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Abstract13

The High Accuracy Satellite Drag Model (HASDM) is the operational thermo-14

spheric density model used by the US Space Force (USSF) Combined Space Operations15

Center (CSpOC). By using real-time data assimilation, HASDM can provide density es-16

timates with increased accuracy over empirical models. With historical HASDM density17

data being released publicly for the first time, we can analyze the data to identify domi-18

nant modes of variations in the upper atmosphere. As HASDM is a close relative to the19

Jacchia-Bowman 2008 Empirical Thermospheric Density Model (JB2008), we look at20

time-matched density data to better understand the models’ characteristics. This model21

comparison is conducted through the use of Principal Component Analysis (PCA). We22

then compare both datasets to the CHAllenging Minisatellie Payload (CHAMP) and Grav-23

ity Recovery and Climate Experiment (GRACE) accelerometer-derived density estimates.24

By looking at the principal components and PCA scores from the two models, we confirm25

the increased complexity of the HASDM dataset while the CHAMP and GRACE compar-26

isons show that HASDM more closely matches the accelerometer-derived densities with27

mean absolute differences of 23.81% and 30.84% compared to CHAMP and GRACE-A,28

respectively.29

1 Introduction30

Over the past seven decades, the scientific community has developed and advanced31

thermospheric density models. A significant subset of these models are empirical. Empir-32

ical models use long-term trends from measurements over an array of instruments to fit33

parametric equations that describe the system. Even within this subset, there are multiple34

families/series of models that use different types of measurements and have evolved over35

decades. Three of these series, discussed by Emmert (2015), are the MSIS (Picone et al.36

2002), DTM (Bruinsma, Sean 2015), and Jacchia series (Bowman et al. 2008).37

Mass Spectrometer Incoherent Scatter Radar (MSIS) models typically used mass38

spectrometer and incoherent scatter radar measurements but have evolved and now incor-39

porate additional data (e.g. accelerometer-derived density estimates). The Drag Tempera-40

ture Model (DTM) series used orbit-derived density data but more recently incorporates41

accelerometer-derived density and mass spectrometer data. The Jacchia series of models42
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(e.g. Jacchia-70 and JB2008) strictly use both orbit- and accelerometer-derived density43

estimates.44

The most recent in the Jacchia series is the JB2008 density model. JB2008 was an45

improvement to its predecessors and incorporated new solar and geomagnetic indices to46

drive the model. It uses the F10, S10, M10, and Y10 indices and proxies to model variations47

caused by solar heating. In addition to ap , JB2008 utilizes Dst to better model density48

during geomagnetic storms.49

The thermosphere is a dynamic, highly-driven system impacted by external forces50

(e.g. space weather events) and internal dynamics. Solar irradiance is a major source51

of variation, providing the baseline average density (Qian and Solomon 2011). This pro-52

cess is well-represented by solar indices, particularly at low latitudes (Vickers et al. 2014).53

However, these indices are not adequate in characterizing the thermosphere during solar54

minimum (Bowman et al. 2008), when composition changes and other processes become55

more relevant (Mehta et al. 2019). During events like solar flares or coronal mass ejec-56

tions (CMEs), mass and energy from the Sun interact with the magnetosphere causing57

Joule heating and auroral particle precipitation into the thermosphere (Fedrizzi et al. 2012;58

Deng et al. 2013). This causes sudden and often large changes in mass density. Due to a59

lack of pre-storm conditioning and inability to model traveling atmospheric disturbances,60

empirical models frequently under-perform during these events (Bruinsma et al. 2021).61

The challenge of accurately modeling thermospheric mass density over a multitude62

of conditions has severe repercussions in the context of orbit determination and Space Sit-63

uational Awareness (SSA). Operators rely on these density models for decision making in64

regards to collision avoidance operations, where inaccuracies and uncertainties can have65

dire consequences. Insufficient knowledge of future satellite position can result in a col-66

lision between two objects. A potential collision would drastically increase the number67

of objects in a given orbital regime, increasing the probability of future collisions. This68

could result in a cascade, known as Kessler Syndrome (Kessler and Cour-Palais 1978),69

which could make certain orbital regimes inaccessible. In an effort to avoid this, we look70

to improve our modeling and forecasting capabilities. A significant improvement in model71

accuracy came from the implementation of real-time data assimilation, notably utilized by72

HASDM.73
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HASDM was developed by Storz et al. (2005) and is an assimilative extension of74

the Jacchia 1970 upper atmosphere density model (Jacchia 1970). HASDM employs Dy-75

namic Calibration of Atmosphere (DCA) which uses calibration satellite observations76

to make corrections to its background empirical density model. This assimilation tech-77

nique was introduced as an application for HASDM by Casili and Barker (2002), but was78

expanded later to estimate 13 global density correction parameters (Storz et al. 2005).79

HASDM is not available for public use, but the global density outputs from the model80

were released to the public for the first time by Tobiska et al. (2021). It is called the SET81

