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Text S1. Functional derivative of Kullback-Leibler (KL) divergence 

According to the invariance property of the KL divergence under parameter transformations, 

the following relationship holds: 

𝔻!"[𝑞[𝐓]||𝜋] = 𝔻!"[𝑞|(𝜋[𝐓!"]). (S1) 

Here, the left-hand side represents the KL divergence of the random variable before the 

transformation, while the right-hand side represents the KL divergence after the transformation.   

Hence, we have: 

𝛻&𝔻!"[𝑞[𝐓]||𝜋] = 𝛻&𝔻!"[𝑞| ,𝜋'𝐓!"(- = 𝛻&.𝑞(𝐦) log
𝑞(𝐦)

𝜋[𝐓!"](𝐦)
𝑑𝐦

= −𝛻&.𝑞(𝐦) log 𝜋'𝐓!"((𝐦)𝑑𝐦 = −𝔼𝐦~+ 8𝛻& log 𝜋'𝐓!"((𝐦)-

= −𝔼𝐦~+9𝛻& log(𝜋:𝐓(𝐦)< |det	(𝛻𝐦𝐓(𝐦)|))

= −𝔼𝐦~+9𝛻& log 𝜋:𝐓(𝐦)< + 𝛻& log|det	(𝛻𝐦𝐓(𝐦)|)

= −𝔼𝐦~+9𝛻𝐦 log 𝜋:𝐓(𝐦)<, 𝛻&𝐓(𝐦) + trace:𝛻𝐦𝐓(𝐦)-.𝛻&𝛻𝐦𝐓(𝐦)<). 

(S2) 

Considering 𝐓(𝐦) = 𝐦+ 𝜖𝛟(𝐦) and making a first-order approximation, we have: 

𝐓(𝐦) ≈ 𝐦, (S3) 

𝛻𝐦𝐓(𝐦) ≈ 𝐈, (S4) 

𝛻&𝐓(𝐦) = 𝛟(𝐦), (S5) 

𝛻&𝛻𝐦𝐓(𝐦)) = 𝛻𝐦𝛟(𝐦). (S6) 

By substituting Equations S3 to S6 into Equation S2, we have: 

𝛻&𝔻!"[𝑞[𝐓]||𝜋] = −𝔼𝐦~+[𝛻𝐦 log 𝜋(𝐦), 𝛟(𝐦) + trace(𝐈-.𝛻𝐦𝛟(𝐦)]

= −𝔼𝐦~+9trace(𝓐/[𝛟0(𝐦)]). 
(S7) 

where 𝓐/ is the so-called Stein operator: 

𝓐/[𝛟(𝐦)] ≜ 𝛟(𝐦)𝛻𝐦log𝜋(𝐦) + 𝛻𝐦𝛟(𝐦). (S8) 
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 Text S2. Reproducing kernel Hilbert space (RKHS) 

Let ℋ  be a Hilbert space consisting of real-valued functions 𝑓:𝒳 → ℝ . A function 

𝐾:𝒳 ×𝒳 → ℝ is called a reproducing kernel of ℋ if it satisfies the following conditions:  

(1) ∀𝑥 ∈ 𝒳,𝐾1 ≔ 𝐾(𝑥,∙) ∈ ℋ;  

(2) ∀𝑥 ∈ 𝒳, ∀𝑓 ∈ ℋ,< 𝑓, 𝐾(𝑥,∙) >ℋ= 𝑓(𝑥).  

If ℋ has a reproducing kernel, ℋ is referred to as a reproducing kernel Hilbert space (RKHS). 

