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ABSTRACT 20 

Geophysical subsurface characterization plays a key role in the success of geologic carbon 21 

sequestration (GCS). While deterministic inversion methods are commonly used due to their 22 

computational efficiency, they often fail to adequately quantify the model uncertainty, which is 23 

essential for informed decision-making and risk mitigation in GCS projects. In this study, we 24 

propose the SVGD-AE method, a novel geostatistical inversion approach that integrates 25 

geophysical data with prior geological knowledge to estimate subsurface properties. SVGD-AE 26 

combines Stein Variational Gradient Descent (SVGD) for sampling high-dimensional 27 

distributions with an autoencoder (AE) neural network for re-parameterizing reservoir models, 28 

aiming to accurately preserve geostatistical characteristics of reservoir models derived from 29 

geological priors. Through two synthetic examples, we demonstrate that the SVGD-AE method 30 

outperforms traditional probabilistic methods, particularly in inverse problems with complex 31 

posterior distributions. Then, we apply SVGD-AE to the Illinois Basin - Decatur Project (IBDP), 32 

a large-scale CO2 storage initiative in Decatur, Illinois, USA. The resulting petrophysical models 33 

with quantified uncertainty enhance our understanding of subsurface properties and have broad 34 

implications for the feasibility, decision making, and long-term safety of CO2 storage at the 35 

IBDP. 36 

  37 
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Plain Language Summary 38 

Geologic carbon sequestration (GCS) provides a promising solution to mitigate the adverse 39 

effects of human-generated CO2 emissions on the climate. GCS involves capturing CO2 emitted 40 

from industrial activities, such as those from coal-fired power plants, and storing it deep 41 

underground. This procedure effectively prevents gas from entering the atmosphere and 42 

contributing to global warming. To ensure the success and safety of GCS projects, it is crucial to 43 

have a comprehensive understanding of the subsurface, including rock and fluid properties. In 44 

this research, we present an innovative probabilistic approach for quantifying subsurface 45 

properties using geophysical data.  The proposed methodology has been successfully applied to 46 

the Illinois Basin - Decatur Project (IBDP), which is a large-scale CO2 storage initiative in 47 

Decatur, Illinois, USA. Our study enhances the comprehension of subsurface attributes and 48 

supports informed decision-making regarding the long-term safety of CO2 storage at the IBDP. 49 

  50 
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1. Introduction 51 

The ever-growing global demand for energy, combined with increasing environmental 52 

concerns regarding greenhouse gas emissions, has led to a surge in the development and 53 

implementation of sustainable energy technologies. Among these solutions, geologic carbon 54 

sequestration (GCS) has emerged as a promising approach to alleviate the impact of human-55 

induced carbon dioxide (CO2) emissions on the climate (Metz et al., 2005). GCS involves 56 

capturing CO2 from industrial sources, such as coal-fired power plants, and injecting it deep into 57 

geological formations. This procedure effectively prevents large-scale CO2 emissions into the 58 

atmosphere, thereby reducing its contribution to global warming. However, the success and 59 

safety of GCS projects critically depends on a profound understanding of the subsurface 60 

geological characteristics and processes, which is generally referred to as subsurface 61 

characterization (Grana et al., 2022).  62 

Geophysical inversion is a widely used technique that leverages indirect measurements, 63 

including seismic, electromagnetic and gravity surveys, to infer the properties of subsurface rock 64 

and fluid, such as porosity, permeability and saturation (Davis et al., 2019; Wang H. et al., 2020; 65 

Zhao L. et al., 2021; Huang, 2022). Geophysical inversion methods can be broadly classified into 66 

two groups: deterministic and probabilistic methods (Tarantola, 2005). Deterministic methods 67 

have gained widespread applications in practice due to their speed and efficiency. They aim to 68 

find the optimal model, typically a local optimal and the simplest (yet often overly smoothed) 69 

model, that is consistent with the observed data (Aster et al., 2018). However, practical 70 

challenges such as limited and noisy data as well as imperfect forward models, introduce 71 

uncertainties that lead to multiple possible solutions (i.e., non-uniqueness). In this perspective, 72 

deterministic approaches are unable to quantify such uncertainties adequately.  73 
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In contrast to deterministic methods, probabilistic inversion methods model the solution as a 74 

probability density function (PDF), enabling a thorough assessment of uncertainty associated 75 

with the model parameters (Tarantola, 2005). This information about uncertainty holds great 76 

significance in various aspects of GCS projects. For instance, it plays a crucial role in storage 77 

capacity estimation for site characterization before injection, as well as in well planning and 78 

geophysical data acquisition during the injection period. By adopting probabilistic inversion, 79 

GCS endeavors can better account for and manage the inherent uncertainties, leading to more 80 

reliable and informed decision-making processes (Scheidt et al., 2018). 81 

In probabilistic approaches to geophysical inversion problems, the prior PDF of model 82 

parameters is modeled from the geological knowledge of the study area. This prior PDF is then 83 

updated through the Bayes’ rule using observed data, which inherently contains uncertainties. 84 

The resulting PDF is referred to as the posterior distribution. When both the prior distribution of 85 

the model  parameters and the distribution of measurement error follow a Gaussian 86 

distribution, and the forward model (likelihood function) is linear, it is possible to derive a 87 

closed-form solution of the posterior PDF analytically (Tarantola, 2005). This analytical 88 

approach offers the advantage of computational efficiency. Buland and Omre (2003) developed 89 

the Bayesian linearized amplitude versus offset (AVO) inversion method, which is based on a 90 

linearized approximation of Zoeppritz equations and a convolutional seismic model. 91 

Subsequently, this method was extended to various geophysical inverse problems, including 92 

cross-borehole tomography (Hansen et al., 2006), time-lapse seismic inversion (Buland and El 93 

Ouair, 2006), controlled source electromagnetic inversion (Buland and Kolbjørnsen, 2012), rock 94 

physics inversion (Grana, 2016), and petrophysical AVO inversion (Lang and Grana, 2018). 95 

Moreover, the analytical posterior distribution can be obtained for linear inverse problems with 96 
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certain simple non-Gaussian prior distributions, such as the Gaussian mixture (Grana et al., 2017) 97 

or skewed Gaussian (Rimstad and Omre, 2014) distributions.  98 

However, in cases where the forward model is non-linear or the prior distribution is complex, 99 

obtaining an analytical solution is often infeasible. As a result, we must rely on numerical 100 

inference methods to approximate the posterior distribution. Roughly speaking, we 101 

can categorize these numerical techniques into two types: sampling and optimization. Markov 102 

Chain Monte Carlo (MCMC) is a popular sampling method that has been used in various 103 

geophysical inverse problems, for example, gravity inversion (e.g., Mosegaard and Tarantola, 104 

1995; Wei et al., 2023), electromagnetic inversion (e.g., Ramirez et al., 2005; Ray et al., 2013; 105 

Peng et al., 2022), and seismic inversion (e.g., Hong and Sen, 2009; de Figueiredo et al., 2019; 106 

Grana et al., 2023). While MCMC is a powerful approach, it can be computationally expensive, 107 

especially for high-dimensional problems or complex models. In recent years, significant 108 

advancements in MCMC algorithms, such as Hamiltonian Monte Carlo (Neal, 2011) and 109 

stochastic Newton MCMC (Martin et al., 2019), have helped tackle some of these challenges, 110 

enabling more efficient sampling from complex posteriors in geophysical inverse problems 111 

(Fichtner and Simutė, 2018; Zhao Z. and Sen, 2021; Gebraad et al., 2020).  112 

Optimization-based inference methods provide an attractive alternative due to their 113 

computational efficiency. Variational inference is an optimization approach that aims to optimize 114 

variational parameters of a predefined distribution that is easy to sample (e.g., the Gaussian 115 

distribution) to approximate the target distribution (Nawaz and Curtis, 2018 and 2019). Although 116 

variational methods exhibit computational efficiency and scalability to high-dimensional inverse 117 

problems, they heavily rely on the chosen of variational distributions, potentially introducing 118 

biases and yielding inaccurate solutions. A comprehensive overview of the applications of 119 
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variational inference in geophysical inverse problems is provided by Zhang X. et al. (2021).  120 

Another family of optimization methods consists of  sequential Monte Carlo methods, including 121 

ensemble-based methods and particle filters, in which the distribution of model is represented by 122 

an ensemble of model realizations (or particles). Liu M. and Grana (2018 and 2022) developed a 123 

stochastic seismic inversion method based on ensemble-smoother with multiple data assimilation 124 