HASDM density database. This database contains three-dimensional density grid from the82

start of 2000 to the end of 2019 at a three-hour cadence.83

In this work, we will leverage Principal Component Analysis (PCA) in order to84

study the most dominant sources of variance within the HASDM dataset and a spatiotemporally-85

matched JB2008 dataset. The resulting principal components and PCA scores give insight86

into the processes that drive the variance within the models. This methodology has been87

used to analyze thermospheric density datasets previously and is often used in the devel-88

opment of reduced-order models (Mehta and Linares 2017; Mehta et al. 2018; Gondelach89

and Linares 2020). For this paper, the use of PCA is restricted to scientific investigation.90

The availability of accelerometer-derived density estimates has been advantageous91

for model development and assessment. Over the lifetime of satellites with on board ac-92

celerometers (e.g. CHAMP and GRACE), we accumulate measurements over a plethora93

of altitudes and space weather conditions (Luhr et al. 2002; Bettadpur 2012). Researchers94

have used these measurements to derive density estimates by removing accelerations from95

other sources (Sutton 2008; Doornbos 2012; Mehta et al. 2017). We use the estimates96

from (Mehta et al. 2017) for comparisong with the HASDM and JB2008 models.97

The paper is organized as follows, we start by detailing the HASDM and JB200898

models. Then, we discuss the use of PCA as an investigatory tool followed by the results99

of the analysis. After, we compare the HASDM and JB2008 densities to CHAMP and100

GRACE density estimate over the entire availability of their measurements, with a focus101

on storm-time and quiet conditions.102
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2 Model Background103

The most recent Jacchia model, JB2008, achieved improved accuracy largely due to104

its incorporations of new solar and geomagnetic indices. These indices are used in temper-105

ature corrections, semiannual functions, and new Dst temperature equations . The model106

reduced non-storm density errors by > 5% and reduced storm-time density errors from107

Jacchia-70 by > 60%, from NRLMSIS by > 35% and from JB2008 (with only ap) by108

16% (Bowman et al. 2008).109

Using a similar background density model, HASDM is able to further reduce these110

errors. By building on the density correction work of Marcos et al. (1998) and Nazerenko111

et al. (1998), HASDM can provide dynamic global density corrections via 13 spherical112

harmonic coefficients through its DCA algorithm. HASDM also exploits a prediction filter113

for its DCA corrections. Through this filter, the model adjusts an extrapolated time series114

of 27 days (one solar rotation) for the correction coefficients using wavelet and Fourier115

analysis (Storz et al. 2005). For satellite trajectory estimation, HASDM uses a technique,116

called segmented solution for ballistic coefficient (SSB), that enables the estimated ballis-117

tic coefficient to deviate over the fitting period.118

2.1 Model Drivers119

The most common solar proxy used in density modeling is F10.7, referred to in this120

paper as F10. Originally identified and measured by Covington (1948), F10 serves as a121

proxy for solar extreme ultraviolet (EUV) emissions which deposit energy into the ther-122

mosphere. The 10.7 in the subscript refers to the 10.7 cm wavelength of the solar radio123

flux being measured. While this does not directly interact with Earth’s atmosphere, it has124

been shown to be a reliable proxy for thermospheric heating (Tobiska et al. 2008a). F10 is125

measured in solar flux units (10−22W m−2 Hz−1) indicated as sfu.126

The S10 index characterizes the integrated 26-32 nm solar EUV emission. This in-127

dex is influenced by temperatures in the chromosphere and solar corona (Tobiska et al.128

2008a). These emissions penetrate into the middle thermosphere and are absorbed by129

atomic oxygen (Tobiska et al. 2008b). While the emissions that S10 represents have no re-130

lationship to the 10.7 cm wavelength, they are normalized and converted to sfu through131

linear regression. Similar fits are done for M10 and Y10 to convert to uniform units.132
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M10 is a proxy representative of far ultraviolet (FUV) photospheric 160 nm Schumann-133

Runge Continuum emissions. The proxy corresponds to processes in the lower thermo-134

sphere and is consistent with molecular oxygen dissociation (Tobiska et al. 2008b). The135

final solar driver for JB2008 is Y10, which is a composite index. This hybrid represents X-136

ray emissions in the 0.1-0.8 nm range and H Lyman-α 121 nm emissions. During solar137

maximum, the X-ray emissions are more heavily weighted, and the opposite is true for so-138

lar minimum. For each of these four solar drivers, 81-day centered averages are generated139

and used for prediction in JB2008.140

The first of the two geomagnetic drivers for JB2008 is the geomagnetic planetary141

amplitude, ap . ap is the linear equivalent of the geomagnetic planetary index, Kp , which142

has a quasi-logarithmic scale (McClain and Vallado 2001). It has a 3-hour cadence and is143

often used in density models. However, using Dst during geomagnetic storms results in144

increased accuracy over ap for density modeling (Bowman et al. 2008). The Dst index is145

largely driven by the strength of the ring current in the inner magnetosphere. This makes146

it an ideal indicator of ring current strength and therefore geomagnetic storms (Ganushk-147

ina et al. 2017).148

For operational use of HASDM, forecasts of these drivers are required. Space Envi-149

ronment Technologies (SET) provides the driver forecasts using multiple algorithms/sources.150