Conversely, given a kernel function 𝐾:𝒳 ×𝒳 → ℝ, a mapping 𝜙:𝒳 → ℋ can be defined as 

follows: 

𝑥 ↦ 𝜙(𝑥) ≔ 𝐾1 ≔ 𝐾(𝑥,∙). (S9) 

Here, each point 𝑥 ∈ 𝒳 is mapped to the functional 𝐾1: 𝒳 → ℝ, defined by: 

𝐾1(𝑥3) = 𝐾(𝑥, 𝑥3), ∀𝑥3 ∈ 𝒳. (S10) 

An inner product space 𝒢 can then be constructed by taking the span of {𝜙(𝑥) ∶ 𝑥 ∈ 𝒳}: 

𝒢 ≔ span{𝜙(𝑥) ∶ 𝑥 ∈ 𝒳}. (S11) 

The space 𝒢 is equipped with the inner product defined as: 

< 𝑓, 𝑔 >𝒢≔<e𝑓5𝐾(𝑥5 ,∙)
5

,e𝑔6𝐾:𝑥6 ,∙<
6

>𝒢≔e𝑓5𝑔6𝐾(𝑥5 ,
5,6

𝑥6). (S12) 

By taking the topological completion of 𝒢, the resulting space ℋ ≔ 𝒢̅ is the RKHS associated with 

the given kernel function 𝐾. 
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Text S3. Proof of the optimal perturbation direction for SVGD (Liu and Wang, 2016) 

Let  ℬ = {𝑓 ∈ ℋ: 	‖𝑓‖ℋ ≤ 1} be the reproducing kernel Hilbert space (RKHS) associated with 

kernel function 𝐾:𝒳 ×𝒳 → ℝ . Define 𝛃(∙) = 𝔼𝐦~+[𝐾(𝐦, . )𝛻𝐦log𝜋(𝐦) + 𝛻𝐦𝑘(𝐦, . )]  where 

𝛃 ∈ ℬ. 

For a general function 𝛟 ∈ ℬ, using the reproducing property introduced in Text S2, we have: 

< 𝛟, 𝛃 >ℬ=< 𝛟,𝔼𝐦~+[𝐾(𝐦, . )𝛻𝐦log𝜋(𝐦) + 𝛻𝐦𝐾(𝐦, . )] >ℬ

= 𝔼𝐦~+[< 𝛟,𝐾(𝐦, . ) >ℬ 𝛻𝐦log𝜋(𝐦) + 𝛻𝐦 < 𝛟,𝐾(𝐦, . ) >ℬ]

= 𝔼𝐦~+[trace(𝛟(𝐦)𝛻𝐦log𝜋(𝐦) + 𝛻𝐦𝛟(𝐦))]

= 𝔼𝐦~+[trace(𝓐/[𝛟(𝐦)])]. 

(S13) 

Therefore, maximizing 𝔼𝐦~+[trace(𝓐/[𝛟(𝐦)])] is equivalent to maximize the inner product 

< 𝛟, 𝛃 >ℬ . Obviously, the maximum occurs when 𝛟 is proportional to 𝛃. Hence, the optimal 

perturbation direction for SVGD is:  

𝛟∗ ∝ 𝛃(∙) = 𝔼𝐦~+[𝐾(𝐦, . )𝛻𝐦log𝜋(𝐦) + 𝛻𝐦𝐾(𝐦, . )]. (S14) 
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Text S4. Rock physics model 

The unconsolidated and consolidated sand model were developed by Dvorkin and Nur (1996) 

to predict the elastic properties (e.g., P- and S-wave velocities and density) of sandstones based 

on their porosity and other properties for different geological conditions. In both rock physics 

models, the matrix bulk and shear moduli (𝐾:;< and 𝜇:;<) are derived using the Voigt-Reuss-Hill 

average based on mineral fractions (e.g., clay and quartz volumes). The moduli of dry rock (𝐾=> 

and 𝜇=> ) at the critical porosity 𝜙?  are determined through the Hertz-Mindlin equations 

(Mindlin, 1949): 

𝐾=> = o@#[A$(.-C%)E&'(])

.F[/(.-G&'()])
*

, (S15) 

𝜇=> = H-IG&'(
H(J-G&'()

oK@#[A$(.-C%)E&'(])

J[/(.-G&'()])
*

, (S16) 

where 𝑃L  is the effective pressure, 𝜈:;<  is the grain Poisson’s ratio and 𝑛M  is the coordination 

number, which refers to the average number of grain contacts.  

