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Abstract16

Current inference techniques for processing multi-needle Langmuir Probe (m-NLP) data17

are often based on the Orbital Motion-Limited (OML) theory which relies on several sim-18

plifying assumptions. Some of these assumptions, however, are typically not well satis-19

fied in actual experimental conditions, thus leading to uncontrolled uncertainties in in-20

ferred plasma parameters. In order to remedy this difficulty, three-dimensional kinetic21

particle in cell simulations are used to construct synthetic data sets, which are then used22

to train and validate regression-based models capable of inferring electron density and23

satellite potentials from 4-tuples of currents collected with fixed-bias needle probes sim-24

ilar to those on the NorSat-1 satellite. Based on our synthetic data, the techniques pre-25

sented enable excellent inferences of the plasma density, and floating potentials, while26

the generally accepted OML inferred densities are approximately three times too high.27

The new inference techniques that we propose, are applied to NorSat-1 data, and com-28

pared with OML inferences. While both regression and OML based inferences of float-29

ing potentials agree well with synthetic data, only regression inferred potentials are con-30

sistent with satellite measured currents, indicating that the regression based inference31

models are more robust and accurate when applied to satellite data.32

1 Introduction33

Langmuir probes are widely used to characterize space plasma and laboratory plasma.34

A variety of Langmuir probe geometries are being used, such as spherical (Bhattarai &35

Mishra, 2017), cylindrical (Hoang, Clausen, et al., 2018), and planar probes (Lira et al.,36

2019; Johnson & Holmes, 1990; Sheridan, 2010). Probes can be operated in sweep mode37

(Lebreton et al., 2006), harmonic mode (Rudakov et al., 2001), or fixed biased mode (Jacobsen38

et al., 2010), for different types of missions and measurements. Despite differences, all39

Langmuir probes consist of conductors exposed to plasma to collect current as a func-40

tion of bias voltage. A common approach to infer plasma parameters from Langmuir probes41

is to sweep the bias voltage and produce a current-voltage characteristic, which can be42

analyzed using theories such as the Orbital Motion-Limited (OML) (Mott-Smith & Lang-43

muir, 1926) theory, the Allen-Boyd-Reynolds (ABR) theory (Allen et al., 1957; Chen,44

1965, 2003), and the Bernstein-Rabinowitz-Laframboise (BRL) theory (Bernstein & Ra-45

binowitz, 1959; Laframboise, 1966) to obtain plasma parameters such as density, tem-46

perature, and satellite floating potential. The temporal and, on a satellite, the spatial47

resolution of Langmuir probe measurements is determined by the sweep time, which is48

typically on the order of 1 s (Jacobsen et al., 2010). Considering the orbital speed to be49

around 7500 m/s for a typical satellite in low Earth orbit (LEO), this sampling rate im-50

poses a lower bound on the spatial resolution of measurements, which cannot be lower51

than ∼ 10 km. In order to overcome this problem, Jacobsen suggested the use of mul-52

tiple fixed biased needle probes (m-NLPs) to sample plasma simultaneously at different53

bias potentials in the electron saturation region (Jacobsen et al., 2010). This approach54

eliminates the need for sweeping the bias voltage, and greatly increases the sampling rate55

of the instrument.56

Previous inference models for m-NLPs rely on the OML approximation, from which
the current Ie collected by a needle probe in the electron saturation region is approx-
imated as:

Ie = −neeA
2√
π

√
kTe

2πme

(
1 +

e(Vf + Vb)

kTe

)β

, (1)

where ne is the electron density, A is the probe surface area, e is the elementary charge,57

k is Boltzmann’s constant, Te is the electron temperature, Vf is the satellite floating po-58

tential, Vb is the bias potential of the probe with respect to the satellite, and β is a pa-59

rameter related to probe geometry, density, and temperature (Marholm & Marchand,60

2020; Hoang, Røed, et al., 2018). Several assumptions were made in the derivation of this61

inference equation; a key one being that the probe length is much larger than the De-62
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bye length. If this assumption is valid, then β = 0.5, and as first suggested by Jacob-63

sen, a set of m-NLPs can be used to infer the density independently of the temperature64

