REFERENCES
Alper, B., N. H. Riche, F. Chevalier, J. Boy, and M. Sezgin. 2017.
Visualization literacy at elementary school. Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. ACM, Denver Colorado
USA. Pages 5485–5497. http://dx.doi.org/10.1145/3025453.3025877
Armitage, D. R., R. Plummer, F. Berkes, R. I. Arthur, A. T. Charles, I.
J. Davidson-Hunt, A. P. Diduck, N. C. Doubleday, D. S. Johnson, M.
Marschke, P. McConney, E. W. Pinkerton, and E. K. Wollenberg. 2009.
Adaptive co-management for social-ecological complexity. Frontiers
in Ecology and the Environment 7: 95–102.
http://www.jstor.org/stable/25595062
Arsenault, K. R., Shukla, S., Hazra, A., Getirana, A., McNally, A.,
Kumar, S. V., … Verdin, J. P. 2020. The NASA hydrological
forecast system for food and water security applications. Bulletin
of the American Meteorological Society , 101(7): E1007–E1025.
https://doi.org/10.1175/BAMS-D-18-0264.1
Bakermans, M. H., and Pfeifer, G. 2018. A model for translational
science in undergraduate classrooms. Frontiers in Ecology and the
Environment , 16(6): 319–321. https://doi.org/10.1002/fee.1920
Belia, S., F. Fidler, J. Williams, and G. Cumming. 2005. Researchers
misunderstand confidence intervals and standard error bars.Psychological Methods 10: 389–396.
https://doi.org/10.1037/1082-989X.10.4.389
Belovsky, G. E., D. B. Botkin, T. A. Crowl, K. W. Cummins, J. F.
Franklin, M. L. Hunter, A. Joern, D. B. Lindenmayer, J. A. MacMahon, C.
R. Margules, and J. M. Scott. 2004. Ten suggestions to strengthen the
science of ecology. BioScience 54: 345–351.
https://doi.org/10.1007/s10531-005-2631-1
Berthet, L., O. Piotte, É. Gaume, R. Marty, and C. Ardilouze. 2016.
Operational forecast uncertainty assessment for better information to
stakeholders and crisis managers. E3S Web of Conferences 7.
https://doi.org/10.1051/e3sconf/20160718005
Bird, J. P., B. K. Woodworth, R. A. Fuller, and J. D. Shaw. 2021.
Uncertainty in population estimates: A meta-analysis for petrels.Ecological Solutions and Evidence 2: 1–13.
https://doi.org/10.1002/2688-8319.12077
Bodner, K., C. Rauen Firkowski, J. R. Bennett, C. Brookson, M. Dietze,
S. Green, J. Hughes, J. Kerr, M. Kunegel-Lion, S. J. Leroux, E.
McIntire, P. K. Molnár, C. Simpkins, E. Tekwa, A. Watts, and M. J.
Fortin. 2021. Bridging the divide between ecological forecasts and
environmental decision making. Ecosphere 12: e03869.
https://doi.org/10.1002/ecs2.3869
Bonneau, G., H. Hege, C. R. Johnson, M. M. Oliveira, K. C. Potter, P.
Rheingans, and T. Schultz. 2015. Chapter 1: Overview and
state-of-the-art of uncertainty visualization in Scientific
Visualization , pages 3-27. Springer.
Börner, K., A. Bueckle, and M. Ginda. 2019. Data visualization literacy:
Definitions, conceptual frameworks, exercises, and assessments.Proceedings of the National Academy of Sciences of the United
States of America 116: 1857–1864.
https://doi.org/10.1073/pnas.1807180116
Börner, K., A. Maltese, R. N. Balliet, and J. Heimlich. 2016.
Investigating aspects of data visualization literacy using 20
information visualizations and 273 science museum visitors.Information Visualization 15: 198–213.
https://doi.org/10.1177/1473871615594652
Boukhelifa, N., and D.J. Duke. Uncertainty visualization - why might it
fail? 2009. In: Conference on Human Factors in Computing Systems -
Proceedings (April), pp.