The solar drivers are forecasted using the SOLAR200 algorithm (Tobiska et al. 2000). ap151

forecasts come from the National Oceanic and Atmospheric Administration (NOAA) Space152

Weather Prediction Center (SWPC) forecasters, and Dst forecasts are a produced by the153

Anemomilos algorithm (Tobiska et al. 2013). Error statistics of historical forecasts for all154

six drivers were presented as a community benchmark by Licata et al. (2020).155

In addition to these space weather drivers, the models use temporal inputs (e.g. uni-156

versal time (UT) and day of year). To model/correlate seasonal and annual trends, we gen-157

erated sinusoidal inputs based on the day of year. The first two are sine and cosine func-158

tions with periods of six months. This is used to test correlations with semiannual trends.159

The last two are sine and cosine functions with periods of one year to correlate with an-160

nual trends. We did not include any functions of UT, because it is difficult to find linear161

correlations with these short period fluctuations, particularly when the cadence of the data162

is only 1/8 of the function’s period.163
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3 Principal Component Analysis164

The spatial resolution of these models are 15◦ longitude, 10◦ latitude, and 25 km al-165

titude spanning from 175-825 km. This results in 12,312 grid points for every three hours166

between the start of 2000 to the end of 2019. Principal Component Analysis is a dimen-167

sionality reduction technique that translates the dataset using linear functions to maximize168

variability and preserve information. The resulting information’s dimensions are ordered169

from most-to-least contribution to the system’s variance. Therefore, you can truncate the170

data at the desired point and only sacrifice a nominal amount of information (Jolliffe and171

Cadima 2016). This compaction forces important information from the dataset to be rep-172

resented in fewer dimensions, simplifying the analysis.173

In previous work, Mehta and Linares (2017) developed a methodology for reduced174

order modeling where PCA was used to reduce the dimensionality of MSIS densities.175

This allowed the authors to analyze the dominant sources of variance. We apply that same176

methodology (PCA implemenation) to identify principal components for both the HASDM177

and JB2008 datasets. The steps to achieve this will be described, but the original work of178

(2017) provides a thorough description of the process. This methodology was used on a179

TIE-GCM dataset to create a linear dynamic reduced order model (Mehta et al. 2018).180

Initially, the spatial dimensions are flattened to make the spatiotemporal dataset two-181

dimensional. Then a common logarithm of the density values in taken in order to reduce182

the variance of the dataset from five orders of magnitude to less than one. Next, we sub-183

tract the mean values for each cell to center the data. Finally, we perform a singular value184

decomposition using the svds function in MATLAB to obtain the U, Σ, and V matrices.185

The normalized and centered density data is denoted by M. Equation 1 shows the rela-186

tionship between these four matrices and the basis of PCA.187

M = UΣVT (1)

The U matrix is the left unitary matrix, and it is made of orthogonal vectors that represent188

the principal components. Σ is a diagonal matrix consisting of the squares of the eigen-189

values that correspond to the vectors in U. We can extract temporal coefficients (shown in190

Equation 2) by performing matrix multiplication between two of the components in Equa-191

tion 1.192

c(t) = ΣVT (2)
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Using Σ, the energy/variance contribution of each principal component can be acquired as193

detailed in (Mehta and Linares 2017).194

4 PCA Results195

We begin by perform PCA on the entire dataset (2000-2020) to get insight into the196

general density formulations. Then, we look into specific conditions, such as solar maxi-197

mum and solar minimum, where different processes drive the global density variations.198

4.1 2000-2020 Analysis199

Figure 1 shows both the individual and cumulative variance captured by the first 20200

principal components (PCs). In the left subplot, it becomes clear that the contribution of201

the first PC for both models is significant, capturing over 60% of the system’s total vari-202

ance. More importantly, the first PC for JB2008 captures over 10% more variance than it203

does for HASDM. There is also more variance captured by the second PC for JB2008, but204

beyond that, the individual variance captured is marginally greater for HASDM. This is205

due to the ∼ 75% captured in the first PC for JB2008.206

Figure 1. Individual (left) and cumulative (right) variance captured by the first 20 principal components207

for the two density datasets.208

The cumulative variance is shown in the right subplot. It is abundantly clear that209

the variance captured by JB2008 is more substantial than by HASDM. Since JB2008 is an210

empirical model, there are well-defined relationships between the various drivers and the211
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overall system. Therefore, PCA is able to capture those processes in fewer PCs. HASDM,212

being an assimilative model, produces densities that account for an increased number of213

processes, making its structure more complex and more difficult to be captured by PCA.214