(Jacobsen et al., 2010). For a satellite in near-Earth orbit at altitudes ranging from 45065

km to 600 km, we can expect a Debye length of around 2-50 mm. A common length for66

m-NLP instrument used on small satellites is ∼ 25 mm (Bekkeng et al., 2010; Hoang,67

Clausen, et al., 2018; Hoang et al., 2019), which is often comparable to, and sometimes68

smaller than the Debye length. One consequence is that the β = 0.5 assumption does69

not hold, and Eq. 1 is a better approximation with a β value between 0.5 and 1. For ex-70

ample, in a hot filament-generated plasma experiment, Sudit and Woods showed that71

β can reach 0.75 for a ratio between the Debye length and the probe length in the range72

of 1 to 3. For larger Debye lengths, they also observed an expansion of the probe sheath73

from a cylindrical shape into a spherical shape (Sudit & Woods, 1994). In the ICI-2 sound-74

ing rocket experiment, β calculated from three 25 mm m-NLPs varied between 0.3 to75

0.7 in an altitude ranging from 150 to 300 km(Hoang, Røed, et al., 2018). Simulation76

results by Marholm et al. showed that even a 50 mm probe can be characterized by a77

β ∼ 0.8 (Marholm et al., 2019), in disagreement with the OML theory. In practice, nee-78

dle probes are mounted on an electrically isolated and equipotential guard in order to79

attenuate end effects on the side to which it is attached. The distribution of the current80

collected per unit length is nonetheless not uniform along the probe, as more current is81

collected near the end opposite to the guard. A study by Marholm & Marchand showed82

that for a cylindrical probe length that is 10 times the Debye length, β is approximately83

0.72. For a probe length that is 30 times the Debye length, β is approximately 0.62, and84

with a guard, this number is reduced to 0.58 (Marholm & Marchand, 2020). Although85

this number approaches 0.5, 30 times the Debye length is a stringent requirement for OML86

to be valid, and it is hardly ever fulfilled in practice. Experimentally, Hoskinson and Her-87

shkowitz showed that even with a probe length 50 times the Debye length, β is approx-88

imately 0.6, and the density inference based on an ideal β = 0.5 is 25 % too high (Hoskinson89

& Hershkowitz, 2006). Barjatya estimated that even a 10% error in β (to 0.55) can re-90

sult in a 30 % or more relative error in the calculated density based on the β = 0.5 as-91

sumption (Barjatya & Merritt, 2018). In this study, densities estimated using Eq. 1 are92

about three times larger than the known values used as input in our simulations, as il-93

lustrated in section 3.1.94

In the following, we present and assess new techniques to infer plasma densities,95

and satellite potentials from fixed bias needle probe measurements while accounting for96

finite length effects of the probes. Our approach, described in Sec. 2, makes use of ki-97

netic simulations to construct synthetic data sets, consisting of calculated currents and98

known densities, temperatures, and satellite potentials used as input in the simulations.99

In Sec. 3 regression models are constructed and assessed by applying them to synthetic100

data. The models trained with synthetic data are then applied to NorSat-1 data in Sec.101

4 by inferring densities and satellite floating potentials from in situ measured currents.102

Section 5 summarizes our findings and presents some concluding remarks.103

2 Methodology104

In this section, we briefly describe our kinetic simulation approach, and how it is105

used to construct synthetic data sets used to train and validate inference models, using106

two regression techniques.107

2.1 Kinetic simulations108

The plasma conditions considered in this study are selected to be relevant to plasma109

conditions that a spacecraft could encounter in a low Earth orbit at altitudes ranging110

between 550 and 650 km. This is done by sampling plasma parameters using the Inter-111

national Reference Ionosphere (IRI) (Bilitza et al., 2014) model at different latitudes,112
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Figure 1. Scatter plot of plasma parameters obtained from the IRI model, corresponding to

different latitudes, longitudes, altitudes, and times, as listed in Table 1. The x and y axes, and

the color bar refer respectively, to the electron density and temperature, and the ion effective

mass. Numbered squares identify the set of parameters used in the kinetic simulations.