In the unconsolidated sand model, the dry rock moduli (𝐾NOP and 𝜇NOP) for porosity within the 

range [0,	𝜙?] are obtained by interpolating two end members: the matrix moduli and dry rock 

moduli at critical porosity, using the modified Hashin-Shtrikman lower bounds: 

𝐾NOP = s
+
+%

!,-Q
.
*E,-

+
.- +

+%
!&'(Q

.
*E,-

t
-.

− I
K
𝜇=>, (S17) 

𝜇NOP = s
+
+%

E,-Q
"
/RE,-

+
.- +

+%
E&'(Q

"
/RE,-

t
-.

− .
S
𝜉𝜇=>, (S18) 

with 

𝜉 =
9𝐾=> + 8𝜇=>
𝐾=> + 2𝜇=>

. (S19) 

Similarly, the consolidated sand model uses the modified Hashin-Shtrikman upper bounds to 

interpolate the elastic moduli values for porosities ranging from 0 to the critical porosity 𝜙?: 

𝐾NOP = s
+
+%

!,-Q
.
*E&'(

+
.- +

+%
!&'(Q

.
*E&'(

t
-.

− I
K
𝜇:;<, (S20) 

𝜇NOP = s
+
+%

E,-Q
"
/RE&'(

+
.- +

+%
E&'(Q

"
/RE&'(

t
-.

− .
S
𝜉𝜇:;<, (S21) 
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With 

𝜉 =
9𝐾:;< + 8𝜇:;<
𝐾:;< + 2𝜇:;<

. (S22) 

 

For rocks saturated with fluid, Gassmann's equations (Gassmann, 1951) are used to compute 

the bulk shear moduli (𝐾T;< and 𝜇T;<) 

𝐾T;< = 𝐾NOP +
U.-

0123
0&'(

V
)

+
045

Q "!+
0&'(

-
0123
0&'(
)

, (S23) 

𝜇T;< =	𝜇NOP. (S24) 

where 𝐾WX is the bulk modulus of the fluid phase calculated from the brine water and supercritical 

CO2 saturations (𝑠YZ and 𝑠[\J) and their corresponding bulk moduli (𝐾YZ and 𝐾[\J). We assume 

that the fluid components are homogeneously mixed and the effective bulk modulus by 𝐾WX is 

computed using Wood’s averaging method (Mavko et al., 2020): 

𝐾WX =
1

𝑠YZ
𝐾YZ

+ 𝑠[\J
𝐾[\J

. (S25) 

For reservoirs with uneven fluid distribution, like in-situ patchy saturation, it is recommended 

to use Voigt or Brie’s equations (Mavko et al., 2020) for the fluid mixture. 

Finally, the P- and S-wave velocities can be computed from the moduli by definition as 

𝑉] = {!6'(Q
.
*E6'(

^6'(
, (S26) 

𝑉_ = o
E6'(
^6'(

, (S27) 

where 𝜌T;< is the density of the saturated rock which is weighted average of the matrix density 

𝜌:;< and fluid density 𝜌WX 

𝜌T;< = (1 − 𝜙)𝜌:;< + 𝜙𝜌WX. (S28) 

The effective bulk modulus of the matrix 𝜌:;< and fluid mixture 𝜌WX are provided by the Voigt 

average as 

𝜌:;< = (1 − 𝑣`X)𝜌a<b + 𝑣`X𝜌`X, (S29) 
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𝜌WX = (1 − 𝑠[\J)𝜌YZ + 𝑠[\J𝜌[\J, (S30) 

where 𝑣`X and 𝑠[\J are the volumetric fractions of clay and CO2 saturation, respectively; and 𝜌a<b, 

𝜌`X, 𝜌YZ and 𝜌[\J are the density of quartz, clay, brine water and supercritical CO2, respectively.  
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Text S1. Rock physics parameters associated with the unconsolidated sand model in Example 2. 