(ES-MDA) and applied it to subsurface characterization. Yardim and Gerstoft (2012) applied 125 

particle filter and smoother to track non-volcanic tremor. However, these methods do have 126 

certain limitations. Ensemble-based methods are limited to weak Gaussian problems, while the 127 

particle filter method is not well-suited for high-dimensional inverse problems. Zhang J. et al. 128 

(2018) proposed an iterative local updating ensemble smoother that is effective to estimate 129 

model parameters with multimodal distributions but significantly increases the computational 130 

cost compared to conventional ensemble smoother method. A comprehensive review of 131 

probabilistic inversion methods for subsurface characterization is presented by Grana et al. 132 

(2022). Additionally, global stochastic optimization algorithms, such as particle swarm 133 

optimization (PSO), with model order reduction can also be employed for inverse problems with 134 

uncertainty quantification (Fernández-Martínez et al., 2010; Pallero et al., 2017; Pace et al., 135 

2021).   136 

Over the last few years, there has been a growing interest in integrating deep learning 137 

techniques into probabilistic inverse problems to improve computational efficiency. For example, 138 

deep neural networks for surrogate modeling (e.g., Tang M. et al., 2020; Tang H. et al., 2021; 139 

Wang N. et al., 2021) and model re-parameterization (e.g., Laloy et al., 2017; Laloy et al., 2018; 140 

Liu M. and Grana, 2020; Siahkoohi et al., 2022), estimation of relevant statistics (e.g., mean and 141 

standard deviation) (Hansen and Finlay, 2022), and physics-informed neural networks, invertible 142 



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

neural networks and normalizing flows for uncertainty quantification (Zhang X. and Curtis, 2021; 143 

Izzatullah et al., 2022; Zhang X. et al., 2022; Zhao X. et al., 2022; Orozco et al., 2023). Apart 144 

from neural network-based techniques, novel inference methods from machine learning have 145 

also been introduced to tackle geophysical inverse problems. Siahkoohi et al. (2023) used 146 

amortized variational inference to accelerate Bayesian seismic imaging. Nawaz et al. (2020) 147 

combined variational inference with neural networks to solve large geophysical inference 148 

problems. Furthermore, the Stein variational gradient descent (SVGD) method, introduced by 149 

Liu Q. and Wang in 2016, has gained prominence as a powerful tool for approximate Bayesian 150 

inference, particularly when dealing with complex and high-dimensional distributions. In 151 

geophysical inverse problems, SVGD has found applications in various areas, including seismic 152 

tomography (Zhang X. and Curtis, 2020a), post-stack seismic inversion (Izzatullah et al., 2023a), 153 

2D full-waveform inversion (Zhang X. and Curtis, 2020b; Izzatullah et al., 2023b), hypocenter 154 

inversion (Smith et al., 2022), and parameter inference in hydrogeological models (Ramgraber et 155 

al., 2021). Zhang X. and Curtis (2023) extended the capabilities of SVGD by introducing a 156 

stochastic variant (sSVGD) to overcome the challenges encountered in high-dimensional inverse 157 

problems. Their method was successfully validated and it achieved promising results in 3D full-158 

waveform inversion. 159 

Inspired by the pioneering works mentioned above, we applied the SVGD method to 160 

geostatistical inversion for seismic subsurface characterization, with the aim of integrating all 161 

available information to maximally reduce the uncertainty of the subsurface.. To ensure that the 162 

inverted reservoir models preserve the prior geological knowledge, such as geostatistical 163 

characteristics including spatial correlation ranges and correlations between different reservoir 164 

properties,  we introduced a strategy to re-parameterize the model parameters into latent features 165 
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using an autoencoder (AE) neural network. This approach is referred to as SVGD-AE in the 166 

following. Compared to traditional probabilistic inversion methods, such as the ensemble-based 167 

method (Liu M. and Grana, 2018), SVGD-AE can provide more diverse posterior realizations, 168 

thus enabling a more precise quantification of model uncertainty. The accurate uncertainty 169 

quantification is crucial for accurate storage capacity estimates and reservoir simulations as well 170 

as for informed decision-making. 171 

We applied the SVGD-AE method to the Illinois Basin - Decatur Project (IBDP), which is a 172 

large-scale CO2 storage initiative in Decatur, Illinois, USA. The main goal of the IBDP is to 173 

investigate the injectivity, capacity and containment of the Mt. Simon Sandstone (Finley, 2014). 174 

Previous attempts at reservoir characterization of IBDP were limited to deterministic inversion 175 

methods with a simplified linear rock physics model (Couëslan et al., 2014), potentially leading 176 

to inaccurate results and lacking crucial information about uncertainty. In this study, we 177 

established a robust rock physics model for the IBDP and improved petrophysical property 178 

predictions using the SVGD-AE approach. The resulting petrophysical models with quantified 179 

uncertainty have broad implications in assessing storage capacity and managing injection-related 180 

risks at the IBDP. SVGD-AE can also be seamlessly integrated with differentiable physics-181 

informed models for GCS monitoring (Liu M. et al., 2023), enabling the quantification of the 182 

uncertainty of the inversion predictions. 183 

2. Methods 184 

2.1 Bayesian Seismic Inversion 185 

The goal of geophysical subsurface characterization is to infer subsurface properties from 186 

indirect surface measurements (e.g., seismic and electromagnetic data) with the calibration of 187 

logging data from boreholes. In mathematics, this procedure is a typical inverse problem, 188 
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described as: 189 

𝐝obs = 𝐅(𝐦) + 𝐞， (1) 

where 𝐦 represents the properties of the subsurface of interest; 𝐝 represents the geophysical data; 190 

𝐅 is the forward operator that links model parameters 𝐦 with the observed data 𝐝obs; and 𝐞 is the 191 

additive error term associated with measurements. For seismic data, the forward modeling 𝐅 192 

consists of two steps:   193 

𝐦e = 𝐅rpm(𝐦p)， 

𝐝 = 𝐅seis(𝐦e)， 

(2) 

Where 𝐅rpm is the rock physics model bridging the petrophysical properties 𝐦p (e.g., porosity, 194 

mineral fractions, and fluid saturations) to elastic properties  𝐦e (e.g., P- and S-wave velocity 195 

and density); 𝐅seis is the operator that further maps elastic properties  𝐦e to seismic data; and 𝐝 196 

represents the modeled data without noise. 197 

From the Bayesian perspective, both model parameters and observations are considered as 198 

random variables and are represented by probability distributions. The solution of the inverse 199 

problem, known as posterior distribution 𝜋(𝐦) = 𝑝(𝐦|𝐝obs), corresponding to Equation 1 can 200 

be described as follows: 201 

𝜋(𝐦) = 𝑝(𝐦|𝐝obs) =
𝑝(𝐝obs|𝐦)𝑝(𝐦)

𝑝(𝐝obs)
， (3) 

where 𝑝(𝐦) is the prior distribution of model parameters 𝐦, representing our initial knowledge 202 

about the model parameters which is independent of the observed data 𝐝obs; 𝑝(𝐝obs|𝐦) is the 203 

likelihood function, quantifying the agreement between the model predictions 𝐅(𝐦) and the 204 

actual observation 𝐝obs; and 𝑝(𝐝obs) is the marginal distribution of the data 𝐝obs, which serves 205 

as a normalization constant. The Bayesian approach provides a powerful framework for 206 
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estimating uncertainty in model parameters based on observed data while also incorporating 207 

prior knowledge. However, traditional inference methods encounter computational challenges 208 

due to the nonlinearity of the forward operator 𝐅 and the high dimensionality of the model 209 

parameters 𝐦. 210 

 211 

2.2 SVGD for posterior inference 212 

Variational inference is a technique used to approximate complex posterior distributions with 213 

simpler ones from a chosen family (Bishop and Nasrabadi, 2006). In practice, simple families 214 

like Gaussian or mean-field approximations are often used, but they may not accurately represent 215 

complex posteriors. To address this limitation, variational methods based on invertible 216 

transforms have been proposed. These methods employ a series of invertible transformations 217 

applied to an initial distribution and optimize their parameters using the Kullback-Leibler (KL) 218 

divergence (Kullback & Leibler, 1951) to approximate arbitrary posterior distributions more 219 

flexibly. This approach allows for better representation of complex and multimodal posteriors.  220 