longitudes, altitudes, and times as shown in Fig. 1. The ranges considered for these pa-113

rameters are summarized in Tab. 1. Forty-five sets of plasma parameters approximately114

evenly distributed in this parameter space are selected as input in simulations, as shown115

in numbered squares in Fig. 1. The three-dimensional PIC code PTetra (Marchand, 2012;116

Marchand & Lira, 2017) is used to simulate probe currents in this study. In the simu-117

lations, space is discretized using unstructured adaptive tetrahedral meshes (Frey & George,118

2007; Geuzaine & Remacle, 2009). Poisson’s equation is solved at each time step using119

Saad’s GMRES sparse matrix solver (Saad, 2003) in order to calculate the electric field120

in the system. Then, electron and ion trajectories are calculated kinetically using their121

physical charges and masses self consistently. The mesh for the m-NLP and the simu-122

lation domain illustrated in Fig. 2, is generated with GMSH (Geuzaine & Remacle, 2009).123

The needle probe used in the simulation has a length of 25 mm and a diameter of 0.51124

mm, as those on the NorSat-1. The needle probe is attached to a 15 mm long and 2.2125

mm diameter guard which is biased to the same voltage as the probe. The outer bound-126

ary of the simulation domain is closer to the probe on the ram side, and farther on the127

wake side, as shown in Fig. 2. The simulations are made using two different domain sizes128

depending on the Debye length of the plasma. For plasma density below 2×1010 m−3
129

corresponding to a Debye length of 1.9-7.2 cm, a lager domain is used. For plasma den-130

sity above 2×1010 m−3, corresponding to a Debye length of 0.2-2.2 cm, a smaller do-131

main with finer resolution is used. The simulation size, the resolution, the number of tetra-132

hedra, and the corresponding Debye length are summarized in Tab. 2. There is overlap133

between the two simulation domains for simulations with Debye lengths around 2 cm.134

However, no obvious difference was found in the simulated currents, indicating simula-135

tion results from both domains are consistent in the transition range. Simulation results136

from both domains are included when training the regression models. All simulations137

are run initially with 100 million ions and electrons, but these numbers vary through a138

simulation, due to particles being collected, leaving, or entering the domain. In the sim-139
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Figure 2. Illustration of a m-NLP geometry (left), and the simulation domain (right). The

needle probe has a length of 25 mm, with a guard of 15 mm. The ram direction is from the top

of the simulation domain.

Table 1. Spatial and temporal parameters used to sample ionospheric plasma conditions in

IRI, and the corresponding ranges in space plasma parameters.

Environment and plasma conditions Parameter range

Years 1998 2001 2004 2009
Dates Jan 4 Apr 4 Jul 4 Oct 4
Hours 0-24 with increment of 8 hours
Latitude −90◦ - +90◦ with increment of 5◦

Longitude 0◦ - −360◦ with increment of 30◦

Altitude 550-650 km with increment of 50 km

Ion temperature 0.07-0.16 eV
Electron temperature 0.09-0.25 eV
Effective ion mass 2-16 amu
Density 2× 109 − 1× 1012m−3

ulations, the probe is segmented into five segments of equal length, making it possible140

to estimate a rough distribution of the current along its length. The current used to build141

regression models is a sum of the currents of the five different segments. The orbital speed142

of the satellite is assumed to be fixed at 7500 m/s in the simulations, with a direction143

perpendicular to the probe. For the voltages considered, probes are expected to collect144

mainly electron currents. For simplicity, only two types of ions are considered in the sim-145

ulation, O+ and H+ ions, and no magnetic field is accounted for in the simulation, which146

is justified by the fact that the Larmor radius of the electron considered is much larger147

than the radius of the probe.148

2.2 Synthetic solution library149

In order to assess the inference skill of a regression model, a cost function is de-
fined with the following properties: i) it is positive definite, ii) it vanishes if model in-
ferences agree exactly with given data in a data set, and iii) it increases as inferences de-
viate from actual data. The cost functions used in this work are: the root mean square
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Table 2. Parameters used in the two simulation domains are listed. The first two columns

listed the distances between the probe to the ram and the wake face of the outer boundary, fol-

lowed by the simulation resolutions at the probe, guard, and the outer boundary. The number of

tetrahedra used in the simulations is in the order of millions. The corresponding range in Debye

lengths is also listed.