4051–4056. https://doi.org/10.1145/1520340.1520616
Briggs, D. J., C. E. Sabel, and K. Lee. 2009. Uncertainty in
epidemiology and health risk and impact assessment. Environmental
Geochemistry and Health 31: 189–203.
https://doi.org/10.1007/s10653-008-9214-5
Bybee, R. W., J. A. Taylor, A. Gardner, P. V. Scotter, J. C. Powell, A.
Westbrook, and N. Landes. 2006. The BSCS 5E Instructional Model:
Origins, effectiveness, and applications. Colorado Springs, CO, USA.
Carey, C. C., K. J. Farrell, A. G. Hounshell, and K. O’Connell. 2020.
Macrosystems EDDIE teaching modules significantly increase ecology
students’ proficiency and confidence working with ecosystem models and
use of systems thinking. Ecology and Evolution 10: 12515–12527.
https://doi.org/10.1002/ece3.6757
Carey, C. C., W. M. Woelmer, M. E. Lofton, R. J. Figueiredo, B. J.
Bookout, R. S. Corrigan, V. Daneshmand, A. G. Hounshell, D. W. Howard,
A. S. L. Lewis, R. P. McClure, H. L. Wander, N. K. Ward, and R. Q.
Thomas. 2022. Advancing lake and reservoir water quality management with
near-term, iterative ecological forecasting. Inland Waters 12:
107–120. https://doi.org/10.1080/20442041.2020.1816421
Carr, R. H., B. Montz, K. Semmens, K. Maxfield, S. Connolly, P. Ahnert,
R. Shedd, and J. Elliott. 2018. Major risks, uncertain outcomes: Making
ensemble forecasts work for multiple audiences. Weather and
Forecasting 33: 1359–1373. https://doi.org/10.1175/WAF-D-18-0018.1
Centers for Disease Control and Prevention. 2022. CDC Launches New
Center for Forecasting and Outbreak Analytics. Press Release. 19 April
2022. https://stacks.cdc.gov/view/cdc/116460
Chang, W., J. Cheng, J. J. Allaire, C. Sievert, B. Schloerke, Y. Xie, J.
Allen, J. McPherson, A. Dipert, B. Borges. 2022. shiny: Web Application
Framework for R. https://shiny.rstudio.com/
Cheong, L., S. Bleisch, A. Kealy, K. Tolhurst, T. Wilkening, and M.
Duckham. 2016. Evaluating the impact of visualization of wildfire hazard
upon decision-making under uncertainty. International Journal of
Geographical Information Science 30: 1377–1404.
Cid, C. R., and R. V. Pouyat. 2013. Making ecology relevant to decision
making: the human-centered, place-based approach. Frontiers in
Ecology and the Environment 11: 447–448.
https://doi.org/10.1890/1540-9295-11.8.447
Clemen, R. T., and T. Reilly. 2004. Making hard decisions with decision
tools suite. 1st edition. Cengage Learning, Pacific Grove, Calif.
Correll, M., D. Moritz, and J. Heer. 2018. Value-suppressing uncertainty
palettes. Conference on Human Factors in Computing Systems - Proceedings
2018-April. 1–11. https://doi.org/10.1145/3173574.3174216
Cvitanovic, C., S. K. Wilson, C. J. Fulton, G. R. Almany, P. Anderson,
R. C. Babcock, N. C. Ban, R. J. Beeden, M. Beger, J. Cinner, K. Dobbs,
L. S. Evans, A. Farnham, K. J. Friedman, K. Gale, W. Gladstone, Q.
Grafton, N. A. J. Graham, S. Gudge, P. L. Harrison, T. H. Holmes, N.
Johnstone, G. P. Jones, A. Jordan, A. J. Kendrick, C. J. Klein, L. R.
Little, H. A. Malcolm, D. Morris, H. P. Possingham, J. Prescott, R. L.
Pressey, G. A. Skilleter, C. Simpson, K. Waples, D. Wilson, and D. H.
Williamson. 2013. Critical research needs for managing coral reef marine
protected areas: Perspectives of academics and managers. Journal
of Environmental Management 114: 84–91.
https://doi.org/10.1016/j.jenvman.2012.10.051
Deitrick, S., and E. A. Wentz. 2015. Developing implicit uncertainty
visualization methods motivated by theories in decision science.Annals of the Association of American Geographers 105(3):
531–551. https://doi.org/10.1080/00045608.2015.1012635
Dietze, M. C. 2017. Ecological Forecasting. Princeton: Princeton
University Press.