However, variational inference faces challenges, especially in high-dimensional settings, due 221 

to computational complexity and optimization difficulties. To tackle these challenges, the SVGD 222 

method (Liu Q. and Wang, 2016) uses a set of particles to represent the posterior distribution, 223 

avoiding the need to optimize the continuous distribution directly. This non-parametric approach 224 

with kernel-based gradient updates enables efficient refinement of particles, leading to improved 225 

approximation of complex posteriors and making SVGD a promising tool for Bayesian inference 226 

in diverse applications. 227 

Let us consider a target probability distribution 𝜋(𝐦) over a variable 𝐦 ∈ ℝ𝑑 that we want 228 

to approximate. Directly sampling from or computing 𝜋(𝐦) may be difficult, so we introduce a 229 
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set of particles {𝐦𝑖}𝑖=1
𝑁𝑒  (where 𝑁𝑒 is the total number of particles) with each 𝐦𝑖 drawn from an 230 

initial distribution 𝑞0(𝐦)  that is easy to sample from, typically a Gaussian distribution or 231 

geostatistics simulation for geophysical inverse problems. The main objective of SVGD is to 232 

update the particles {𝐦𝑖}𝑖=1
𝑁𝑒  such that their density moves towards that of the target distribution 233 

𝜋(𝐦) with incremental transformations iteratively: 234 

𝐦𝑖
𝑘+1 = 𝐦𝑖

𝑘 + 𝜖𝛟𝑘(𝐦𝑖
𝑘), (4) 

where 𝐦𝑖
𝑘 is the i

th
 particle at iteration k, 𝜖 is the step size (also known as the learning rate), and 235 

𝛟𝑘(∙) is the perturbation direction at iteration k chosen to maximally decrease the KL divergence 236 

with the target distribution 𝜋(𝐦): 237 

𝛟𝑘 = argmax𝛟𝑘∈ℱ{𝔻𝐾𝐿[ 𝑞𝑘||𝜋] − 𝔻𝐾𝐿[𝑞[𝐓]||𝜋]} ≈ argmax
𝛟𝑘∈ℱ

{−𝛻𝜖𝔻𝐾𝐿[𝑞[𝐓]||𝜋]}, (5) 

where ℱ  is called the Stein class of the probability distribution 𝜋(𝐦)  satisfying 238 

lim|𝐦|→∞ 𝛟(𝐦)𝜋(𝐦) = 0, 𝑞𝑘  is the updated distributions at iteration k that is represented by 239 

updated particles  {𝐦𝑖
𝑘}

𝑖=1

𝑁𝑒
, 𝑞[𝐓]  is the perturbed distribution of 𝑞𝑘  by an incremental 240 

transformation 𝐓(𝐦) = 𝐦 + 𝜖𝛟(𝐦) (Equation 4) and 𝔻𝐾𝐿[∙ || ∙] is the KL divergence defined 241 

as: 242 

𝔻𝐾𝐿[𝑞[𝐓]||𝜋] = ∫ 𝑞[𝐓](𝐦) log
𝑞[𝐓](𝐦)

𝜋(𝐦)
𝑑𝐦. (6) 

The functional derivative of KL divergence is exactly equal to the Stein discrepancy: 243 

𝛻𝜖𝔻𝐾𝐿[𝑞[𝐓]||𝜋] = −𝔼𝐦~𝑞𝑘
[trace(𝓐𝜋[𝛟𝑘(𝐦)])], (7) 

where 𝓐𝜋 is the so-called Stein operator: 244 

𝓐𝜋[𝛟(𝐦)] ≜ 𝛟(𝐦)𝛻𝐦log𝜋(𝐦) + 𝛻𝐦𝛟(𝐦). (8) 

The detailed derivation of Equations 7 and 8 can be found in Text S1 of Supporting Information. 245 

Therefore, the optimization problem in Equation 5 is equivalent to 246 
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𝛟𝑘
∗ = argmax

𝛟𝑘∈ℱ
{𝔼𝐦~𝑞𝑘

[trace(𝓐𝜋[𝛟𝑘(𝐦)])}. (9) 

The Stein class ℱ  plays an important role in optimizing the kernelized divergence and 247 

approximating the target distribution ℱ . To make the optimization problem computationally 248 

tractable, Liu Q. and Wang (2016) proposed a kernelized Stein discrepancy by maximizing 249 

Equation 8 in the unit ball of a reproducing kernel Hilbert space (RKHS): ℬ = {𝑓 ∈ ℋ:  ‖𝑓‖ℋ ≤250 

1} where ℋ  is a Hilbert space of functions defined on a set 𝒳  that satisfies the reproducing 251 

property. The detailed introduction of RKHS can be found in Text S2 of Supporting Information. 252 

With the RKHS, the closed-form solution to for the optimal perturbation direction 𝛟𝑘
∗  is 253 

given by: 254 

𝛟𝑘
∗ ∝ 𝔼𝐦~𝑞[𝓐𝜋[𝐾(𝐦, . )]] = 𝔼𝐦~𝑞[𝐾(𝐦, . )𝛻𝐦log𝜋(𝐦) + 𝛻𝐦𝐾(𝐦, . )], (10) 

where 𝐾(𝐦, 𝐦𝑖)  is the kernel function that measures the similarity between 𝐦  and the i-th 255 

particle 𝐦𝑖. The detailed proof can be found in Text S3 of Supporting Information. The radial 256 

basis function kernel is used in our study: 257 

𝐾(𝐦, 𝐦𝑖) = exp(−
‖𝐦−𝐦𝑖‖2

𝜎2 ), (11) 

where 𝜎 is a hyperparameter known as the bandwidth or spread of the kernel. In practice,  𝜎 is 258 

usually chosen to be 
𝑏𝑤𝑀

√log 𝑁𝑒
 where 𝑀 = Median {‖𝐦𝑖 − 𝐦𝑗‖

2

2
} is the median of the pairwise 259 

distance between the particles and 𝑏𝑤 is a scaling factor. 260 

Using this result, the update equation for each particle in the SVGD algorithm becomes: 261 

𝐦𝑖
𝑘+1 = 𝐦𝑖

𝑘 + 𝜖𝔼
𝐦~{𝐦𝑗}

𝑗=1

𝑁𝑒 [𝐾(𝐦, 𝐦𝑖
𝑘)𝛻𝐦log𝜋(𝐦) + 𝛻𝐦𝐾(𝐦, 𝐦𝑖

𝑘)]. (12) 

The term 𝐾(𝐦, 𝐦𝑖
𝑘)𝛻𝐦log𝜋(𝐦) serves to guide the particles {𝐦𝑗}

𝑗=1

𝑁𝑒
  towards high probability 262 

regions of 𝜋(𝐦) . Conversely, the term 𝛻𝐦𝐾(𝐦, 𝐦𝑖
𝑘)  encourages diversity within the set of 263 
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particles {𝐦𝑗}
𝑗=1

𝑁𝑒
, preventing the particles from collapsing into isolated modes of 𝜋(𝐦).  264 

2.3 Autoencoder for model reparameterization 265 

In geostatistical inversion, prior reservoir models are often generated through geostatistical 266 

simulations that incorporate prior geological knowledge, including spatial correlation ranges and 267 

correlations between different reservoir parameters. It is expected that the posterior reservoir 268 

models can accurately preserve those geostatistical characteristics after updating according to the 269 

measured data. However, due to the different sensitivity of petrophysical properties to 270 

geophysical data, the model updating process at each iteration using gradient descent methods 271 

including SVGD, might result in unphysical correlations between different petrophysical 272 

properties. For instance, porosity is highly sensitive to seismic data, leading to significant 273 

corrections at each updating iteration, whereas adjustments to other petrophysical parameters like 274 

mineral fractions and fluid saturations are generally minimal. Consequently, as illustrated in 275 

Figure 1a, the updated reservoir models often deviate from the model space constrained by the 276 

geostatistical prior knowledge.  277 
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 278 

Figure 1. (a) The updated reservoir models updated by SVGD-AE consistently remain within the regularized space; 279 

(b) the workflow of SVGD-AE. 280 

 281 

To address this issue, we propose to re-parameterize the reservoir models using an 282 

autoencoder neural network (Goodfellow et al., 2016). An autoencoder typically has two main 283 

components: an encoder 𝓝enc  and a decoder 𝓝dec . The encoder 𝓝enc  converts model 284 

parameters 𝐦 into latent features 𝐦̃ = 𝓝enc(𝐦), upon which we conduct the SVGD inversion. 285 
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The decoder 𝓝dec  transforms the updated latent features 𝐦̃ back into reservoir models 𝐦 =286 

𝓝dec(𝐦̃). AE can effectively learn information about geostatistical characteristics, including 287 

spatial features and cross-correlations, from the prior reservoir models, thus ensuring that the 288 

output reservoir models maintain these characteristics. As illustrated in Figure 1a, the updated 289 

reservoir models by SVGD-AE consistently remain within the regularized space as expected. 290 

The proposed approach is referred to as SVGD-AE, and its workflow is illustrated in Figure 1b. 291 

The complete scheme of the SVGD-AE algorithm for geostatistical inversion is described in 292 

Algorithm 1. 293 

Algorithm 1 SVGD-AE for geophysical inverse problems 

1. Define the ensemble size 𝑁𝑒, the number of iterations 𝑁 and the step size 𝜖. 

2. Generate an ensemble of initial realizations {𝐦𝑖}𝑖=1
𝑁𝑒  from the initial distribution 𝑞0(𝐦). 

3. Train an autoencoder neural network (consisting of an encoder 𝓝enc and decoder 𝓝dec) 

using the initial realizations for model re-parametrization. 