Ram
distance

Wake
distance

Probe
resolution

Guard
resolution

Boundary
resolution

Tetrahedra Debye
length

3.5 cm 7 cm 51 µm 220 µm 2 mm 2.5 M 0.2-2.2 cm
30 cm 40 cm 51 µm 220 µm 1 cm 1.7 M 1.9-7.2 cm

Figure 3. Example of simulated currents and fit for a set of plasma conditions. 5 probe volt-

ages are simulated for each set of plasma conditions, and a power law fit is used to approximate

the currents vs probe voltage characteristic. The fitting errors in the figure is calculated over

all 45 sets of plasma conditions. The plasma conditions used in this graph are 2 × 1010 m−3, 8

amu, 0.15 and 0.12 eV for density, ion effective mass, electron temperature and ion temperature

respectively.
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error,

RMS =

√√√√ 1

Ndata

Ndata∑
i=1

(Ymodi − Ydatai)
2
, (2)

the root mean square relative error

RMSr =

√√√√ 1

Ndata

Ndata∑
i=1

(Ymodi
− Ydatai

)
2

Y 2
modi

, (3)

the maximum absolute error

MAE = max {|Ymod − Ydata|} , (4)

and the maximum relative error

MRE = max

{∣∣∣∣Ymod − Ydata

Ymod

∣∣∣∣} , (5)

where Ydata and Ymod represent respectively known and inferred plasma parameters, and150

Ndata is the total number of data points.151

For each of the 45 sets of plasma parameters illustrated in Fig. 1, simulations are
made assuming 5 probe voltages with respect to background plasma, and the simulated
currents vs probe voltage are approximated using a power-law fit with three fitting pa-
rameters

I = a

(
b+

eV

kTe

)c

. (6)

The MRE calculated for all 45 fits is 1.4%, and the RMSr is 0.7%, which shows excel-152

lent agreement with simulated collected currents. A comparison between fitted and com-153

puted currents is shown in Fig. 3.154

The NorSat-1 m-NLP probes are biased to +10, +9, +8, and +6 V with respect155

to the spacecraft, and the probe voltage with respect to background plasma is given by156

the sum of the spacecraft floating potential plus the probe bias V = Vf+Vb. In simu-157

lations, probe currents for voltages with respect to background plasma in the range be-158

tween 0 to 9 volts are considered as shown in Fig. 3. Considering that the probe bias159

voltages Vb are +10, +9, +8 and +6 V, for any given floating potential Vf in the range160

of -1 to -6 V, the probe voltage V with respect to the background plasma is in the range161

of 0 to 9 V covered in the simulations. A synthetic solution library is created by assum-162

ing randomly distributed spacecraft floating potentials in the range between -1 and -6163

V and interpolating the corresponding currents at these voltages using Eq. 6 with the164

fitting parameters from the 45 fits as shown in Fig. 3. The synthetic solution library con-165

structed from simulations, consists of four currents collected by the four needle probes166

at the four different bias voltages, for 160 randomly distributed spacecraft potentials in167

the range between -1 V to -6 V for each of the 45 sets of plasma parameters. In each en-168

try of the data set, these four currents are followed by the electron density, the space-169

craft potential the electron and ion temperatures, and the ion effective mass. The result-170

ing solution library consisting of 45 × 160 = 7200 entries is then used to construct a171

training set with 3600 randomly selected nodes or entries, and a validation set with the172

remaining 3600 nodes. The cost functions reported in this paper are all calculated from173

the validation data set unless stated otherwise.174

2.3 Multivariate regression175

The next step is to make a multivariate regression model that maps the currents176

to the corresponding plasma conditions in the solution library. In a complex system where177

the relation between independent variables and dependent variables cannot readily be178

cast analytically, multivariate regressions based on machine learning techniques are pow-179

erful alternatives to construct approximate inference models. In this approach, the model180
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must be capable to capture the complex relationship between dependent and indepen-181

dent variables. Once the model is trained using the training set, it can then be used to182