Dietze, M. C., A. Fox, L. M. Beck-Johnson, J. L. Betancourt, M. B.
Hooten, C. S. Jarnevich, T. H. Keitt, M. A. Kenney, C. M. Laney, L. G.
Larsen, H. W. Loescher, C. K. Lunch, B. C. Pijanowski, J. T. Randerson,
E. K. Read, A. T. Tredennick, R. Vargas, K. C. Weathers, and E. P.
White. 2018. Iterative near-term ecological forecasting: Needs,
opportunities, and challenges. Proceedings of the National Academy
of Sciences 115: 1424–1432.
https://doi.org/10.1073/pnas.17102311
Eisenhauer, E., Williams, K. C., Margeson, K., Paczuski, S., Hano, M.
C., and Mulvaney, K. 2021. Advancing translational research in
environmental science: The role and impact of social sciences.Environmental Science and Policy , 120: 165–172.
https://doi.org/10.1016/j.envsci.2021.03.010
Enquist, C. A. F., Jackson, S. T., Garfin, G. M., Davis, F. W., Gerber,
L. R., Littell, J. A., … Shaw, M. R. 2017. Foundations of
translational ecology. Frontiers in Ecology and the Environment ,
15(10): 541–550. https://doi.org/10.1002/fee.1733
Fagerlin, A., C. Wang, and P. A. Ubel. 2005. Reducing the influence of
anecdotal reasoning on people’s health care decisions: Is a picture
worth a thousand statistics? Medical Decision Making 25:
398–405. https://doi.org/10.1177/0272989X05278931
Fawcett, L. 2018. Using interactive Shiny applications to facilitate
research-informed learning and teaching. Journal of Statistics
Education 26: 2–16.
https://doi.org/10.1080/10691898.2018.1436999
Ferstl, F., M. Kanzler, M. Rautenhaus, and R. Westermann. 2017.
Time-hierarchical clustering and visualization of weather forecast
ensembles. IEEE Transactions on Visualization and Computer
Graphics 23: 831–840. https://doi.prg/10.1109/TVCG.2016.2598868
Galesic, M., R. Garcia-Retamero, and G. Gigerenzer. 2009. Using icon
arrays to communicate medical risks: Overcoming low numeracy.Health Psychology 28: 210–216.
https://doi.org/10.1037/a0014474
Garcia-Retamero, R., M. Galesic, and G. Gigerenzer. 2010. Do icon arrays
help reduce denominator neglect? Medical Decision Making 30:
672–684. https://doi.org/10.1177/0272989X10369000
Gerst, M. D., M. A. Kenney, A. E. Baer, A. Speciale, J. F. Wolfinger, J.
Gottschalck, S. Handel, M. Rosencrans, and D. Dewitt. 2019. Using
visualization science to improve expert and public understanding of
probabilistic temperature and precipitation outlooks. Weather,
Climate, and Society 12: 117-133.
https://doi.org/10.1175/WCAS-D-18-0094.1
Gregory, R., L. Failing, M. Harstone, G. Long, T. McDaniels, and D.
Ohlson. 2012. Structured decision making: A practical guide to
environmental management choices. John Wiley and Sons.
Halpern, B. S., H. M. Regan, H. P. Possingham, and M. A. McCarthy. 2006.
Accounting for uncertainty in marine reserve design. Ecology
Letters 9: 2–11. https://doi.org/ 10.1111/j.1461-0248.2005.00827.x
Hammond, J. S., R. L. Keeney, and H. Raiffa. 2002. Smart choices: A
practical guide to making better decisions. Crown Business, New York,
NY.
Hemming, V., A. E. Camaclang, M. S. Adams, M. Burgman, K. Carbeck, J.