Figures 2, 3, and 4 display the first five principal components (from U) for both215

models at 400 km, the first ten PCA scores (commonly referred to as temporal coeffi-216

cients), and the results from a Pearson’s correlation coefficient analysis (Schober et al.217

2018) between the scores and drivers, respectively.218

Figure 2. First five principal components for HASDM (left) and JB2008 (right) at 400 km.219

The first PC for both models represents solar heating. There is peak around 14 hours225

local time and a minimum at 2 hours. Looking at this in relation to Figure 1, we can de-226

duce that the effect of solar heating contributes significantly more to JB2008 than it does227

for HASDM. From Figure 4, the first coefficient is highly correlated to F10 and the other228

solar indices; there is a 90% or greater correlation to all four solar indices/proxies and229

their centered averages. This explains the larger magnitude at solar maximum around 2001230

compared to around 2013. What also stands out is the not insignificant correlation to the231
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Figure 3. PCA scores/coefficients for both HASDM and JB2008 across two solar cycles.220

geomagnetic indices. There are large spikes that coincide with events such as the Hal-232

loween storm of 2003 and the St. Patrick’s day storm of 2017.233

The second PC likely represents annual variations. It shows how the density varies234

fairly linearly with respect to latitude. Based on the day of year, this PC can change in235

intensity and orientation. This is caused by the sinusoidal trend of α2 with a period of236

∼ 365 days. The signs of the PCs and scores are important as they are multiplied for their237

contribution.238

The third PC is representing the same process(es) between the models. It is impor-239

tant to note that PCA does not guarantee that a each PC corresponds to a single process.240

Based on the first two, there is an evident dominant process representing it, but this is not241

always the case. The third coefficient is the most complex of the first three. During solar242

maximum, the trends seem to mimic coefficient 1, but its magnitude increases again dur-243
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Figure 4. Pearson correlation coefficients between all inputs and PCA scores for HASDM221

and JB2008 between 2000 and 2020. The sum of the absolute values for HASDM and JB2008222

are 16.95 and 20.70, respectively. The colors represent the correlation coefficients with blue223

being -1.0, white being 0.0, and red being 1.0.224

ing solar minimum. This increase no longer seems to relate to the first coefficient. Based244

on the correlation values, it can be deduced that the third PC is mostly representative of245

solar activity in regards to the entire time period. The combination of processes captured246

by this principal component makes linear correlation analysis difficult, especially over this247

time span. Looking at shorter windows (see the next two subsections) uncovers different248

processes captured by α3, depending on the conditions.249
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In Supplementary Material SM1, the movement of the peak in α3 provides insight to250

HASDM. At lower altitudes (250-450 km), the HASDM peak has a ∼ 4 hour shift rela-251

tive to JB2008 which is seen in Figure 2. The JB2008 peak is located between 12 and 14252

hours local time while HASDM’s are around 9 hours. Beyond 450 km, the peak in both253

models shifts to 2 hours local time and towards the equator. They exhibit similar trends254

up to 825 km which hints at the reliance on HASDM’s background model when the sig-255

nal decreases at higher altitudes. We suspect that this represents the Winter helium bulge256

based on the local time of the peak (Keating and Prior 1968; Reber and Hays 1973).257

The last two PCs shown in Figure 2 for the two models are flipped, meaning the258

fourth for HASDM has the same source as the fifth for JB2008 and vice versa. There is259

only a 2.25% difference between PCs 4 and 5 for HASDM which signifies that their re-260

spective contribution to the system’s overall variance is similar. PC 4 for HASDM and261

5 for JB2008 seem to be further effects of solar heating, while the other two are similar262

to PC 3. α4 for HASDM and α5 for JB2008 both have some correlation to geomagnetic263

activity, while α5 for JB2008 has moderately strong correlation to the semiannual cosine264

wave. In Figure 2, the difference between PCs 3 and 5 for HASDM and PCs 3 and 4 for265

JB2008 is the location of the peak present in either the northern or southern poles.266

Note that in the caption, the absolute sum for both models is shown, and the value267

for JB2008 is over 20% larger than for HASDM. This is as expected due to the simplicity268

in the density formulation of an empirical model relative to an assimilative one. Beyond269

these discussed principal components and scores, there is not an abundance of informa-270

tion. These correlation coefficients were generated using the entire twenty year period.271

However, looking at the coefficient plots and correlations for a single year shows that there272

is more information that cannot be seen by looking at such a broad period.273

4.2 Solar Maximum274

Figure 5 shows the first ten PCA scores for both models during 2001 (solar maxi-275

mum), and Figure 6 contains the corresponding correlation coefficients.276

The first coefficients for both models in Figure 5 are nearly identical, alluding to the282

similarities in how solar drivers impact the resulting density grids in both models. There283

is lower correlation between α1 and the solar drivers relative to the twenty-year analysis.284