4. For 𝑘 = 1 𝑡𝑜 𝑁 

 Transform model parameters into the latent space: 𝐦̃𝑖
𝑘 = 𝓝enc(𝐦𝑖

𝑘) 

 Obtain the gradient 𝛻𝐦̃𝑖
log𝜋(𝐦̃𝑖) of each prior realization 𝐦̃𝑖 through automatic 

differentiation. 

 Update model ensemble {𝐦̃𝑖}𝑖=1
𝑁𝑒  using 𝐦̃𝑖

𝑘+1 = 𝐦̃𝑖
𝑘 + 𝜖𝛟𝑘

∗ (𝐦̃𝑖
𝑘) where 

 𝛟𝑘
∗ =

1

𝑁𝑒
∑ [𝐾(𝐦̃𝑗

𝑘, 𝐦̃𝑖
𝑘)𝛻

𝐦̃𝑗
𝑘log𝜋(𝐦̃𝑗

𝑘) + 𝛻
𝐦̃𝑗

𝑘𝐾(𝐦̃𝑗
𝑘, 𝐦𝑖

𝑘)]
𝑁𝑒
𝑗=1 . 

 Transform the updated latent features back into the original model space: 

𝐦𝑖
𝑘+1 = 𝓝dec(𝐦̃𝑖

𝑘+1). 

     End 

 294 

2.4 Optimization  295 

Let the ensemble size be denoted as 𝑁𝑒 and the number of iterations as 𝑁. In the SVGD-AE 296 
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method, it is necessary to perform the forward simulation 2𝑁𝑒𝑁 times (the factor of 2 accounts 297 

for an additional run required to compute the gradient). In practical applications, the ensemble 298 

size is commonly set to several hundreds. The number of iterations 𝑁 is significantly influenced 299 

by the chosen optimization method. Standard gradient descent typically requires a small step size 300 

and, consequently, a large number of iterations (e.g., several hundreds). In this study, we use the 301 

adaptive subgradient method (AadGrad) (Duchi et al., 2011) as the optimizer to accelerate the 302 

convergence speed. The key feature of AdaGrad is its adaptive learning rate, which dynamically 303 

adjusts the learning rate for each parameter of the model based on the historical gradients for that 304 

parameter. This adaptive mechanism is achieved by scaling the learning rates inversely 305 

proportional to the square root of the sum of squared gradients for each parameter: 306 

𝜖𝑘̃ =
𝜖𝑘

√𝐺𝑘+𝜏
, (13) 

where 𝜖𝑘  and 𝜖𝑘̃  denote the learning rates before and after scaling, respectively; 𝐺𝑘  is the 307 

accumulated squared gradient up to iteration k, and 𝜏 is a small constant added for numerical 308 

stability. 309 

For the proposed application, the SVGD-AE algorithm typically achieves convergence 310 

within 30 iterations using the AdaGrad optimizer. As a result, the total number of forward 311 

simulations required by SVGD-AE amounts to tens of thousands, which is comparable to 312 

ensemble-based methods and significantly smaller than the number required by MCMC methods. 313 

This makes SVGD-AE computationally efficient for large-scale inverse problems with 314 

uncertainty quantification.  315 

The proposed approach is compared to Markov chain Monte Carlo (MCMC), particle swarm 316 

optimization (PSO), and ensemble smoother with multiple data assimilation (ES-MDA). PSO is 317 

a nature-inspired optimization algorithm that was developed to simulate the social behavior of a 318 
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group of particles, often representing potential solutions to inverse problems, with uncertainty 319 

quantification. In PSO, each particle adjusts its position in a multidimensional search space 320 

based on its own experience and the experiences of its neighbors. The PSO algorithm aims to 321 

iteratively improve the positions of these particles to find the optimal or near-optimal solution to 322 

the given problem. In mathematics, the velocity and position (i.e., model parameters) updating 323 

equations for a particle in the search space are as follows: 324 

𝐯𝑖
𝑘+1 = 𝑤𝐯𝑖

𝑘 + 𝑐1𝑟1(𝐩𝑖
𝑘 − 𝐦𝑖

𝑘) + 𝑐2𝑟2(𝐩𝑔
𝑘 − 𝐦𝑖

𝑘), (14) 

𝐦𝑖
𝑘+1 = 𝐦𝑖

𝑘 + 𝐯𝑖
𝑘+1, (15) 

where 𝐯𝑖
𝑘  and 𝐦𝑖

𝑘  are the velocity and position of the i
th

 particle at iteration k; 𝐩𝑖
𝑘  is the best 325 

position found by the i
th

 particle up to iteration k (local best); 𝐩𝑔
𝑘  is the best position found by 326 

any particle in the swarm up to iteration k (global best); 𝑤 is the inertia weight that controls the 327 

impact of previous velocity of the particle on the current velocity; 𝑐1 and 𝑐2  are acceleration 328 

coefficients representing the cognitive and social components, respectively; 𝑟1 and 𝑟2 are random 329 

values sampled from a uniform distribution within the range [0, 1]. 330 

ES-MDA is a widely used inversion method within geosciences, hydrology, and 331 

environmental modeling. It is a variant of the Ensemble Kalman Filter (EnKF) (Evensen, 2003) 332 

and is designed to handle the challenges associated with nonlinear and non-Gaussian problems. 333 

In mathematics, the updating equations of each particle can be expressed as follows: 334 

𝐦𝑖
𝑘+1 = 𝐦𝑖

𝑘 + 𝐊(𝐝̃𝑖
𝑘 − 𝐝𝑖

𝑘), (16) 

𝐊 = 𝐂𝐦𝐝
𝑘 (𝐂𝐝𝐝

𝑘 + 𝐂𝐝)
−1

, (17) 

where 𝐦𝑖
𝑘  is the i

th
 particle at iteration k; 𝐝̃𝑖

𝑘  is the observed data with random perturbation 335 

according to the covariance of the noise 𝐂𝐝; 𝐝𝑖
𝑘 is the predicted data obtained from 𝐦𝑖

𝑘 through 336 

the forward operator; 𝐊 is the so called Kalman gain matrix and is computed from the cross-337 
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covariance matrix 𝐂𝐦𝐝
𝑘  between the model parameters 𝐦𝑘 and the corresponding predicted data 338 

𝐝𝑘, and the covariance matrix 𝐂𝐝𝐝
𝑘  of the predicted data 𝐝𝑘. 339 

 340 

3. Illustrative Examples 341 

3.1 Example 1: A simple case with multimodal posterior 342 

The first example is a simple and low-dimensional parameter estimation problem. Its purpose 343 

is to demonstrate the efficacy and advantages of the SVGD method in addressing non-linear 344 

inverse problems with multimodal posterior distributions. The forward model for this example is 345 

defined as follows: 346 

𝑑obs = (𝑚1
2 − 1)2 × (𝑚2

2 − 1)2 + 𝑒, (18) 

where 𝑚1  and 𝑚2  represent two model parameters ( 𝐦 = [𝑚1, 𝑚2] ) and 𝑑obs  represents the 347 

observed data (which is a scalar) with measurement error 𝑒 . We assume that 𝑑obs = 0 with 348 

𝑒~𝒩(0, 0.052)  and the prior distribution of model parameters is uniform within the range 349 

[−2,  2] × [−2,  2]. As depicted by the approximated distribution obtained through MCMC with 350 

10
7
 samples in Figure 2a, the posterior distribution of the model parameters exhibits four distinct 351 

modes centered at (-1, -1), (-1, 1), (1, -1) and (1, 1). We compare this MCMC posterior 352 

distribution with the posterior distribution obtained by three different methods: particle swarm 353 

optimization (PSO), ensemble smoother with multiple data assimilation (ES-MDA), and SVGD.  354 

As shown in Figure 2b, when social information is dominant (with cognitive coefficient 355 

𝑐1 = 1 and social coefficient 𝑐2 = 2), the PSO algorithm (with 200 particles and 30 iterations) 356 

concentrates exclusively on a single mode within the distribution. On the contrary, when 357 

cognitive information is dominant (with 𝑐1 = 1 and 𝑐2 = 0), PSO shows a higher potential to 358 
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explore other modes. However, in this scenario, each particle tends to disregard information from 359 

its counterparts, resulting in the posterior particles becoming uniformly distributed among the 360 

region that cover all four modes (Figure 2c).  361 

ES-MDA applies a shared Kalman gain matrix 𝐊  for updating all particles within the 362 

ensemble. Hence,  all particles move along in the same direction at every iteration. Consequently, 363 