Carwardine, I. Chadès, L. Chalifour, S. J. Converse, L. N. K. Davidson,
G. E. Garrard, R. Finn, J. R. Fleri, J. Huard, H. J. Mayfield, E. M.
Madden, I. Naujokaitis‐Lewis, H. P. Possingham, L. Rumpff, M. C. Runge,
D. Stewart, V. J. D. Tulloch, T. Walshe, and T. G. Martin. 2022. An
introduction to decision science for conservation. Conservation
Biology 1–16.
https://doi.org/10.1111/cobi.13868
Henri, D. A., L. M. Martinez-Levasseur, J. F. Provencher, C. D. Debets,
M. Appaqaq, and M. Houde. 2022. Engaging Inuit youth in environmental
research: Braiding Western science and Indigenous knowledge through
school workshops. The Journal of Environmental Education 53:
261–279. https://doi.org/10.1080/00958964.2022.2125926
Hounshell, A. G., K. J. Farrell, and C. C. Carey. 2021. Macrosystems
EDDIE teaching modules increase students’ ability to define, interpret,
and apply concepts in macrosystems ecology. Education
Sciences 11(8): 382. https://doi.org/10.3390/educsci11080382
Howes, E., and B. Cruz. 2009. Role-playing in science education: an
effective strategy for developing multiple perspectives. Journal
of Elementary Science Education 21: 33–46.
Hullman, J. 2020. Why authors don’t visualize uncertainty. IEEE
Transactions on Visualization and Computer Graphics 26: 130–139.
https://doi.org/10.1109/TVCG.2019.2934287
Huron, S., S. Carpendale, A. Thudt, A. Tang, and M. Mauerer. 2014.
Constructive visualization. Pages 433–442 Proceedings of the 2014
Conference on Designing Interactive Systems. Association for Computing
Machinery, New York, NY, USA.
Jackson-Blake, L. A., F. Clayer, E. De Eyto, A. S. French, M. D. Frías,
D. Mercado-Bettín, T. Moore, L. Puértolas, R. Poole, K. Rinke, M.
Shikhani, L. Van Der Linden, and R. Marcé. 2022. Opportunities for
seasonal forecasting to support water management outside the tropics.Hydrology and Earth System Sciences 26: 1389–1406.
https://doi.org/10.5194/hess-26-1389-2022
Joslyn, S., and S. Savelli. 2010. Communicating forecast uncertainty:
Public perception of weather forecast uncertainty. Meteorological
Applications 17: 180–195. https://doi.org/10.1002/met.190
Kamal, A., P. Dhakal, A. Y. Javaid, V. K. Devabhaktuni, D. Kaur, J.
Zaientz, and R. Marinier. 2021. Recent advances and challenges in
uncertainty visualization: a survey. Journal of Visualization 24:
861–890. https://doi.org/10.1007/s12650-021-00755-1
Kasprzak, P., L. Mitchell, O. Kravchuk, and A. Timmins. 2020. Six years
of Shiny in research – Collaborative development of web tools in R.The R Journal 12(2): 20-42. https://doi.org/10.32614/RJ-2021-004
Kinkeldey, C., A. M. MacEachren, M. Riveiro, and J. Schiewe. 2017.
Evaluating the effect of visually represented geodata uncertainty on
decision-making: systematic review, lessons learned, and
recommendations. Cartography and Geographic Information Science44: 1–21. https://doi.org/10.1080/15230406.2015.1089792
Kox, T., H. Kempf, C. Lüder, R. Hagedorn, and L. Gerhold. 2018. Towards
user-orientated weather warnings. International Journal of
Disaster Risk Reduction 30: 74–80.
https://doi.org/10.1016/j.ijdrr.2018.02.033
Larkin, J. H., and H. A. Simon. 1987. Why a diagram is (sometimes) worth
ten thousand words. Cognitive Science 11: 65–100.
https://doi.org/10.1111/j.1551-6708.1987.tb00863.x
Lechner, A. M., W. T. Langford, S. A. Bekessy, and S. D. Jones. 2012.
