
manuscript submitted to Water Resources Research

Supplementary Material for:1

A probabilistic approach to characterizing drought using2

satellite gravimetry3

Peyman Saemian1, Mohammad J. Tourian1, Omid Elmi14

Nico Sneeuw1, Amir AghaKouchak2,3
5

1Institute of Geodesy, University of Stuttgart, Stuttgart, Germany6
1Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA.7

3United Nations University Institute for Water, Environment and Health, Hamilton, Ontario, Canada8

The supplementary material includes:10

1. TWSA from GRACE observations

2. Long-term TWSA dataset

3. Handling trends

4. Major river basins

5. References15

1 TWSA from GRACE observations

Two main approaches have been developed to process GRACE range-rate observations.

In the first approach, the Earth’s gravity field is parameterized using the global Spher-

ical Harmonics (SHs) basis functions (see Wahr et al. (1998) for details). Within the

past couple of years, an alternative approach for processing GRACE level 1 (L1) has20

been proposed which considers parameterizing with regional mass concentration functions

(mascons) (Watkins et al., 2015a; Scanlon et al., 2016). In this study, we have used the

latest version (version 2) of the Goddard Space Flight Center (GSFC) which can be ac-

cessed via https://earth.gsfc.nasa.gov/geo/data/grace-mascons. We have compared

the uncertainty estimation from GSFC with the Jet Propulsion Laboratory (JPL) mas-25
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con solutions. The latest version (Release 6.1 Version 03) of the JPL mascon solutions

used in the comparison can be obtained from https://podaac.jpl.nasa.gov/dataset/

TELLUS_GRAC-GRFO_MASCON_CRI_GRID_RL06.1_V3. Moreover, we have compared the error

estimation in the level-2 products, also known as formal errors, in Figure 1. Table S1 and

Table S2 list all the mascons and level-2 products of GRACE and GRACE-FO used in this30

study, respectively.

Table S1. List of centers which provide Level-3 TWSA from GRACE and GRACE-FO.

Product Sensor(s) Source/Reference

GSFC v02 mascons GRACE/GRACE-FO Loomis et al. (2019)

JPL RL06.1 v03 L3 mascons GRACE/GRACE-FO Landerer et al. (2020); D. Wiese et al. (2018);

Watkins et al. (2015b); D. N. Wiese et al. (2016)

The mascons products, like the one used in this study, estimate the uncertainty in the TWSA

estimation, either in the form of spherical harmonics or global grids. Despite the same level-

1 product, the errors in the mascons approaches vary among different centers, as they would

use different processing approaches and background models. Figure S1 illustrates a spatio-35

temporal comparison comparison between two widely used mascons datasets, namely, JPL

RL06-v02 and GSFC RL06-v02. the Figure S1 (a) shows the mean TWSA uncertainty

from the above products from April 2002 to November 2022. The highest values belong to

Greenland, the Amazonas, the Indian sub-continent, and the northwest of Canada. The

Figure S1 (b) compares the time series of the global land averaged TWSA uncertainty from40

April 2002 to November 2022. The time series shows a sharp pick in 2015, followed by a

positive trend related to the battery failure (Save, 2016; Mayer-Gürr et al., 2018; Bandikova

et al., 2019). The two mascon solutions exhibit consistent uncertainty estimates (σ = 2.5 cm)

throughout the GRACE observation period, except for the initial year (April 2002 to June

2003). The elevated uncertainties in JPL solutions from April 2002 to June 2003, as well45

as at the last year of the GRACE-FO mission, stem from the application of a Kalman

filter in the solution methodology, facilitating the temporal connection of adjacent months

(D. Wiese et al., 2016). Notably, during the GRACE-FO mission, GSFC’s uncertainty values

are significantly higher (σ = 3.2 cm for GSFC compared to σ = 1.8 cm for JPL).
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Table S2. List of GRACE(-FO) Level-2 solutions.

