents how 18 

well the system captures the targeted cases (Kotu and Deshpande, 2015).  19 

������ =��/(��+
	) (Eq. 3) 20 

The F1 score combines precision and recall together in the form of a harmonic mean that ranges 21 

between 0 and 1 (Kotu and Deshpande, 2015).  22 


1= 2 × (P����
��� × R�����)/(P����
��� + R�����) (Eq. 4) 23 

 24 

 25 
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S2. Accuracy assessment results for high resolution monitoring of inlet dynamics via Sentinel-2 26 

only (2016-2020) 27 

 28 

Table S1: Validation statistics obtained via comparison of algorithm results against visually inferred 29 

inlet states for the S2 record only. Statistics are provided separately for the across-berm (A-B) and 30 

along-berm (C-D) transects. The number of images available for each site and number of open vs. 31 

closed visually inferred inlet states is also provided. The optimal classification threshold was used to 32 

classify images into open vs. closed states based on the Δ-to-median parameter, where Δ-to-median > 33 

threshold = open.  34 

Inlet site 

Transect 

directio

n 

F1-

score 

Accu

-racy 

True 

neg. 

False 

pos. 

False 

neg. 

True 

pos. 

Optimal 

classific. 

Threshol

d 

Total 

nr. Of 

images 

Nr. Of 

closed 

images 

Nr. Of 

open 

images 

Inmanriver 
A-B 0.71 0.79 65 11 14 31 0.01 121 76 45 

C-D 0.70 0.80 69 7 17 28 0.08 - - - 

Curl Curl 
A-B 0.65 0.90 149 9 9 17 0.01 184 158 26 

C-D 0.63 0.90 149 9 10 16 0.04 - - - 

Dee Why 
A-B 0.69 0.90 159 0 21 23 0.02 203 159 44 

C-D 0.66 0.87 150 9 18 26 0.03 - - - 

Coila 
A-B 1.00 1.00 119 0 0 6 0.01 125 119 6 

C-D 1.00 1.00 119 0 0 6 0.03 - - - 

Wamberal 
A-B 0.89 0.98 199 2 3 20 0.03 224 201 23 

C-D 0.91 0.98 199 2 2 21 0.04 - - - 

Narrabean 
A-B 0.98 0.98 59 3 0 65 0.09 127 62 65 

C-D 0.97 0.97 58 4 0 65 0.06 - - - 

Nadgee 
A-B 0.75 0.99 170 0 2 3 0.03 175 170 5 

C-D 0.33 0.95 165 5 3 2 0.15 - - - 

Hamersley

Inlet 

A-B 1.00 1.00 96 0 0 1 0.02 97 96 1 

C-D 1.00 1.00 96 0 0 1 0.05 - - - 

Conjola 
A-B 0.94 0.95 48 1 4 42 0.01 95 49 46 

C-D 0.94 0.95 48 1 4 42 0.04 - - - 

Durras 
A-B 0.98 0.98 57 1 2 72 0.02 132 58 74 

C-D 0.99 0.98 58 0 2 72 0.09 - - - 

Stokes 

Inlet 

A-B 0.00 0.94 129 7 1 0 0.01 137 136 1 

C-D 0.00 0.58 80 56 1 0 0.01 - - - 

Irwin 

Inlet 

A-B 0.91 0.93 38 1 4 26 0.02 69 39 30 

C-D 0.92 0.93 36 3 2 28 0.02 - - - 

Average  A-B 0.75 0.91 - - - - 0.05 141 110 31 

Average C-D 0.79 0.94 - - - - 0.02 - - - 

 35 

36 
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S3. Recommendations for optimal band and index selection  37 

 38 

To account for the unique spectral characteristics of different coastal inlets, InletTracker currently 39 

provides NIR, SWIR1, NDWI and mNDWI as options for path finding and inferring of open vs. closed 40 

inlet states. These options are in line with the majority of state-of-the-art coastal shoreline or waterline 41 

mapping methods that either use a single band NIR or SWIR1/2 approach (Cabezas-Rabadán et al., 42 

2020; Pardo-pascual et al., 2018; Ryu et al., 2002), or an approach based on a spectral index involving 43 

the green, NIR and/or SWIR bands (Bishop-taylor et al., 2019; Son et al., 2020; Vos et al., 2019). The 44 

performance of each of the four band/index options could not be explicitly tested as part of this work 45 

due to a lack of suitable in-situ validation data such as GPS transects. To provide recommendations in 46 

the absence of such data, a brief review of the relevant physical characteristics of the four options is 47 

provided here followed by a targeted analysis of six unique along-berm transects.  48 

The reduced reflectance in the visible, NIR and SWIR wavelengths over water is the result of 49 

absorption and scattering of the electromagnetic radiation as it traverses the water column (Green et 50 

al., 2000). For pure water, the absorption of radiation increases exponentially from visible to NIR 51 

wavelengths and beyond (Green et al., 2000; Pope and Fry, 1997). For wavelengths above 1μm, such as 52 

those measured by the SWIR1 band, absorption is very high, even for turbid water (Liu et al., 2019). 53 