ES-MDA might encounter challenges when handling posterior distributions that exhibit multiple 364 

modes. 200 prior particles are randomly drawn from a uniform distribution within the range 365 

[−2,  2] × [−2,  2]. The corresponding posterior particles through 30 iterations using ES-MDA 366 

as well as the approximated posterior distribution are shown in Figure 2d. As expected, the 367 

updated posterior particles struggle to capture the multi-modal characteristic in the true 368 

distribution. 369 

Different from ES-MDA, SVGD uses the local gradient information of individual particles to 370 

ensure diversity within the particle ensemble, as illustrated by Equation 12.  In Figure 2e, the 371 

posterior distribution obtained through SVGD (where no autoencoder is used) with 30 iterations, 372 

200 particles and the scaling factor 𝛼 of 0.3 effectively capture the four modes present within the 373 

target distribution. However, the low probability regions connecting the modes are undersampled. 374 

By reducing the scaling factor α to 0.1 (i.e., by decreasing the bandwidth of the kernel function 375 

in Equation 11), the interaction among distant particles decreases. Such a smaller bandwidth 376 

allows the particles to explore local structures within the target distribution and therefore, the 377 

approximated distribution captures the low probability regions more accurately, as shown in 378 

Figure 2f. Furthermore, using more particles (i.e.,1000) further improves the results (Figure 2g); 379 

however, this improvement comes at the expense of increased computational costs. The above 380 

experiments demonstrate that SVGD outperforms PSO and ES-MDA for inverse problems with 381 



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

multi-modal posterior distribution. 382 

We use the loss function (i.e., negative log likelihood) and the Wasserstein distance (Villani, 383 

2009) between the posterior distributions at the current and previous iterations as the criteria for 384 

determining the number of iterations. In this example, SVGD converges effectively after 30 385 

iterations using the AdaGrad optimization method. Figure 2h and 2i show the loss function and 386 

Wasserstein distance for the scenario with scaling factor of 0.1 and 200 particles.  387 
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 388 

Figure 2. Posterior probability distributions approximated by (a) MCMC with 10,000,000 iterations; (b) PSO with 389 

𝑐1 = 1, 𝑐2 = 2 and 200 particles; (c) PSO with 𝑐1 = 1, 𝑐2 = 0 and 200 particles; (d) ES-MDA with 200 particles; (e) 390 

SVGD with 𝑏𝑤 = 0.3 and 200 particles; (f) SVGD with 𝑏𝑤 = 0.1 and 200 particles; (g) SVGD with 𝑏𝑤 = 0.1 and 391 

1,000 particles; (h) loss function and (i) Wasserstein distance of SVGD with 𝑏𝑤 = 0.1 and 200 particles over 392 

iterations. The white dots represent the posterior particles, and the posterior distributions are computed from the 393 

particles by kernel density estimation. 394 

3.2 Example 2: A synthetic case of pre-stack AVO inversion 395 
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Although SVGD is powerful for inferring complex distributions, it often leads to unphysical 396 

correlations between reservoir properties in geostatistical inversion, as illustrated in Figure 1a. 397 

The second example aims to demonstrate the significance of the autoencoder for model re-398 

parameterization and to validate the SVGD-AE method for geophysical inverse problems, 399 

specifically the pre-stack AVO inversion for estimating petrophysical properties. The reference 400 

petrophysical model of porosity and clay volume (Figure 3a) are generated by Gaussian co-401 

simulation with a correlation coefficient of -0.59 and a vertical correlation length of 10 ms 402 

(Grana et al., 2022).  We assume a constant water saturation of 1, which mimics the scenario 403 

before CO2 injection consistently with the proposed real case application. 404 

The elastic properties, including P- ( 𝐕P ) and S-wave ( 𝐕s ) velocities and density ( 𝛒 ), 405 

associated with the petrophysical model are derived using the unconsolidated sand model 406 

(Dvorkin and Nur, 1996; Mavko et al., 2020). The detailed description of the unconsolidated 407 

sand model the rock-physics parameters can be found in Text S4 and Table S1 of Supporting 408 

Information. The Shuey’s three-term AVO equation (Shuey, 1985) is used to calculate the P-to-P 409 

reflection coefficients 𝐑𝑃𝑃 for varying incidence angles 𝜃: 410 

𝐑𝑃𝑃(𝑡, 𝜃) ≈
1

2
(

∆𝐕𝑃

𝐕𝑃̅̅ ̅̅ +
∆𝛒

𝛒̅
) + [

1

2

∆𝐕𝑝

𝐕𝑝̅̅̅̅ − 2
𝐕𝑃̅̅ ̅̅ 2

𝐕𝑆̅̅̅̅ 2̅̅ ̅̅ ̅ (
∆𝛒

𝛒̅
+ 2

∆𝐕𝑆

𝐕𝑆̅̅̅̅ )] sin2 𝜃 +
1

2

∆𝐕𝑃

𝐕𝑃̅̅ ̅̅
(tan2 𝜃 − sin2 𝜃), (19) 

where ∆𝐱 = 𝐱(𝑡 + 𝑑𝑡) − 𝐱(𝑡) (𝐱 denotes either 𝐕𝑃 , 𝐕𝑆  or 𝛒; 𝑡  represents time; and 𝑑𝑡  denotes 411 

sampling rate) is the elastic difference between at the reflection interface and 𝐱̅ =
𝐱(𝑡+1)+𝐱(𝑡)

2
 412 

represents the average elastic properties above and below the interface. The obtained reflection 413 

coefficients are then convolved with Ricker wavelets 𝐖(𝜃) to generate the pre-stack seismic 414 

responses 𝐝seis: 415 

𝐝seis(𝑡, 𝜃) = 𝐖(𝜃) ∗ 𝐑𝑃𝑃(𝑡, 𝜃). (20) 

In this study, we simulate observational data by extracting seismic traces at incident angles of 416 
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12°, and 24° and 36°. The dominant frequencies of the Ricker wavelets for the three incident 417 

angels are 45, 40 and 35 Hz, respectively. These coefficients are then convolved with the 418 

respective wavelets to obtain the seismic response. To simulate measurement error, additive 419 

Gaussian noise is added to the seismic data. The signal-to-noise ratio of the so-obtained seismic 420 

data is 10. The three seismic traces in Figure 3b represent the near, mid and far stacks for the 421 

pre-stack AVO inversion. The objective of this inverse problem is to estimate the petrophysical 422 

properties (i.e., porosity and clay volume) and quantify the associated uncertainty from the band-423 

limited and noisy seismic data.  424 

 425 

Figure 3. (a) The reference petrophysical model; (b) the actual vs. predicted seismic data; (c) the loss function and (i) 426 

the Wasserstein distance of SVGD over iterations (each gray line represents a model parameter). 427 

 428 

The closed-form solution to this inverse problem cannot be derived analytically. Therefore, 429 
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we aim at approximating the posterior distribution using MCMC, as introduced by Grana et al. 430 

(2022), which serves as the benchmark for evaluating the performance of SVGD-AE. To 431 

expediate computations and efficiently explore the model space, we use 6 parallel chains for 432 

sampling the posterior distribution. The proposed distributions of the 6 chains are correlated 433 

Gaussian distributions with vertical correlations ranging from 5 to 10 ms. Each chain is run for 434 

10
5
 iterations, with a burn-in phase of 10

4
 models. Consequently, we obtain a total of 5.4×10

5
 435 

samples, and the posterior distribution approximated by MCMC is shown in Figure 4a. 436 

Following the inversion workflow of SVGD-AE as outlined in Algorithm 1, we first generate 437 

a set of 3×10
5 

prior petrophysical models with vertical correlations ranging from 5 to 10 ms. 438 

Using these prior models, we train an autoencoder neural network to transform petrophysical 439 

properties into latent features. The parameters of the autoencoder are summarized in Table 2 of 440 

Supporting Information. It is worth noting that feature maps without Rectified Linear Unit 441 

(ReLU) functions are used in the autoencoder, except for the last layer, to retain all latent 442 

features and preserve the high-frequency details in the original reservoir models. In the final 443 

layer, a customized linear activation function is employed to ensure that outputs fall within the 444 

range [0, 1]. Specifically, this customized activation function is linear between 0 and 1, assigning 445 

a value of 0 if the output is less than 0 and a value of 1 if the output exceeds 1. These values are 446 

then scaled to fit within the physical range of porosity [0.01, 0.6] and clay volume [0, 0.3]. The 447 

training time is about 1.4 minutes using one Nvidia A100 GPU. The comparison between the 448 

original reservoir models in the test set and their corresponding reconstructions by the trained 449 

autoencoder can be found in Figure S1 of Supporting Information.   450 
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 451 