There is now increased correlation with the other drivers (e.g. geomagnetic and temporal).285
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Figure 5. PCA coefficients for both HASDM and JB2008 for 2001.277

The geomagnetic indices have more correlation during this year, because there is a larger286

portion of the time period with moderate or high geomagnetic activity compared to the287

complete period. There are also increases in correlation for the temporal drivers, but it is288

not entirely clear if that is coincidental with how solar heating varied over this particular289

year.290

α2 again shows a distinct annual trend, but there are some differences highlighted291

by the shortened time period. The variation for HASDM seems to contain additional pro-292

cesses, identified by the more complex structure within the mean annual trend. There is293

a strong correlation with the annual cosine wave, as was the case for the entire period.294

Similar to α1, there are moderate correlations with all of the solar drivers. This is again295

likely a byproduct of how the solar drivers varied over the year. This is reinforced by the296

correlation values for JB2008 combined with the near-perfect cosine wave seen in Figure297

5.298
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Figure 6. Pearson correlation coefficients between all inputs and PCA scores for HASDM and JB2008278

only during 2001 (solar maximum). The sum of the absolute values for HASDM and JB2008 are 45.82279

and 56.76, respectively. The colors represent the correlation coefficients with blue being -1.0, white being280

0.0, and red being 1.0.281

The third coefficient is nearly a mirror image of the first coefficient for both HASDM299

and JB2008. This was suspected when looking at the coefficient plot for the entire period,300

but it did not show up in the correlation values from Figure 4. Clearly, α3 contains mul-301

tiple processes that are difficult to observe from afar. The correlation values for α3 with302

both models is almost exactly the opposite of the values for α1 which reinforces the obser-303

vation.304
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α4 is quite interesting as it is representing different processes between the models305

and more than one for HASDM. For JB2008 it is inversely correlated to an annual cosine306

wave with little influence from another source. However, α4 for HASDM shows some re-307

lation to a semiannual trend with influence from geomagnetic storms, having large spikes308

that coincide with those in α1 which is reaffirmed by the correlation coefficients.309

The fifth coefficient for HASDM has quite a peculiar set of correlation values. Its310

most significant correlations are to a semiannual sine wave and an annual cosine wave.311

Looking at Figure 5, it visually appears noisy, because the spikes do not correspond to312

spikes in the other coefficients. However, there are likely other contributions not captured313

by these drivers. For JB2008, there are non-negligible correlations with the solar drivers314

and the temporal cosine inputs.315

Other interesting findings for 2001 include HASDM’s α7 and α9 along with JB2008’s316

α8 and α10. HASDM’s seventh coefficient visually shows a strong semiannual trend. When317

looking at Figure 6, there is more correlation to the annual trend and most of the solar in-318

dices. This is peculiar, because the qualitative study of the coefficient shows much more319

signal in relation to a semiannual variation. After consulting the correlation coefficients320

for HASDM’s α9, the similarity to α1 and α3 becomes more clear. It seems to be largely321

influenced by solar heating but is less evident.322

The eighth coefficient for JB2008 at first glance looks to have a semiannual quality,323

but after looking at the correlation values, its relationship to solar heating becomes more324

apparent. In fact, it looks like the third coefficient, only with a visually stronger signal.325

JB2008’s α10 likely represents an annual cosine wave. However, it is difficult to see due to326

the y-axis bounds determined by the range of α10 for HASDM.327

The most distinct difference between Figure 4 and 6 is the increase in the prevalence328

of color and therefore significant correlations. Nearly every coefficient for both models has329

at least one driver with 40% or greater correlation. Again, JB2008 has more cumulative330

correlation than HASDM, due to the increased processes in HASDM not modeled by the331

current set of drivers.332
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4.3 Solar Minimum333

With the plethora of new information obtained by looking at the coefficients during334

a shorter period of solar maximum, it is important to see differences during solar mini-335

mum. Figure 7 shows the coefficients for both models during 2019, and Figure 8 contains336

the corresponding correlation coefficients.337

Figure 7. PCA coefficients for both HASDM and JB2008 for 2019.338

Visually, some coefficients show stark contrasts to 2001. Primarily, α1 for both mod-343

els represents a noisy semiannual cosine wave. The apparent noise is even peculiar; it344

seems to jump between a fixed range about the mean for most of the year. Another no-345

table difference between the years for α1 is the change in sign. For 2001, all values were346

negative and mostly larger in magnitude, but the 2019 values are all positive. The corre-347

lations for α1 deviate from the previous two cases. There is no longer a strong correlation348

between α1 and solar heating for either model. In fact, the correlation with geomagnetic349
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Figure 8. Pearson correlation coefficients between all inputs and PCA scores for HASDM and JB2008339

only during 2019 (solar minimum). The sum of the absolute values for HASDM and JB2008 are 30.02340

and 34.10, respectively. The colors represent the correlation coefficients with blue being -1.0, white being341