make inferences where the dependent variable is not known. In this work, two multivari-183

ate regression approaches are used to infer plasma parameters: the Radial Basis Func-184

tion and Feedforward Neural Networks. The models are trained by optimizing their cost185

function on the training data set, and then applied to the validation data set to calcu-186

late the validation cost function without further optimization. The use of a validation187

set is to avoid “overfitting” because there are certain limitations on the refinement of a188

model on a training set, such that further improvement of model inference skill in the189

training set will worsen the model inference skill in the validation set. A good model is190

one with the right level of training so as to provide the best inference skill in the vali-191

dation set.192

2.3.1 Radial basis function193

Radial basis function (RBF) multivariate regression is a simple and robust tool used
in many previous studies to infer space plasma parameters using a variety of instruments
with promising results (Liu & Marchand, 2021; Olowookere & Marchand, 2021; Chalaturnyk
& Marchand, 2019; Guthrie et al., 2021). A general expression for RBF regression for
a set of independent n-tuples X̄ and corresponding dependent variable Y is given by:

Y =

N∑
i=1

aiG
(∣∣X̄ − X̄i

∣∣) . (7)

In general, the dependent variable Y can also be a tuple, but for simplicity, and with-
out loss of generality, we limit our attention to scalar dependent variables. In Eq. 7, the
X̄i represents the N centers, G is the interpolating function, and the ai are collocation
coefficients which can be determined by requiring collocation at the centers; that is, by
solving the system of linear equations

N∑
i=1

aiG(|X̄k − X̄i|) = Yk (8)

for k = 1, ..., N . Here, the dependent variable Y corresponds to the physical param-194

eter to be inferred, the independent variable X̄ is a 4-tuple corresponding to the currents195

or the normalized currents from the m-NLPs depending on which physical parameters196

are being inferred. There are different ways to distribute the centers in RBF regression,197

one straightforward approach is to evaluate the cost function over the entire training data198

set for all possible combinations of centers, then select the model which yields the op-199

timal cost function. For this approach, the number of combinations required for N data200

points and N centers is given by201

(
N
N

)
=

N !

N !(N −N)!
. (9)

This, of course, can be prohibitively large and time-consuming for a large training data202

set or using a large number of centers. An alternative strategy is to successively train203

models with randomly selected small subsets of the entire training data set using the straight-204

forward approach, then carrying the optimal centers from one iteration to the next. This205

“center-evolving strategy” is very efficient in finding near-optimal centers for large train-206

ing data sets and has proven to be as accurate as the straightforward extensive approach.207

The RBF models here follow this procedure. Different G functions and cost functions208

are tested, and only the models that yield optimal results are reported in this paper.209

2.3.2 Feedforward neural network210

The second multivariate regression approach is a Feedforward neural network as
illustrated in Fig. 4. This consists of an input layer, hidden layers, and an output layer.
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Figure 4. Schematic of a feedforward neural network.

Each node j in a given layer i in the network is assigned a value ui,j , and the node in
the next layer i+1 are “fed” from numerical values from the nodes in the previous layer
according to

ui+1,k = f

 ni∑
j=1

wi,j,kui,j + bi,k

 , (10)

where wi,j,k are weight factors, bi,j are bias terms, and f is a nonlinear activation func-211

tion (Goodfellow et al., 2016). In this work, the input layer neurons contain the four-212

needle probe currents or normalized needle probe currents depending on the physical pa-213

rameter to be inferred, whereas the output layer contains one physical parameter. The214

number of hidden layers and the number of neurons in the hidden layers are adjusted215

to fit the specific problem, and attain good inference skills. The Feedforward neural net-216

work is built using TensorFlow (Abadi et al., 2016) with Adam optimizer (Kingma &217

Ba, 2015), and using the ReLU activation function defined as f(x) = max(0, x). The218

input variables are normalized using the preprocessing.normalization function built-219

in in TensorFlow which normalizes the data to have a zero mean and unit variance. The220

structure of the network will be described later when presenting the model inferences.221