Figure 4. Petrophysical models inverted using (a) MCMC; (b) SVGD without AE; (c) SVGD-AE; (d) distributions 452 

of the correlation coefficients between porosity and clay volume for the prior realizations and the posterior 453 

realizations obtained by SVGD and SVGD-AE. 454 

 455 

Subsequently, we randomly select 200 samples from the prior petrophysical models to form 456 
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the initial ensemble and then apply the SVGD-AE method with AdaGrad as the optimizer to 457 

update the petrophysical models by assimilating the pre-stack seismic data. Convergence of the 458 

SVGD-AE algorithm is observed satisfactorily after 30 iterations (Figure 3c and 3d).  As shown 459 

in Figure 4c, the posterior mean aligns well with the reference model and the associated model 460 

uncertainty is effectively quantified by the posterior realizations comparing with the results 461 

obtained by MCMC (Figure 4a). In the unconsolidated sand model, porosity is more sensitive to 462 

elastic properties than either clay volume. As expected, this results in the inverted porosity 463 

demonstrating higher accuracy and smaller uncertainty compared to the clay volume.  464 

 465 

Figure 5. Marginal distributions of inverted porosity and clay volume at times 0.84, 0.9, and 0.96 s using MCMC, 466 

SVGD with and without AE. 467 

As shown in Figure 4b, SVGD without AE accurately estimates porosity but cannot 468 

accurately recover clay volume. Moreover, Figure 4d illustrates that SVGD without AE leads to 469 

spurious correlations between porosity and clay volume, whereas SVGD-AE accurately 470 
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preserves the correlations. Figure 5 presents the marginal distributions of porosity and clay 471 

volume at times 0.84, 0.9, and 0.96 s and it shows that the posterior distribution of porosity 472 

obtained by SVGD both with and without AE closely approximates that obtained by MCMC. 473 

However, for clay volume, the SVGD-AE result significantly outperforms SVGD without AE. 474 

 475 

Figure 6. Four prior and posterior petrophysical realizations inverted by SVGD with and without AE. 476 

Figure 6 shows four posterior realizations of SVGD with and without AE alongside their 477 

corresponding prior realizations. In the scenario without AE, consistent with the sensitivity to 478 
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seismic data, there is minimal correction of clay volume after model updating. However, in the 479 

scenario with AE, the encoded prior information facilitates necessary corrections of clay volume, 480 

ensuring that the posterior realizations preserve geostatistical characteristics. Furthermore, while 481 

the posterior realizations of SVGD-AE differ significantly from one to another, they all generate 482 

consistent seismic responses matching the observed data, as shown in Figure 3b. This 483 

consistency indicates that all posterior realizations are valid solutions for this pre-stack AVO 484 

inverse problem. Based on our previous research (Liu M. and Grana, 2018), posterior 485 

realizations derived using the ES-MDA method share a uniform spatial trend and struggle to 486 

capture the full model space adequately. The posterior realizations typically display a uniform 487 

spatial trend with only local variability. Unlike ES-MDA, which tends to induce Gaussian 488 

posterior distributions, the SVGD-AE approach preserves the original distribution types of the 489 

prior models. Also, key geostatistical parameters of the reservoir models, such as the vertical 490 

range and sill, are effectively retained using SVGD-AE. The variety of posterior realizations 491 

provided by the SVGD method is helpful for operational decision-making as well as risk 492 

mitigation across various subsurface applications. 493 

In Table 1, we provide a summary of the computational costs for MCMC and SVGD-AE, 494 

including the number of simulations, the number of CPU cores and the wall clock time. As the 495 

wall time can vary significantly depending on the code implementation, the number of 496 

simulations provides a reliable metric for assessing overall computational costs. In this example, 497 

SVGD-AE achieves comparable results to MCMC using only 12,000 forward simulations, 498 

whereas MCMC requires up to 300,000 forward simulations. 499 

Table 1. A comparison of computational cost for MCMC and SVGD-AE  500 

Method Number of 

simulations 

CPU cores Wall time (minutes) 
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MCMC 300,000 6 43 

SVGD-AE
*
 12,000 1 1 

*
 The training of the AE incurs an additional 1.4 minutes. In real 3D applications, the training 

duration is negligible compared to the inversion time and can thus be ignored. 

 501 

4. Application to the IBDP  502 

In this section, we present an application of the proposed SVGD-AE method for the seismic 503 

subsurface characterization of the Illinois Basin - Decatur Project (IBDP). The IBDP project is a 504 

pioneering CO2 storage initiative aimed at demonstrating the scalability and viability of long-505 

term carbon dioxide sequestration in deep saline reservoirs (Finley, 2014).  506 

4.1 Geological setting and geophysical data of the IBDP 507 

As shown in Figure 7a, the Illinois Basin spans the Midwestern United States, covering parts 508 

of Illinois, Indiana and Kentucky. The Mount Simon (Mt. Simon) Sandstone within the basin is a 509 

thick, regional scale sandstone with a potential CO2 storage capacity ranging from 11 to 150 510 

billion tons (Finley, 2014). The IBDP site has drilled two injection wells (CCS1 and CCS2), two 511 

deep monitoring wells (VW1 and VW2) and various shallow wells and equipment for dedicated 512 

geophysical monitoring (Figure 7b). As revealed by the vertical injection well CCS1 (Figure 7c), 513 

the Mt. Simon formation has a depth between 1700 to 2150 m and is further divided into five 514 

lithostratigraphic subsections: Mt. Simon A through E.  The CO2 injection specifically occurred 515 

within the Lower Mt. Simon Sandstone (i.e., subsection A and B) where porosity is between 18-516 

25% and permeability varies from 40 to 380 mD. The Mt. Simon is overlain by the Eau Claire 517 

Formation, which is a 150 m thick impermeable layer that hydraulically isolates the Mt. Simon 518 

from strata above. The Eau Claire Formation plays a vital role in preventing CO2 leakage and 519 

guarantees secure long-term subsurface storage.  520 
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At the IBDP, three surface 3D seismic surveys were conducted to characterize the storage 521 

site and monitor CO2 movement (Davis et al, 2019). The first 3D seismic survey in 2010 aimed 522 

to provide detailed characterization of the anticipated CO2 plume region surrounding the CCS1 523 

injection well. Given the potential for a more expansive CO2 plume region than initially 524 

anticipated, the survey was expanded in 2011. The dashed red rectangle in Figure 7b outlines the 525 

coverage of the 2011 seismic survey. The extended survey in 2011 is the baseline seismic survey 526 

of the IBDP (Couëslan et al., 2014). Following the completion of the CO2 injection, a third 527 

survey was conducted in 2015, serving as the first time-lapse monitor survey for predicting the 528 

CO2 plumes. 529 

In this study, we focus on the prediction of petrophysical properties with uncertainty 530 

quantification at the IBDP prior to CO2 injection. The petrophysical models are essential for 531 

estimating CO2 storage capacity in the area and provide baseline model for the subsequent time-532 

lapse monitoring work. Figure 8a shows the top horizon of the Mt. Simon Sandstone in a map 533 

view with an inline crossing the wells CCS1 and VW1 and a crossline crossing the well VW2 534 

denoted by dashed white lines. Figure 8c shows the sections of the 2011 seismic data 535 

corresponding to the dashed lines. To correlate subsurface measurements from wellbores 536 

(measured in depth) with seismic data (measured in time), we conduct a seismic-well-tie within 537 

the time window around the Mt. Simon Sandstone using wells CCS1 and CCS2. Wells VW1 and 538 

VW2 are left out to serve as blind wells for validating the inverted results. The wavelet extracted 539 

from this process is shown in Figure 8b. The synthetic seismic data produced using the extracted 540 

wavelet aligns satisfactorily with seismic traces at the well locations, indicating the reliability of 541 

our seismic-well-tie. 542 
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 543 

Figure 7. (a) Location of the IBDP site (red dot) and surrounding geological structures (adapted from Finley, 2014); 544 

(b) Satellite image of the IBDP site showing the location of wells (circles with an arrow denote injection wells, 545 

circles with a short line denote validation wells, and the red rectangle delineates the seismic survey boundary); (c) 546 

gamma ray, permeability and P-sonic log from Well CCS1. 547 
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 548 