0.0, and red being 1.0.342

activity is more pronounced than solar heating. The correlation with the semiannual co-350

sine wave is the strongest of the inputs for JB2008 and one of the strongest for HASDM.351

During this solar minimum, there was very low solar activity and few active regions352

giving the usual 27-day signal a longer 3-4 month signal, so other processes begin to353

dominate. This explains why the PCA coefficients are drastically dissimilar to those of so-354

lar maximum, and why other drivers become more pronounced. Looking at the cumulative355
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correlation for the models, there is a substantial decrease from solar maximum; they are356

approximately 60% and 65% of the 2001 values for HASDM and JB2008, respectively.357

α2 for both models is again a clear annual cosine wave. In comparison to 2001, the358

values and variance for the two models are more aligned. There is a strong positive corre-359

lation to the annual cosine wave, as was the case for the other two periods.360

For both HASDM and JB2008, α3 is difficult to visually discern. There are no sig-361

nificant long-term variations for JB2008. The only drivers with correlations greater than362

30% are the two geomagnetic indices. The general appearance of α3 is similar for HASDM363

but it has a relatively sharp increase about 1/3 through the year, and a drop around 2/3364

through the year. HASDM has similar correlation values for the geomagnetic indices but365

also has noteworthy correlations to the temporal drivers and to F10.366

α4 for HASDM has no apparent long-term trend (similar to JB2008’s α3), but it is367

moderately correlated to the geomagnetic drivers. For JB2008, there is a strong positive368

correlation to the annual cosine wave, which can be seen in the coefficient’s trend. α5 has369

temporal trends for both models, but it is semiannual for JB2008 and annual for HASDM.370

Both show a strong signal.371

All the higher order coefficients are either temporal variations or indistinct, with the372

exception of α7 for JB2008. It appears to have a semiannual component, but the baseline373

seems to decrease linearly. Oddly, α7 shows to be more strongly correlated to the annual374

sine wave than the semiannual sine wave. This coefficient also has a 72% negative corre-375

lation to Y81c . However, the variation’s source is not definitive.376

The largest correlation to any solar driver for HASDM is the correlation to M81c377

in α2 and α5, but that is likely a consequence of those two coefficients being highly cor-378

related to the annual cosine wave. The only other notable connection for HASDM is the379

strong positive correlation to the semiannual cosine wave in α7. In fact, the three strongest380

correlations for HASDM are to temporal drivers.381

5 CHAMP & GRACE Density Estimates382

The CHAMP and GRACE datasets used in this study originate from Mehta et al.383

(2017). Both satellites have near polar orbits, covering nearly all latitudes, and over their384

respective lifetimes, CHAMP and GRACE datasets cover altitudes ranging from 300-535385
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km. This, in conjunction with the date range covered by the satellites, makes their density386

estimates invaluable for model comparison. Figure 9 shows altitudes each dataset cov-387

ers along with orbit-averaged densities over their mission spans. This study only included388

GRACE-A data due to similarities between the twin satellites’ orbits.389

Figure 9. Altitude (left) and orbit-averaged densities (right) for CHAMP and GRACE-A.390

There is minimal overlap between the altitudes of the two satellites, resulting in the391

lower densities encountered by GRACE-A in the right panel. The orbit-averaged densities392

were computed using a centered window with a span of 90 minutes, approximately one393

orbit.394

Both the CHAMP and GRACE-A datasets contain files for every day containing in-395

formation such as GPS time, solar local time (SLT), latitude, altitude and density. CHAMP396

has measurements every 10 seconds, while GRACE-A provides measurements every 5 sec-397

onds. In order to compare the satellite density estimates to the two models, we implement398

a trilinear interpolation algorithm using the global density grids from the models. Since399

the temporal resolution of the model densities are only every three hours, we maintain400

the same density grids over each three-hour period. The authors appended the existing401

CHAMP and GRACE density data of (Mehta et al. 2017) with the HASDM and JB2008402

densities and have made them publicly available to the community (see Data Statement).403
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6 Model-Satellite Density Comparison404

Figure 10 shows histograms of the log10 orbit-averaged densities for both satellites405

and models. HASDM and JB2008 overpredict relative to CHAMP and GRACE-A. How-406

ever, the HASDM distributions have a marginally smaller bias for both satellites. The407

shape of the HASDM distributions more closely matches the high fidelity CHAMP and408

GRACE-A estimates with the smaller peaks being present on the right side. The JB2008409

has similar distributions to both satellites but appears more generalized.410

Figure 10. Histograms for CHAMP (left) and GRACE-A (right) orbits and corresponding densities411

from HASDM (top) and JB2008 (bottom). Values are centered averages with a window of 90 minutes,412

approximately one orbit.413

Having spatiotemporally matched model densities to every measurement, mean abso-414

lute differences were computed for both the orbit and orbit-averaged densities. The results415

are shown in Table 1, broken down by year.416

HASDM densities more closely match both CHAMP and GRACE-A estimates over-419

all. However, there are years for both satellites where JB2008 predicts densities closer to420

the satellite estimates. The general trend is increased similarities to the satellite densities421

towards solar maximum, which decreases towards solar minimum. The models have lower422

percent differences when looking at orbit-averaged values, because they are tracking gen-423

eral density trends much better than the short period disturbances. The decrease in the424

density differences range from 3 − 13% and 4 − 15% for HASDM and JB2008, respec-425
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Table 1. Mean absolute percent difference error statistics for both models and satellites.417