Are landscape ecologists addressing uncertainty in their remote sensing
data? Landscape Ecology 27: 1249–1261.
https://doi.org/10.1007/s10980-012-9791-7
Lélé, S., and Norgaard, R. B. (2005). Practicing Interdisciplinarity.BioScience 55(11): 967–975.
https://doi.org/10.1641/0006-3568(2005)055[0967:PI]2.0.CO;2
Lewis, A. S. L., C. R. Rollinson, A. J. Allyn, J. Ashander, S. Brodie,
C. B. Brookson, E. Collins, M. C. Dietze, A. S. Gallinat, N.
Juvigny-Khenafou, G. Koren, D. J. McGlinn, H. Moustahfid, J. A. Peters,
N. R. Record, C. J. Robbins, J. Tonkin, and G. M. Wardle. 2022a. The
power of forecasts to advance ecological theory. Methods in
Ecology and Evolution 14: 746-756.
https://doi.org/10.1111/2041-210X.13955
Lewis, A. S. L., W. M. Woelmer, H. L. Wander, D. W. Howard, J. W. Smith,
R. P. McClure, M. E. Lofton, N. W. Hammond, R. S. Corrigan, R. Q.
Thomas, and C. C. Carey. 2022b. Increased adoption of best practices in
ecological forecasting enables comparisons of forecastability.Ecological Applications 32: e2500.
https://doi.org/10.1002/eap.2500
Link, J. S., T. F. Ihde, C. J. Harvey, S. K. Gaichas, J. C. Field, J. K.
T. Brodziak, H. M. Townsend, and R. M. Peterman. 2012. Dealing with
uncertainty in ecosystem models: The paradox of use for living marine
resource management. Progress in Oceanography 102: 102–114.
https://doi.org/10.1016/j.pocean.2012.03.008
Lofton, M.E., T.N. Moore, Thomas, R.Q., and C.C. Carey. 20 September
2022. Macrosystems EDDIE: Using Data to Improve Ecological Forecasts.
Macrosystems EDDIE Module 7, Version 1.
https://macrosystemseddie.shinyapps.io/module7.
Maltese, A., J. Harsh, and D. Svetina. 2015. Data visualization
literacy: investigating data interpretation along the novice-expert
continuum. Journal of College Science Teaching 45: 84.
McClintock, B. T., J. D. Nichols, L. L. Bailey, D. I. MacKenzie, W. L.
Kendall, and A. B. Franklin. 2010. Seeking a second opinion: Uncertainty
in disease ecology. Ecology Letters 13: 659–674.
https://doi.org/10.1111/j.1461-0248.2010.01472.x
McKenzie, G., M. Hegarty, T. Barrett, and M. Goodchild. 2016. Assessing
the effectiveness of different visualizations for judgments of
positional uncertainty. International Journal of Geographical
Information Science 30: 221–239.
https://doi.org/10.1080/13658816.2015.1082566
Melbourne-Thomas, J., S. Wotherspoon, B. Raymond, and A. Constable.
2012. Comprehensive evaluation of model uncertainty in qualitative
network analyses. Ecological Monographs 82: 505–519.
https://doi.org/10.1890/12-0207.1
Miles, M. B., A. M. Huberman, J. Saldana. 2020. Qualitative data
analysis: A methods sourcebook , 4th ed.; SAGE Publications Inc.:
Thousand Oaks, CA, USA.
Milner-Gulland, E. J., and K. Shea. 2017. Embracing uncertainty in
applied ecology. Journal of Applied Ecology . 54:2063–2068.
https://doi.org/10.1111/1365-2664.12887
Moore, T. N., Carey, C.C. and Thomas, R. Q. 13 October 2021.
Macrosystems EDDIE: Understanding Uncertainty in Ecological Forecasts.
Macrosystems EDDIE Module 6, Version 1.
http://module6.macrosystemseddie.org.
Moore, T. N., R. Q. Thomas, W. M. Woelmer, and C. C. Carey. 2022a.