3 Assessment with synthetic data222

In this section, we assess our models using synthetic data, which allows us to check223

the accuracy, and quantify uncertainties in our inferences. A consistency check strategy224

is also introduced to further assess the applicability of our models.225

3.1 Density inference226

The density can be inferred using Eq. 1 which can be rewritten as:

ne

T
β− 1

2
e

=

√
π2me

2A2e3

I
1
β

1 − I
1
β

2

V1 − V2

β

. (11)

In this equation, subscripts 1 and 2 indicate different probes. One requirement for us-
ing this equation is that β be 0.5. In this case the equation take form of:

ne =

√
π2me

2A2e3

√
I21 − I22
V1 − V2

. (12)

As a result, the power term on electron temperature vanishes, and the density can be
determined independently of temperature. With currents from two probes, the density
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Figure 5. Correlation plot for the density inferences made with different techniques applied to

our synthetic validation set.

can be calculated from the slope of the current squared over bias voltage from a least-
square fit of all probes as first suggested by Jacobsen (Jacobsen et al., 2010). On the other
hand, the β = 0.5 assumption requires that the needle probe be very long compared
to the Debye length, which is in general not satisfied for NorSat-1 satellite. As a con-
sequence, when this method is applied to the solution library, the inferred density is typ-
ically three times higher than the actual density as shown with red boxes in Fig 5. De-
spite the offset, this method produces densities which closely follow the true density in
the synthetic data set. This offset can be reduced by dividing the calculated density by
three, but better accuracy can be achieved using an affine transformation applied to the
natural log of the inferred density:

ln(n′
e) = a ln(ne) + b. (13)

In this equation, the density ne is first obtained using the Jacobsen approach, then affine227

transformation is used to calculate the inferred density n′
e. The affine transformation co-228

efficients a and b are obtained from a least-squares fit of the log of these densities, to those229

in the training data set. The fitting coefficients in this case, a = 1.13 and b = −4.83,230

are then used to perform an affine transformation on the validation data set leading to231

a significant improvement in RMSr from 74% to 19%, and in MRE from 83% to 66% com-232

pared to Jacobsen’s densities, as shown in Fig 5. RBF regression can also be used to cor-233

rect Jacobsen’s density. This is done by using RBF to approximate the discrepancy be-234

tween the true density and the one inferred with Jacobsen’s technique. This correction235

is then used to improve the accuracy of the inferred density obtained with Jacobsen’s236

method. Using the four currents as input variable X̄, by minimizing the MRE, using G(x) =237

x, and 5 centers, the RBF corrected Jacobsen density yields a RMSr of 17 % and a MRE238

of 79%. The cost functions of the two methods are comparable, but an obvious advan-239

tage of using an affine transformation is its simplicity.240

Direct RBF regression can be applied to infer density using the four currents as241

input variables. When constructing an RBF model with G(x) = x, minimizing MRE,242

and using 5 centers, the RMSr and MRE calculated on the validation data set are 17%243

and 35% respectively. Using a neural network with 4 nodes in the input layer, 14 nodes244
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Figure 6. Correlation plot obtained for satellite potential inferred with RBF and OML tech-

niques.

and 12 nodes in two hidden layers, and 1 node in the output layer, the calculated den-245

sity achieves a 14% RMSr and 43% MRE. This is calculated using TensorFlow with ADAM246

optimizer with a learning rate of 0.005 and a RMSr as a cost function. The input layer247

is normalized to have a zero mean and unit variance, while the output layer is normal-248

ized by dividing the largest density. The densities calculated using synthetic solution li-249

brary, as well as the cost function are shown in Fig. 5. Compared to the other density250

models considered, straightforward RBF yields the smallest MRE, thus it is the preferred251

model to infer density in this work. However, the affine-transformed Jacobsen technique252

enables inferences with accuracy comparable to those of more complex approaches. This253

simple and practical technique should be considered in routine data analysis.254

3.2 Potential inference255

The floating potential of the spacecraft can also be inferred using the OML equa-
tion, by rewriting equation 1 as:

Vf ≈ Vf +
kTe

e
=

V2I
1
β

1 − V1I
1
β

2

I
1
β

2 − I
1
β

1

=
V3I

1
β

2 − V2I
1
β

3

I
1
β

3 − I
1
β

2

(14)