"OA" denotes orbit-averaged.418

CHAMP CHAMP (OA) GRACE-A GRACE-A (OA)
Year HASDM JB2008 HASDM JB2008 HASDM JB2008 HASDM JB2008
All 29.35% 33.96% 23.81% 27.63% 41.80% 50.52% 30.84% 39.75%

2002 22.10% 24.31% 19.31% 20.37% 27.70% 29.66% 23.03% 24.50%
2003 23.04% 23.26% 19.48% 18.58% 35.91% 36.97% 29.64% 28.81%
2004 25.23% 22.88% 21.57% 17.88% 41.05% 38.04% 34.22% 30.45%
2005 28.24% 33.29% 23.92% 28.52% 45.06% 57.95% 37.02% 50.45%
2006 29.72% 39.85% 24.47% 34.38% 36.90% 53.41% 30.67% 48.31%
2007 31.33% 37.99% 25.29% 31.77% 48.20% 63.89% 30.47% 45.20%
2008 41.31% 50.44% 28.07% 35.59% 40.65% 52.55% 24.67% 38.43%
2009 33.66% 41.80% 27.93% 35.62% 49.11% 63.35% 29.06% 45.25%
2010 32.33% 24.52% 28.05% 20.49% 44.69% 41.75% 37.44% 34.05%

tively when comparing the orbit to obit-averaged differences for CHAMP. For GRACE-426

A, the differences are more pronounced, being 5 − 20% for HASDM and 5 − 19% for427

JB2008. Considering the similarity in orbit inclination, this disagreement between the or-428

bit and orbit-averaged differences is likely attributed to the altitude. To more closely ex-429

amine the densities, we look at both active and quiet six-day periods (Figures 11 and 12430

respectively). Figure 11 shows densities along CHAMP and GRACE-A orbits during the431

2003 Halloween storm.432

Looking at the storm time drivers, F10 starts off with substantial magnitude before435

decaying during the geomagnetic storms. ap peaks at the maximum possible value of 400436

twice during this period; it happening even once is an extremely rare occurrence. Outside437

of these storms, there is little geomagnetic activity. For the quiet period, F10 remains at438

solar minimum levels, and stays between 69 and 70 sfu. Concurrently, ap varies contin-439

uously but never exceeds 12 (Kp = 3-). The densities spike on two occasions, coinciding440

with the two geomagnetic storms. When ap initially reaches 400, the density responds to441

about half the magnitude increase of the first peak. ap then drops before maintaining 300442

2nT for a few hours; this is immediately before the density reaches its maximum value for443

this storm as there is a delayed density response.444

There is a quicker overall response to the second storm, when ap maintains its max-445

imum value for a longer duration. Pre-storm conditioning could also cause the more abrupt446
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Figure 11. Densities from CHAMP, GRACE-A, HASDM, and JB2008 following a storm period433

in 2003. Center panels are orbit-averaged densities, and bottom panels show F10 and ap .434

density response. These trends are true for both satellite orbits. HASDM and JB2008 both447

have similar small biases before the storm, and HASDM over-predicts density relative to448

the satellites and JB2008.449

However, the density recovery post-storm is modeled significantly closer to the satel-450

lite by HASDM than JB2008. This divergence may be caused by the NO production dur-451

ing the storm, a known cooling mechanism. This flows meridionally towards the equator452

in the days after the storm and is captured by HASDM but not modeled in JB2008. The453

mean differences for orbit-averaged densities with respect to CHAMP are 16.27% and454

34.33% for HASDM and JB2008, respectively. Relative to GRACE-A, the mean differ-455

ences are 23.09% and 46.58% for HASDM and JB2008, respectively. In Figure 12, the456

same information is presented for a quiet period in 2009.457

In the orbit density plots, both models follow the oscillations well but have posi-460

tive biases. Again, HASDM is tracking the satellite densities more closely than JB2008.461

This is confirmed in the orbit-averaged plots with HASDM being discernibly closer to462

the satellite densities. JB2008 predicts density closer to HASDM for CHAMP (lower al-463
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Figure 12. Densities from CHAMP, GRACE-A, HASDM, and JB2008 during a quiet period458

in 2009. Center panels are orbit-averaged densities, and bottom panels show F10 and ap .459

titude) than for GRACE-A. Referring back to Figure 9, the difference in average altitude464

for the satellites in 2009 is approximately 150 km. This explains the order of magni-465

tude difference in densities and shows that HASDM more closely matches satellite esti-466

mates at higher altitudes. The mean differences for orbit-averaged densities with respect467

to CHAMP are 26.34% and 37.07% for HASDM and JB2008, respectively. Regarding to468