Integrating ecological forecasting into undergraduate ecology curricula
with an R Shiny application-based teaching module. Forecasting 4:
604–633. https://doi.org/10.3390/forecast4030033
Moore, T.N., C.C. Carey, and R.Q. Thomas. 2022b. Macrosystems EDDIE
Module 5: Introduction to Ecological Forecasting (Instructor Materials)
ver 3. Environmental Data Initiative.
https://doi.org/10.6073/pasta/1da866a2eb79be84195e785a4370010c
Nadav-Greenberg, L., S. L. Joslyn, and M. U. Taing. 2008. The effect of
weather forecast uncertainty visualization on decision making.Journal of Cognitive Engineering and Decision Making 2: 24-47
Nativi, S., Mazzetti, P., and Craglia, M. 2021. Digital ecosystems for
developing digital twins of the earth: The destination earth case.Remote Sensing 13(11): 1–25. https://doi.org/10.3390/rs13112119
National Oceanic and Atmospheric Administration. 2022. Strategic Plan or
Fiscal Year 2022-2026.
https://www.noaa.gov/sites/default/files/2022-06/NOAA_FY2226_Strategic_Plan.pdf
Olston, C., and J. D. Mackinlay. 2002. Visualizing data with bounded
uncertainty. Pages 37–40 IEEE Symposium on Information Visualization,
2002. INFOVIS IEEE Comput. Soc, Boston, MA, USA.
https://doi.org/10.1109/INFVIS.2002.1173145
Padilla, L. M., I. T. Ruginski, and S. H. Creem-Regehr. 2017a. Effects
of ensemble and summary displays on interpretations of geospatial
uncertainty data. Cognitive Research: Principles and Implications2: 1–16. https://doi.org/10.1186/s41235-017-0076-1
Padilla, L., P. S. Quinan, M. Meyer, and S. H. Creem-Regehr. 2017b.
Evaluating the impact of binning 2D scalar fields. IEEE
Transactions on Visualization and Computer Graphics 23: 431–440.
https://doi.org/10.1109/TVCG.2016.2599106
Potter, K., P. Rosen, and C. R. Johnson. 2012. From quantification to
visualization: A taxonomy of uncertainty visualization approaches.IFIP Advances in Information and Communication Technology 377:
226–247.
R Core Team. 2022. R: A Language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.
Raftery, A. E. 2016. Use and communication of probabilistic forecasts.Statistical Analysis and Data Mining 9: 397–410.
https://doi.org/10.1002/sam.11302
Ramos, M. H., S. J. Van Andel, and F. Pappenberger. 2013. Do
probabilistic forecasts lead to better decisions? Hydrology and
Earth System Sciences 17: 2219–2232.
https://doi.org/10.5194/hess-17-2219-2013
Rieley, M. 2018. Big data adds up to opportunities in math careers :
Beyond the numbers: U.S. Bureau of Labor Statistics.
https://www.bls.gov/opub/btn/volume-7/big-data-adds-up.htm.
Robinson, P., Genskow, K., and Shaw, B. 2012. Barriers and opportunities
for integrating social science into natural resource management: lessons
from National Estuarine Research Reserves. Environmental
Management 998–1011. https://doi.org/10.1007/s00267-012-9930-6
Ruginski, I. T., A. P. Boone, L. M. Padilla, L. Liu, N. Heydari, H. S.
Kramer, M. Hegarty, W. B. Thompson, D. H. House, and S. H. Creem-Regehr.
2016. Non-expert interpretations of hurricane forecast uncertainty
visualizations. Spatial Cognition and Computation 16: 154–172.
https://doi.org/10.1080/13875868.2015.1137577
Ruhl, N., P. Crumrine, J. Oberle, C. Richmond, S. Thomas, and S. Wright.
2022. Harnessing the Four-Dimensional Ecology Education Framework to
redesign an introductory ecology course in a changing higher education
landscape. Ecosphere 13:e03857. https://doi.org/10.1002/ecs2.3857
Selutin, V. D., and E. V. Lebedeva. 2017. Teaching probability theory
and forecasting-based mathematical statistics to Bachelors of economics.Advances in Social Science, Education and Humanities Research 97:
264–268.
https://doi.org/10.2991/cildiah-17.2017.46
Smith Mason, J., D. Retchless, and A. Klippel. 2017. Domains of
uncertainty visualization research: a visual summary approach.Cartography and Geographic Information Science 44: 296–309.
https://doi.org/10.1080/15230406.2016.1154804
Spiegelhalter, D., M. Pearson, and I. Short. 2011. Visualizing
uncertainty about the future. Science 333: 1393–1400.
https://doi.org/10.1126/science.1191181
Schwartz, M. W., Hiers, J. K., Davis, F. W., Garfin, G. M., Jackson, S.