Center Product Sensor(s) Time span

Solutions that include GRACE and GRACE-FO

CSR CSR RL06 GRACE 200204–201706

CSR RL06 GRACE-FO 201806–present

GFZ GFZ RL06 GRACE 200204–201706

CSR RL06 (GFO) GRACE-FO 201806–present

JPL JPL RL06 GRACE 200204–201706

CSR RL06 (GFO) GRACE-FO 201806–present

ITSG ITSG-Grace2018 GRACE 200204–201706

ITSG-Grace_op GRACE-FO 201806–present

LUH LUH-Grace2018 GRACE 200301–201603

LUH-GRACE-FO-2020 GRACE-FO 201806–present

COST-G∗∗ Grace GRACE 200204–201706

Grace-FO GRACE-FO 201806–present

AIUB AIUB-RL02 GRACE 200302–201403

AIUB-GRACE-FO_op GRACE-FO 201806–present

CNES CNES_GRGS_RL05 GRACE & GRACE-FO 200209–present

Solutions that include only GRACE

Tongji Tongji-Grace2018 GRACE 200204–201608

HUST HUST-Grace2020 GRACE 200301–201607

IGG IGG-RL01 GRACE 200204–201607

SWJTU SWJTU-GRACE-RL01 GRACE 200303–201110

SWPU SWPU-GRACE2021 GRACE 200204–201705

WHU WHU RL01 GRACE 200204–201607

XISM&SSTC GRACE01 GRACE 200204-201603

2 Long-term TWSA dataset50

In this study, we have used a combination of various models to estimate TWSA for the pre-

GRACE era, back to 1980. Models, from a simple box model to a recent sophisticated deep

learning model, have been designed to enhance our understanding and acuity of the Earth’s

water system that occurs as an exchange between the terrestrial biosphere and atmosphere.

In general, three different groups of models have been developed, namely Land Surface Mod-55
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Figure S1. Top: Global distribution of the averaged TWSA uncertainty spanning from April

2002 to November 2022. Bottom: Time series of the global averaged TWSA uncertainty. The data

is obtained from two distinct mascon datasets: JPL RL06-v02 and GSFC RL06-v02.

els (LSMs), Global Hydrological Models (GHMs), and global atmospheric reanalysis models.

In this study, we have employed in total of 13 state-of-the-art datasets of Global Hydro-

logical Models (GHMs), Land Surface Models (LSMs), and atmospheric reanalysis models

(Table S3). Nine multi-decadal global water resources datasets were obtained from the

eartH2Observe Water Cycle Integrator (WCI; ftp://wci.earth2observe.eu (last access:60

31 May 2021)), including PCR-GLOBWB, SURFEX-TRIP, HBV-SIMREG, HTESSEL-

CaMa, JULES, LISFLOOD, ORCHIDEE, SWBM, and W3RA. The output of these datasets

is available at 0.5 ◦ spatial resolution over the period 1979–2012. Besides datasets from

eartH2Observe, we have included the Community Land Model Version 5 (CLM5) with

two standard forcing datasets, namely the Global Soil Wetness Project forcing data set65

(GSWP3) and CRUNCEP (the combination of the Climate Research Unit (CRU) and

the National Centers for Environmental Prediction (NCEP)). The CLM5 datasets are at

0.5 ◦ spatial resolution covering the period 1901–2014 (for more detail about the CLM5

model, please see Lawrence et al. (2019)). The CLM5 products are accessible via Earth
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System Grid (ESG) (Oleson et al., 2019). We have also included the latest version of70

the WaterGAP Global Hydrology Model (WaterGAP v2.2d) (Müller Schmied et al., 2021),

covering the period 1901–2016 and at 0.5 ◦ spatial resolution. The outputs of the Water-

Gap v2.d are available at (https://doi.pangaea.de/10.1594/PANGAEA.918447). Finally,

we have included the fifth generation ECMWF atmospheric reanalysis of the global cli-

mate (ERA5) at 0.25 ◦ spatial resolution which provides data from 1979 to the present.75

The data is downloaded from the Copernicus Climate Change Service (C3S) at ECMWF

(https://cds.climate.copernicus.eu)(last access: 30 May 2021). TWSA from models

carries a higher spatial resolution and therefore values with higher frequency. To set the

same spectral content in models compared to GRACE TWSA, we have transferred the

model outputs into the spectral domain and truncated the SHs to the maximum degree and80

order 96. Finally, we recovered the TWSA fields from the truncated SHs.