 549 

Figure 8. (a) Horizon surface from the top of the Mt. Simon Sandstone (black dots indicate well locations and 550 

dashed lines represent two sections crossing wells); (b) extracted wavelet and synthetic vs. measured seismic at Well 551 

CCS1; (c) two seismic sections corresponding to the dashed lines in (a) (the black dashed lines denote the well 552 

locations). 553 

 554 

4.2 Rock physics modeling 555 

While seismic data can reveal elastic properties of subsurface structures, such as velocities 556 
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and density, rock physics models are essential for converting elastic properties into reservoir 557 

parameters. These parameters, including porosity, permeability, mineral fractions, and fluid 558 

saturations, are directly relevant to geologists and reservoir engineers. Figure 10 and 11 present 559 

well log data from Wells CCS1, CCS2, VW1 and VW2 within the target formation, which 560 

includes the Mt. Simon Sandstone as well as portions of the basement and caprock formations. 561 

Since Wells VW1 and VW2 are used here as blind wells for the purpose of validating inverted 562 

results, only data from CCS1 and CCS2 are used to calibrate the rock physics model. 563 

Prior to calibrating the rock physics model, it is essential to carefully examine well logs and 564 

remove abnormal data that fall outside physical boundaries. Sandstones typically comprise 565 

various mineral components, such as quartz, feldspar, calcite, montmorillonite, illite, and 566 

kaolinite. Due to reservoir heterogeneity, these mineral fractions exhibit spatial variations, and it 567 

is difficult to obtain detailed information about these fractions. To simplify the complexity, we 568 

categorize the mineral composition into two categories: stiff and soft mineral members. The stiff 569 

mineral member comprises stiff minerals like quartz, feldspar and calcite, while the soft mineral 570 

member comprises soft minerals such as montmorillonite, illite and kaolinite. The effective 571 

physical properties of these stiff and soft mineral members are an average of their respective 572 

components, which depend on factors such as texture, cementation and diagenesis as well as 573 

reservoir pressure and temperature. In practice, these properties are estimated by fitting to the 574 

well-logs. For this work, we adopt a rock physics model known as consolidated (or stiff) sand 575 

model (Dvorkin and Nur, 1996). The detailed description of the model can be found in Text S4 576 

of Supporting Information. Based on calibration to the log data the bulk modulus, shear modulus, 577 

and density for the stiff mineral member are taken to be 45 GPa, 44 GPa, and 2.65 g/cm
3
, 578 

respectively. For the soft mineral member, these values are 21 GPa, 7 GPa, and 2.62 g/cm
3
, 579 
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respectively. Figures 9a-c show that the bulk modulus derived from well logs fit within the Voigt 580 

and Reuss bounds. Similarly, the P- and S-wave velocities align with the bounds defined by 581 

contact-based elastic models. Data points outside these physical limits are discarded during the 582 

subsequent rock physics modeling. From Figure 9a, the critical porosity of Mt. Simon Sandstone 583 

is determined as 0.4. The rock physics template (RPT) shown in Figure 9d provides insights into 584 

potential variations in elastic attributes with varying porosity and fluid saturations (Avseth et al., 585 

2010). The Mt. Simon sandstones predominantly exhibit a shaly composition, as validated by the 586 

clay volume logs in Figures 10 and 11. Importantly, elastic changes with increasing CO2 587 

saturation remain minimal, suggesting that relying solely on time-lapse seismic data for 588 

monitoring CO2 movement might not be effective. This observation is consistent with the 2015 589 

time-lapse seismic data, where only subtle amplitude and waveform changes were observed post-590 

CO2 injection (Davis et al, 2019). 591 

Considering the well-consolidated nature of the Mt. Simon Sandstone, we choose the 592 

consolidated sand model (Dvorkin and Nur, 1996; Mavko et al., 2020) for our rock physics 593 

modeling. In this paper, we focus on integrated site characterization for GCS, aiming to estimate 594 

static reservoir properties before CO2 injection, wherein the reservoir is 100% water saturated. 595 

We assume that fluid properties remain constant and do not vary with reservoir temperature and 596 

pressure. However, for more reliable inversion results, it is recommended to develop a dedicated 597 

rock physics model that incorporates the effects of pressure and temperature on fluids, 598 

particularly for dynamic CO2 monitoring (Schmitt et al., 2022).  599 

With the refined well log data from Well CCS1 and CCS2, we optimize the rock physics 600 

parameters to ensure that the predicted elastic properties from the rock physics model align with 601 

actual measurements. Since the rock properties differ across subsections of the Mt. Simon 602 
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Sandstone, we adjust the rock physics model for each zone, accounting for variations in the bulk 603 

and shear modulus of both stiff and soft mineral assemblage. At the IBDP site, the integrated 604 

density method indicates a vertical stress gradient of 23.75 MPa/km, while formation pressure 605 

measurements reveal an in-situ hydrostatic gradient of 10.3 MPa/km within the Mt. Simon 606 

formation (Bauer et al., 2016). Thus, the resulting effective pressure gradient is 13.45 MPa/km 607 

— derived from the difference between the vertical and hydrostatic pressure gradients. We use 608 

this effective pressure gradient to calculate the varying effective stress at different depths for 609 

rock physics modeling. The water saturation is assumed to be 100% because no CO2 was 610 

injected in 2011. Details of the calibrated rock physics parameters can be found in Table 2. 611 

Figure 10 and 11 shows the P- and S-wave velocities and density predicted by the calibrated rock 612 

physics model. The predicted elastic properties align closely with the measurements from not 613 

only Well CCS1 and CCS2, but also from blind wells, VW1 and VW2. The consistency indicates 614 

that the calibrated rock physics model is reliable and therefore can be used for the subsequent 615 

seismic inversion. 616 

Table 2. Rock physics parameters associated with the consolidated sand model. 617 

Parameter Formation Value 

Bulk modulus of stiff mineral 

member 

Mt. Simon E 45.0 GPa 

Mt. Simon D 42.0 GPa 

Mt. Simon A-C 45.0 GPa 

Shear modulus of stiff mineral 

member 

Mt. Simon E 42.0 GPa 

Mt. Simon D 40.0 GPa 

Mt. Simon A-C 44.0 GPa 

Density of stiff mineral member Mt. Simon A-E 2.65 g/cm
3
 

Bulk modulus of soft mineral Mt. Simon D-E 21.0 GPa 
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member Mt. Simon A-C 27.0 GPa 

Shear modulus of soft mineral 

member 

Mt. Simon D-E 7.0 GPa 

Mt. Simon A-C 12.0 GPa 

Density of soft mineral member Mt. Simon A-E 2.62 g/cm
3
 

Bulk modulus of brine Mt. Simon A-E 2.5 GPa 

Density of brine Mt. Simon A-E 1.03 g/cm
3
 

Critical porosity Mt. Simon A-E 0.4 

Coordination number Mt. Simon A-E 7 

 618 

 619 
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 620 

Figure 9. Rock physics analysis with well log data from Well CCS1 add CCS2 (each dot in the plots represent one 621 

data sample from the well logs): (a) Bulk modulus bounds; rock physics screening using P-velocity (b) and S-622 

velocity (c) bounds; (d) rock physics template (the line with gray dots represents the shale trend line, and the lines 623 

with green dots represent the sand trend lines).  624 
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 625 

Figure 10. Actual well-log data vs. rock-physics model prediction: (a) Well CCS1; (b) Well CCS2. 626 
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 627 

Figure 11. Actual well-log data vs. rock-physics model prediction: (a) Well VW1; (b) Well VW2. 628 

 629 

4.3 Inversion by SVGD-AE 630 

After seismic-well-tie and calibration of the rock physics model, we apply the proposed 631 
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SVGD-AE method to invert the post-stack seismic data. At first, we generate 200 prior 632 

petrophysical models (including porosity and clay volume) by geostatistical simulation.  The 633 

vertical variogram range, determined by well logs in time domain, is 10 ms. Due to the sparse 634 

distribution of wells in the horizontal direction, which made it challenging to estimate horizontal 635 

variograms, we instead use the RMS amplitude extracted from the top horizon of the Mt. Simon 636 

Sandstone. Variograms derived from this RMS map carry more uncertainty compared to well 637 

logs. To account for such uncertainty, different horizontal ranges are used for geostatistical 638 

simulation of prior models: 120 m, 180 m, 250 m, and 310 m. The experimental variograms in 639 

easting, northing and vertical directions can be found in Figure S2 of Supporting Information. 640 

In this study, we adopt the FFT-MA method for the generation of geostatistical simulations. 641 

The FFT-MA is an efficient approach that relies on the calculation of a filter operator based on 642 

the covariance function of interest and the convolution of the filter with a white noise 643 