T., Terando, A. J., … Brunson, M. W. 2017. Developing a
translational ecology workforce. Frontiers in Ecology and the
Environment 15(10): 587–596. https://doi.org/10.1002/fee.1732
Tait, A. R., T. Voepel-Lewis, B. J. Zikmund-Fisher, and A. Fagerlin.
2010. The effect of format on parents’ understanding of the risks and
benefits of clinical research: A comparison between text, tables, and
graphics. Journal of Health Communication 15: 487–501.
https://doi.org/10.1080/10810730.2010.492560
Tulloch, A. I. T., V. Hagger, and A. C. Greenville. 2020. Ecological
forecasts to inform near-term management of threats to biodiversity.Global Change Biology 00: 1-13.
https://doi.org/10.1111/gcb.15272
Turner, S. W. D., W. Xu, and N. Voisin. 2020. Inferred inflow forecast
horizons guiding reservoir release decisions across the United States.Hydrology and Earth System Sciences 24: 1275–1291.
https://doi.org/10.5194/hess-24-1275-2020
Vance-Chalcraft, H. D., and N. O. Jelks. 2022. Community-engaged
learning to broaden the impact of applied ecology: A case study.Ecological Applications e2768.
https://doi.org/10.1002/eap.2768
Vought, R.T., and K.K. Droegemeier. 2020. “M-20-29: Fiscal Year (FY)
2022 Administration Research and Development Budget Priorities and
Cross-Cutting Actions.”
https://www.whitehouse.gov/wp-content/uploads/2020/08/M-20-29.pdf.
Wesslen, R., A. Karduni, D. Markant, and W. Dou. 2022. Effect of
uncertainty visualizations on myopic loss aversion and the equity
premium puzzle in retirement investment decisions. IEEE
Transactions on Visualization and Computer Graphics 28: 454–464.
https://doi.org/10.1109/TVCG.2021.3114692
Wiggins, A., A. Young, and M. A. Kenney. 2018. Exploring visual
representations to support data re-use for interdisciplinary science.Proceedings of the Association for Information Science and
Technology 55: 554–563.
https://doi.org/10.1002/pra2.2018.14505501060
Willson, A.M., H. Gallo, J.A. Peters, A. Abeyta, N. Bueno Watts, C.C.
Carey, T.N. Moore, G. Smies, R.Q. Thomas, W.M. Woelmer, and J.S.
McLachlan. 2022. Assessing opportunities and inequities in undergraduate
ecological forecasting education. https://doi.org/10.5281/zenodo/7702393
Woelmer, W. M., Bradley, L. M., Haber, L. T., Klinges, D. H., Lewis, A.
S. L., Mohr, E. J., … Willson, A. M. 2021. Ten simple rules for
training yourself in an emerging field. PLoS Computational
Biology 17(10): 1–12. https://doi.org/10.1371/journal.pcbi.1009440
Woelmer, W.M., R.Q. Thomas, T.N. Moore, and C.C. Carey. 2022a.
Macrosystems EDDIE Module 8: Using Ecological Forecasts to Guide
Decision-Making (Instructor Materials) ver 3. Environmental Data
Initiative.
https://doi.org/10.6073/pasta/ad8adb1329f2a75bdd522fd22f2cb201
Woelmer, W.M., T.N. Moore, R.Q. Thomas, and C.C. Carey. 2022b.
Macrosystems EDDIE Module 8: Using Ecological Forecasts to Guide
Decision-Making (R Shiny application) (v1.1). Zenodo.
https://doi.org/10.5281/zenodo.7074674
Wu, J., K. B. Jones, H. Li, and O. L. Loucks. 2006. Scaling and
uncertainty analysis in ecology. Methods and applications. Springer, New
York.
Zikmund-Fisher, B. J., H. O. Witteman, M. Dickson, A. Fuhrel-Forbis, V.
C. Kahn, N. L. Exe, M. Valerio, L. G. Holtzman, L. D. Scherer, and A.
Fagerlin. 2014. Blocks, ovals, or people? Icon type affects risk
perceptions and recall of pictographs. Medical Decision
Making 34(4): 443–453.
https://doi.org/10.1177/0272989X1351170