Table S3. Summary of global models used in this study. GHM: Global Hydrological Model;

LSM: Land Surface Model; ReA: Reanalysis Model.

Model Time Period Data Provider Reference

G
H

M

WGHM 1901–2016 Goethe University Frankfurt Müller Schmied et al. (2021)

PCRGLOB-WB 1979–2012 Utrecht University (UU) Wada et al. (2014)

Sutanudjaja et al. (2018)

HBV-SIMREG 1979–2012 Joint Research Centre (JRC) Lindström et al. (1997)

LISFLOOD 1979–2012 Joint Research Centre (JRC) Van Der Knijff et al. (2010)

W3RA 1979–2012 CSIRO∗∗ Van Dijk (2010)

SWBM 1979–2012 Simple Water Balance Model Koster & Mahanama (2012)

Orth & Seneviratne (2013)

LS
M

CLM5 1940–2014 The Earth System Grid (ESG) at NCAR Lawrence et al. (2019)

HTESSEL 1979–2012 ECMWF Balsamo et al. (2015)

JULES 1979–2012 Centre for Ecology and Hydrology (CEH) Best et al. (2011)

Clark et al. (2011)

ORCHIDEE 1979–2012 French National Centre for Scientific Research Polcher et al. (2011)

SURFEX-TRIP 1979–2012 Meteo France Decharme et al. (2013)

R
eA ERA5 1979–2016 ECMWF∗ Hersbach et al. (2020)

* ECMWF: European Centre for Medium-Range Weather Forecasts

** CSIRO: Commonwealth Scientific and Industrial Research Organisation
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2.1 Multivariate Linear Regression

To combine models, we have used the Multivariate Linear Regression (MLR) method. MLR

is a statistical method used for estimating the parameters of a linear regression model with

multiple independent variables. MLR has several advantages, including its ability to handle85

multiple independent variables and to model complex relationships between variables. It

also provides estimates of the coefficients and their standard errors, which can be used to test

hypotheses and construct confidence intervals. However, MLR assumes that the errors are

normally distributed and have constant variance, which may not always be true in practice.

Additionally, it can be sensitive to outliers and multicollinearity among the independent90

variables. The basic idea behind MLR is to find the coefficients that minimize the sum

of squared errors between the predicted and actual values of the dependent variable. The

formula for MLR is as follows:

y = Xβ + ϵ (1)

Here y is the vector of dependent variable values, X is the matrix of independent variable

values, β is the vector of coefficients to be estimated, and ϵ is the vector of errors, which95

are assumed to be normally distributed with mean zero and constant variance.

2.2 Compare with GRACE

To evaluate the performance of the long-term TWSA dataset from the MLR method (TWSAMLR),

we have compared the results with GRACE estimation within the GRACE era (April 2002

to December 2012).100
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Figure S2. Global distribution of the correlation coefficient (r), Mean Bias Error (MBE), and

Kling-Gupta Efficiency (KGE) values for major river basins (excluding Greenland and Antarctica)

obtained from the comparison between the reconstructed TWSA from ensemble mean and Multi-

variate Linear Regression (MLR) and GRACE during 2003–2012.

3 Handling trends

Several studies have suggested that before investigating drought indices using the GRACE

TWSA time series, detrending is necessary (e.g., Liu et al., 2020; Khorrami & Gunduz, 2021).