(Froidevaux, 1993; de Figueiredo et al., 2020). We condition the FFT-MA simulations to 644 

available measured data at from Well CCS1 and CCS2 by using the mean and variance estimated 645 

by Kriging. Figure 12 presents the mean and standard deviation of the prior models for porosity 646 

and clay volume. Meanwhile, Figure 13 presents four simulations as the horizontal range 647 

increases from top to bottom. The prior models are then used to train an autoencoder neural 648 

network that has a similar architecture as that in the previous synthetic example. The parameters 649 

of the autoencoder are summarized in Table 3 of Supporting Information. The training time is 650 

about 3 minutes using one Nvidia A100 GPU. The comparison between the original reservoir 651 

models in the test set and their corresponding reconstructions by the trained autoencoder can be 652 

found in Figure S3 of Supporting Information.   653 

Finally, we update the prior petrophysical models by the SVGD-AE method to assimilate the 654 
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seismic data. The number of iterations is 30 in this study. Figure 14 shows the inverted results at 655 

the blind wells, VW1 and VW2. The mean of the inverted porosity has a good agreement with 656 

the well logs, while the prediction accuracy of clay volume is relatively low due to its 657 

insensitivity to seismic data. The associated model uncertainty quantified by the ensemble of 658 

posterior realizations are also shown in Figure 14, including the probability distribution as well 659 

as the percentile information of P2.5 and P97.5. The SVGD-AE approach effectively assesses 660 

uncertainty and preserves the original distribution types of the prior models. 661 

The good match between the inverted and measured petrophysical properties at the blind 662 

wells indicates the efficacy of our proposed SVGD-AE method for seismic inversion. Thus, we 663 

extend the inversion to the entire seismic volume. The computational time is 13.4 hours using 4 664 

CPUs. Figure 15 shows the posterior mean and standard deviation of porosity and clay volume. 665 

Figure 16 shows the four posterior realizations that correspond to the priors in Figure 13. 666 

Experimental variograms for both the prior and posterior reservoir models can be found in Figure 667 

S4 of Supplementary Information. Key geostatistical parameters of the reservoir models are 668 

effectively preserved by SVGD-AE. Specifically, the horizontal ranges observed in the posterior 669 

realizations align consistently with the variability inherent in the prior realizations.  670 

When compared with the prior mean (Figure 12), the posterior mean (Figure 15) reveals 671 

more details after the assimilation of seismic data. Around Well CCS1, where the simulated prior 672 

reservoir models are conditioned to well log data, the uncertainty in the inverted models is 673 

minimal, while the uncertainty increases as the distance from the well grows. Additionally, the 674 

posterior mean shows that there are two distinct sandstone layers with high porosity within the 675 

Lower Mt. Simon Formation.  676 

Figure 16 shows the four posterior realizations corresponding to the prior realizations in 677 



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

Figure 13. The extent of the horizonal spreads of the posterior realizations are significantly 678 

influenced by their priors. While posterior realizations maintain the spatial features of the 679 

corresponding priors, localized updates occur ensuring diversity among the inverted realizations. 680 

In the area marked by the solid white circle in Figure 16, all four posterior realizations exhibit 681 

high-porosity sandstones with good connectivity, despite considerable differences in the 682 

corresponding prior realizations (Figure 13) in this region. This suggests that the solid white 683 

circle area represents a high-confidence optimal injection location. However, while the first 684 

realization indicates high-porosity sandstone in the region outlined by the dashed white circle, 685 

confidence in this interpretation varies among the other three realizations. Consequently, placing 686 

the injection well within the dashed white circle area poses a high risk. Hence, precise 687 

quantification of model uncertainties is crucial. Relying solely on a deterministic reservoir model 688 

for decision-making entails significant risks. Figure 17 shows the seismic responses predicted 689 

from these posterior realizations. These predictions are all consistent with the actual 690 

measurements (Figure 8c), which implies that all posterior realizations effectively explain the 691 

seismic data. 692 



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

 693 

Figure 12. (a) Prior mean of porosity; (b) prior standard deviation of porosity; (c) prior mean of clay volume; (d) 694 

prior standard deviation of clay volume. The white dashed lines represent the locations of the inline, crossline (xline) 695 

and time slices. 696 
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 697 

Figure 13. (a) – (d) Four prior realizations of porosity and clay volume. 698 
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 699 

Figure 14. Validation of inversion results of SVGD-AE at blind test wells: (a) Well VW1; (b) Well VW2. Marginal 700 

distributions of inverted porosity and clay volume at times 0.95 s by SVGD-AE: (c)-(d) Well VW1; (e)-(f) Well 701 

VW2. 702 
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 703 

Figure 15. (a) Posterior mean of porosity; (b) posterior standard deviation of porosity; (c) posterior mean of clay 704 

volume; (d) posterior standard deviation of clay volume. The white dashed lines represent the locations of the inline, 705 

crossline (xline) and time slices. 706 

 707 



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

 708 

Figure 16. (a) – (d) Four posterior realizations of porosity and clay volume. 709 
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 710 

Figure 17. Predicted seismic responses from the four posterior realizations shown in Figure 13. 711 

 712 

5. Discussions 713 

As demonstrated in both synthetic and real examples, SVGD-AE provides an efficient 714 

method for inferring complex, high-dimensional posterior distributions. However, the initial 715 

prior distribution 𝑞0  is one of the keys to the accuracy of quantifying the target distribution 716 

(Izzatullah et al., 2023). Initial particles (or reservoir realizations) should be easily sampled, but 717 

also must adequately span the model space. For instance, in Example 1, if prior particles are 718 

confined to a uniform distribution within [0,  2] × [0,  2] (i.e., only one quadrant of the full space 719 

[−2,  2] × [−2,  2]), the posterior particles derived from SVGD will capture only a single mode 720 

of the actual distribution, neglecting other modes outside 𝑞0. Therefore, to accurately quantify 721 
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uncertainties in real geophysical inverse problems, we need to consider multiple sources of 722 

uncertainty when generating initial reservoir models via geostatistical simulations. In the 723 

application to IBDP, we focused solely on uncertainties in the horizontal variogram range. A 724 

more comprehensive approach would additionally incorporate uncertainties associated with other 725 

parameters, including the vertical range, azimuth, and orientation. 726 

To address the issue of spurious correlations between variable reservoir parameters, we 727 

adopted an autoencoder neural network for model reparameterization. This approach seamlessly 728 

integrates with SVGD through automatic differentiation. Alternative potential solutions include 729 

principal component analysis (Vo and Durlofsky, 2015) and randomized tensor decomposition 730 

(Liu M. et al., 2022), but in those methods, we need to manually derive the required gradient 731 

terms via adjoint methods. In this study, we used a pre-trained 1D autoencoder based on initial 732 

samples obtained from geostatistical simulations and then perform the SVGD-AE inversion 733 

trace-by-trace in 1D. This approach effectively encodes our prior geostatistical knowledge into 734 

the neural network. As an alternative, amortized SVGD (Wang D. and Liu Q., 2016; Siahkoohi 735 

et al., 2023) could be used, wherein latent vectors randomly sampled from a given distribution 736 

remain constant while neural network weight parameters are updated. 737 

To accelerate computations, we can also conduct SVGD-AE inversion section-by-section 738 

using a 2D autoencoder. Figure 18 displays four posterior realizations obtained through 2D 739 

inversion. While they are similar to those shown in Figure 16, they appear smoother and lack 740 

high-frequency details. However, SVGD-AE inversion in 2D can significantly reduce 741 

computational time. The computation time decreases from 13.6 hours using 4 CPUs for 1D 742 

inversion to 0.6 hours using one Nvidia A100 GPU. 743 
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 744 

Figure 18. (a) – (d) Four posterior realizations of porosity and clay volume obtained by 2D SVGD-AE inversion. 745 

6. Conclusion 746 

We have developed a probabilistic inversion technique for seismic subsurface 747 
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characterization in the context of geologic carbon sequestration. The proposed method, SVGD-748 

AE, combines the Stein variational gradient descent (SVGD) approach with autoencoder neural 749 

networks for model reparameterization. SVGD effectively infers high-dimensional distributions, 750 

while the autoencoder aims to accurately preserve geostatistical characteristics of reservoir 751 

models derived from geological priors. Comparative analysis reveals that SVGD-AE 752 

outperforms conventional probabilistic methods in tackling inverse problems with multi-modal 753 

posterior distributions. To demonstrate its practicality, we have applied the SVGD-AE method in 754 

the Illinois Basin – Decatur Project. The resulting inversion results closely align with actual 755 

measurements from blind test wells. We conclude that the SVGD-AE is an efficient method for 756 

subsurface characterization with uncertainty quantification.  757 
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