As a consequence, scattered puddles or wet mud that may be present in tidal flats can cause sufficient 54 

absorption in the SWIR range for exposed mudflats to be misclassified as standing water (Ryu et al., 55 

2008). In the NIR band, on the other hand, there is a risk of shallow water areas being falsely classified 56 

as ‘dry’, due to lower absorption levels in water (compared to the SWIR range) and increased 57 

reflectance due to scattering in the presence of high suspended sediment content (Liu et al., 2019; 58 

Lodhi et al., 1997) and/or phytoplankton (Gitelson, 1992). Lastly, the NIR band is significantly affected 59 

by white water in the surf zone (Pardo-pascual et al., 2018; Ryu et al., 2002), which typically leads to 60 

elevated NIR reflectance (see across-berm paths avoiding white water in Figure 5) and the NDWI 61 

shifting towards the ‘dry’ range. Indices such as NDWI and mNDWI take advantage of the fact that 62 

attenuation in the green range is much lower than in the NIR or SWIR ranges consistently for a wide 63 



 

2021, FOR PEER REVIEW  4 of 8 

range of different surface water features (Fisher et al., 2016; Mcfeeters, 1996; Xu, 2007). Both indices 64 

use the green band as part of a normalized difference ratio, so that their different behaviour largely 65 

corresponds to the aforementioned characteristics of the NIR and SWIR bands.   66 

Many of the unique band and index features discussed above can be readily observed by analyzing 67 

NIR, SWIR1, NDWI and mNDWI transects over a common along-berm or across-berm path shown in 68 

Figure 9 for six example S2 images (three images during closed and three images during open inlet 69 

states). The higher sensitivity of the SWIR1 compared to the NIR band is illustrated well in the wider 70 

and deeper depressions over open inlets obtained for SWIR1. This is especially evident on the image 71 

of the 20-08-2020, where both the SWIR1 and the mNDWI(-1)  indicate lower (in comparison to dry 72 

sand) values of around 0 for the tip of the southern berm adjacent to the channel (see solid blue lines). 73 

While this feature is, albeit less pronounced, also captured by the NIR band, it is lost in the NDWI. 74 

Unfortunately, it remains unclear whether the tip of the southern berm was covered with water or just 75 

wet sand in this example. Considering the tide level of 0.52m above mean sea level (AMSL) at the time 76 

of image capture (not shown), it is possible that shallow inundation was present around the transect in 77 

this section. The transects also illustrate that the normalized difference indices effectively eliminate the 78 

variability in reflectance that is present in both the SWIR1 and NIR bands over the dry berm areas 79 

along the path (see uneven and variable SWIR1 and NIR transects during closed inlets). In these dry 80 

berm areas, the NDWI and mNDWI indices exhibit stable values of around 0.2 and 0.3, respectively. 81 

Although these mean values can fluctuate from image to image due to lighting conditions and other 82 

factors (e.g., Figure 6e), this narrow spectral range is what enables our method to consistently infer the 83 

reflectance of dry berm areas via the median of the along-berm transect.    84 
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 85 

Figure S1: Comparison of NIR, SWIR1, NDWI and mNDWI for analysing inlet states based on three 86 

S2 images during open (blue lines) and three S2 images during closed inlet states (red lines).    87 

 88 
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Based on the physical characteristics discussed above and the experiments presented in this paper, we 89 

provide the following recommendations for inlet state detection via InletTracker.  90 

 For pathfinding, it is advantageous to use either the NIR or SWIR1 band directly and use a 91 

mask to exclude heavily confounding classes such as vegetation or built-up areas.  92 

 For inferring inlet states, on the other hand, it is recommended to use the normalized 93 

difference ratios as these provide a robust approximation of dry sand reflectance via the 94 

median of the along-berm transect.  95 

 It is recommended to use the single band that corresponds to the index that is subsequently 96 

used for inferring inlet states (i.e., NIR/NDWI or SWIR1/mNDWI).  97 

 The SWIR1/mNDWI approach provides a higher sensitivity for detecting very shallow or 98 

narrow inlet openings. Conversely, this high sensitivity to shallow waters and wet sand or 99 

mud can sometimes lead to falsely classifying a closed inlet as open. 100 

 The NIR/NDWI approach is generally more conservative due to the lower sensitivity of the 101 

NIR band for very shallow waters.  The low sensitivity to shallow waters can lead to 102 

classifying open inlet states as closed, especially when the image was acquired during low 103 

tide.  104 

 For S2, the NIR band is of 10m resolution compared to 15m resolution of the SWIR1 band and 105 

as such, the S2 NIR/NDWI configuration is advantageous for IOCEs with small inlet channels. 106 

 In the presence of highly turbid waters or large amounts of white water in or near the inlet 107 

channel, the SWIR1/mNDWI approach is likely to be more robust than the NIR/NDWI 108 

approach, due to the limited sensitivity of the SWIR1 band to these features.   109 

In practice, we further recommend doing test runs for path finding using different seed and receiver 110 

point locations as well as band and index combinations. This will ensure that the optimal algorithm 111 

configuration is established before processing the full imagery archive.   112 

 113 

114 
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