Liu et al. (2020), for instance, have demonstrated that without detrending TWSA time series

drought severity can be overestimated over some basins in China after 2013. While the soil105

moisture data suggests that the drought ceased in September 2014, their GRACE indices

(GRACE-DSI) show a continuous drought condition. In contrast to the aforementioned

studies, we deliberately retain the trend in the time series. We reason that the trend
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reflects long-term changes in climate, such as temperature increases or precipitation pattern

alterations, which can affect the frequency and severity of droughts. Eliminating the trend110

would essentially omit these long-term changes from the analysis, providing an incomplete

understanding of the hydrological system.

To demonstrate the impact of detrending, we calculated the TWSA time series in two real

cases using the SSA approach with a 24-month window to remove the trend in the data.

The two cases, the Tigris basin in the Middle East with a negative trend and the Niger115

basin in Africa with a positive trend are presented in Figure S3 and Figure S4, respectively.

In each case, we compared the results from two scenarios: one without detrending, denoted

by the solid line in (c) and (d) and labeled as (a), and one with detrending, shown as the

dashed line in (c) and (e) and labeled as (b).

The Tigris basin experienced a prolonged period of water loss, particularly after 2007, which120

is apparent in the red area in Figure S3(d). Detrending the data resulted in higher values for

the climatology compared to the non-detrended data, as shown in Figure S3(c), and caused

oscillations between wet and dry years, as seen in Figure S3(e). On the other hand, the Niger

basin exhibited a positive trend mainly after 2010, resulting in wetter years in the basin, as

depicted in Figure S4(d). Although detrending did not significantly alter the climatology,125

as illustrated in Figure S4(c), it did reveal dry years after 2010, which is inconsistent with

actual conditions.
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Figure S3. This figure presents a comprehensive analysis of TWSA for the Tigris River basin

in the Middle East, using data from GRACE satellite mission. (a) shows the time series of TWSA

from GRACE, along with its inter-annual variations which are extracted using the Singular Spec-

trum Analysis (SSA) approach with a 24-month window. (b) displays the TWSA after removing

the inter-annual variations, highlighting the long-term trends. (c) illustrates the climatology of

TWSA, which represents the long-term monthly mean. The solid and dashed lines represent the

climatology obtained from (a) and (b), respectively. (d) and (e) show the TWSA residuals, obtained

by subtracting the corresponding climatology from panels (a) and (b), respectively. These residual

plots reveal the short-term fluctuations in TWSA that are not captured by the climatology.

4 Major river basins

In this study, we have presented and analyzed the results of the global major river basins.

The border of the basins follows the HydroSHEDS database (https://www.hydrosheds130

.org/). Moreover, the climate of the basins is determined using the Aridity Index (AI),

which is the ratio of total annual precipitation to potential evapotranspiration. To compute

the aridity index, we have employed the latest version of the European Center for Medium-

Range Weather Forecasts (ECMWF) Reanalysis (ERA), namely ERA5 (Hersbach et al.,

2020). Based on AI, the climate of the basins can be categorized into humid (AI > 0.65),135

sub-humid (AI ≤ 0.65, and AI > 0.5), semi-arid (AI ≤ 0.5 and > 0.2), arid (AI ≤ 0.2 and >

0.05), and hyperarid (AI ≤ 0.05). This study grouped arid and hyper-arid into one group,
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Figure S4. Same as Figure S3 but for Niger river basin in West Africa, flowing through 10

countries: Guinea, Mali, Niger, Benin, Burkina Faso, Cote d’Ivoire, Ghana, Togo, Cameroon, and

Nigeria.

Arid-hyper Arid (Figure S5). Based on AI criteria, 60 % of the river basins are categorized

as humid, ∼ 10 % as sub-humid, 22 d% as semiarid, and ∼ 8 % as arid to hyper-arid).
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Figure S5. Global distribution of the major river basins together with their corresponding

climate category. Besides, a pie chart illustrates the worldwide share of each category in terms of

area.
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