 

Parameter Value 

Bulk modulus of quartz 36.6 GPa 

Shear modulus of quartz 44.0 GPa 

Density of quartz  2.65 g/cm3 

Bulk modulus of clay 21.0 GPa 

Shear modulus of clay 9.0 GPa 

Density of clay 2.5 g/cm3 

Bulk modulus of brine 3.06 GPa 

Density of brine 1.08 g/cm3 

Effective pressure 0.02 GPa 

Critical porosity 0.4 

Coordination number 7 
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Table S2. Architecture of the autoencoder neural network in Example 2 (Nm represents the number of 

different reservoir properties). 

 

Layer Output size 

1. Input Nmx101 

2. Conv1D + Upsample 4x51 

3. Conv1D + Upsample 8x26 

4. Conv1D + Upsample 16x13 

5. Conv1D + Upsample 32x7 

6. Conv1D + Upsample 32x4 

7. Tanh 32x4 

8. Conv1D + Downsample 32x7 

9. Conv1D + Downsample 16x13 

10. Conv1D + Downsample 8x26 

11. Conv1D + Downsample 4x51 

12. Conv1D + Downsample Nmx101 

13. CustomLinearActivation*  Nmx101 

* The customized activation function is linear between 0 and 1, assigning a value 
of 0 if the output is less than 0 and a value of 1 if the output exceeds 1. 
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Table S3. Architecture of the autoencoder neural network in Example 3 (Nm represents the number of 

different reservoir properties). 

 

Layer Output size 

14. Input Nmx201 

15. Conv1D + Upsample 4x101 

16. Conv1D + Upsample 8x51 

17. Conv1D + Upsample 16x26 

18. Conv1D + Upsample 32x13 

19. Conv1D + Upsample 32x7 

20. Tanh 32x7 

21. Conv1D + Downsample 32x13 

22. Conv1D + Downsample 16x26 

23. Conv1D + Downsample 8x51 

24. Conv1D + Downsample 4x101 

25. Conv1D + Downsample Nmx201 

26. CustomLinearActivation*  Nmx201 

* The customized activation function is linear between 0 and 1, assigning a value 
of 0 if the output is less than 0 and a value of 1 if the output exceeds 1. 
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Figure S1. Comparison between the original reservoir models in the test set of Example 2 and their 

corresponding reconstructions by the trained autoencoder. 
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Figure S2. Experimental variograms of the IBDP case: (a) easting direction; (b) northing direction; (c) 

vertical direction. 
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Figure S3. Comparison between the original reservoir models in the test set of the IBDP case and their 

corresponding reconstructions by the trained autoencoder. 
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Figure S4. Experimental variograms for the prior and posterior reservoir models in the IBDP case: (a)-(c) 

variograms of porosity in easting, northing and vertical direction, respectively; (d)-(f) variograms of clay 

volume in easting, northing and vertical direction, respectively. 

 

  



15 
 

References  

• Dvorkin, J., & Nur, A. (1996). Elasticity of high-porosity sandstones: Theory for two North Sea data 
sets. Geophysics, 61(5), pp.1363-1370. 

• Gassmann, F. (1951). Elastic waves through a packing of spheres. Geophysics, 16(4), pp.673-685. 

• Liu, Q. and Wang, D. (2016). Stein variational gradient descent: A general purpose Bayesian inference 
algorithm. Advances in neural information processing systems, 29. 

• Mavko, G., Mukerji, T. and Dvorkin, J. (2020). The rock physics handbook. Cambridge University Press. 

• Mindlin, R.D. (1949). Compliance of elastic bodies in contact. Journal of Applied Mechanics, ASME, 
16(3), 259–268. 

 