GRACE-A, the mean differences are 15.81% and 36.28% for HASDM and JB2008, re-469

spectively.470

There are considerable peaks in the JB2008 densities, seen in all four panels. It is471

more pronounced in the orbit-averaged density plots, particularly for the GRACE-A orbit.472

These seem to be a response to the geomagnetic activity (seen in the bottom-right panel).473

All JB2008 density peaks lag ap spikes by about 12 hours and deviate from HASDM and474

satellite densities. ap is a good indicator of the source, because JB2008 uses ap when no475

storms are detected. JB2008 is overestimating the impact of the ap fluctuations relative to476

HASDM and considering the satellite densities.477
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7 Summary478

In this work, we perform scientific investigation into HASDM and JB2008 densities479

by leveraging PCA, and we conduct an assessment of these models relative to CHAMP480

and GRACE-A density estimates. To analyze the model data, PCA was applied after nor-481

malization and centering. This resulted in a useful covariance matrix and time-dependent482

coefficients. The covariance matrix can be examined about any axis to identify spatial fea-483

tures that contribute significantly to the variance in the dataset. By looking at SLT-latitude484

slices at 400 km, we identified key contributions to the system’s variance. The most im-485

portant for both models was solar heating, followed by annual variations. The third mode486

primarily represented the impact of geomagnetic activity. The fourth and fifth modes were487

difficult to discern but were flipped between the models; this means that their relative im-488

portance is different.489

Next, we explored the time-dependent coefficients, or PCA scores. There were strik-490

ing similarities for the first three coefficients between models, but it becomes challeng-491

ing to compare for the higher-order coefficients. In the correlation analysis, most driver-492

coefficient combinations produced weak correlations, with the exception of α1. To inves-493

tigate the processes at solar maximum, the window was limited to 2001. This resulted494

in more distinct trends in the coefficient plots, highlighting the effects of solar and ge-495

omagnetic activity along with annual and semiannual trends. JB2008 had more evident496

variations and subsequently higher correlations to the drivers. The HASDM coefficients497

had weaker signals and correlations. Relative to the 20-year analysis, the correlation fig-498

ures displayed stronger correlations across a majority of coefficients. The solar drivers499

had non-negligible correlations with most of the coefficients due to the variance caused by500

EUV irradiance.501

This study was performed once more on 2019, to investigate the datasets during so-502

lar minimum. The coefficients had weaker signal compared to 2001, and the correlations503

seen in 2001 had changed drastically. The solar drivers had less impact on the variance,504

and the temporal drivers had more pronounced correlations.505

Last, we compared the two models to CHAMP and GRACE-A accelerometer-derived506

density estimates. The HASDM density distribution more closely match those of CHAMP507

and GRACE-A, yet both models had similar biases relative to the satellite densities. Mean508

absolute differences were assessed across the datasets along with yearly values. Overall,509
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HASDM’s predictions were closer to CHAMP’s estimates (orbit=29.35% & averaged=23.81%)510

than JB2008’s (orbit=33.96% & averaged=27.63%). This observation was also true with511

respect to GRACE-A: HASDM (orbit=41.80% & averaged=30.84%) JB2008 (orbit=50.52%512

& averaged=39.75%).513

We looked at both storm and quiet periods to see how well the models tracked satel-514

lite densities on a shorter time-scale. In general, HASDM tracked both satellites’ estimates515

better, particularly for the orbit-averaged densities. Over the two geomagnetic storms in516

the 2003 Halloween storm, HASDM predicted higher peak densities than JB2008 or the517

satellites, but it modeled the pre- and post-storm densities well. There were spikes for518

JB2008’s density predictions during the solar minimum/quiet period that showed an over-519

estimation of ap fluctuations on density.520

8 Future Work521

In the future, we plan to develop machine-learned (ML) models on the PCA coeffi-522

cients using various drivers. Not only will it generate a computationally efficient predic-523

tive model, it will allow us to perform nonlinear analysis into the contribution of these524

and additional drivers to the PCA scores. These models can leverage ML techniques to525

also model uncertainty in the system (Licata et al. 2021).526

9 Data Statement527

The JB2008 model is available for download at at https://spacewx.com/jb2008/,528

and requests can be submitted for access to the SET HASDM density database at https:529

//spacewx.com/hasdm/. The historical space weather indices used in this study can also530

be found at the JB2008 link.531

Original CHAMP and GRACE density estimates from (Mehta et al. 2017) can be532

found at http://tinyurl.com/densitysets. As a product of this work, we appended533

the HASDM and JB2008 density estimates to those files. These updated files can be found534

at https://zenodo.org/record/4602380#.YEwEw-1KhuU535
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