In this equation, the subscripts 1,2, and 3 refer to different probes, thus there must be256

at least three probes in order to solve for β. The bias voltage of the probes and their cor-257

responding collected currents are known from measurements, thus β can be solved us-258

ing a standard root finder. Given β, equation 14 then provides a value for Vf+
kTe

e . In259

this expression, kTe

e is the electron temperature in electron-volt, which in the lower iono-260

sphere, is of order 0.3 eV or less. Thus, considering that kTe

e is generally much smaller261

than satellite potentials relative to the background plasma, any of the two terms in the262

right side of Eq. 14 provide a first approximation of Vf . This equation works very well263

when it is applied to the synthetic solution library with a MAE of 0.3 V calculated us-264

ing 10, 9, and 8 volts probes. The error of 0.3 V is likely due to the maximum electron265

temperature of 0.3 eV considered in the simulations. The β calculated in the synthetic266

solution library is in the range of 0.75 to 1. It is also possible to build a model to infer267

floating potentials directly using RBF regression. In this case, currents are normalized268

by dividing every current by their sum, in order to remove the strong density dependence269

on the currents. Using G(x) = x, and 5 centers, and minimizing MAE, the calculated270

MAE on the validation data set is 0.4 V. A correlation plot for OML inference, and RBF271
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inferences of potentials are shown in Fig. 6. Both methods show good agreement with272

values from the synthetic solution library.273

3.3 Consistency check274

In order to further assess the applicability of our inference approaches, we perform275

a consistency check consisting of the following. First, RBF models M1(ne) and M1(Vf ))276

are constructed to infer the density and satellite potential using 4-tuple currents from277

our synthetic data set. A second model (M2) is constructed to infer collected currents278

from densities and floating potentials in our synthetic data set. Since we are not able279

to infer temperatures from the currents, the temperature is not included in M2. Con-280

sistency is then assessed in two steps by i) using currents from synthetic data and mod-281

els M1(ne) and M1(Vf ) to infer densities and floating potentials, and ii) applying mod-282

els M2 to these inferred values to infer back collected currents. RBF density and float-283

ing potential inferences are used in M1(ne), and M1(Vf ) as described in sec. 3.1 and284

3.2. RBF is also used in M2 with G(x) =
√
1 + x2.5, and minimizing RMSr with 5 cen-285

ters. With perfect inference models, the results for these back-inferred currents, should286

agree exactly with the starting currents from synthetic data. Variances between back-287

inferred and simulated currents in the synthetic data are presented as indicative of the288

level of confidence in our regression techniques. The correlation plot in Fig. 7, shows back-289

inferred currents calculated for a probe with 10 V bias against known currents from syn-290

thetic data. For comparison, the figure also shows the correlation between directly in-

Figure 7. Correlation plot of inferred +10 V probe current against +10 V probe current from

the synthetic data set is presented. The calculated +10 probe currents in purple curve is calcu-

lated using the validation data set, while the green curve is calculated using inferred densities

and floating potentials from RBF regression.

291

ferred currents when model M2 is applied to densities and floating potentials from the292

synthetic data set. Both back-inferred and directly inferred currents are in excellent agree-293

ment with known currents from synthetic data, with comparable metric skills of ≃ 15%294

and ≃ 48% for the RMSr and the MRE, respectively. Considering that errors are com-295

pounded between the first and second models for the back-inferred currents, the nearly296

identical metric skills seen in Fig. 7 is seen as confirmation of the validity of our regres-297

sion models.298
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4 Application to NorSat-1 data299

In this section, we apply our density and potential inference models constructed300

with synthetic data, to in situ measurements made with the m-NLP on the NorSat-1 satel-301

lite. The NorSat-1 currents were obtained from a University of Oslo data portal (Hoang,302

Clausen, et al., 2018). The epoch considered corresponds to one and a half orbit of the303

satellite starting at approximately 10:00 UTC on January 4, 2020. We start with a com-304

parison of simulated and measured currents to verify that our simulated currents are in305

the same range as that of measured in situ currents. Densities inferred with RBF, neu-306

ral network, and the two corrected Jacobsen’s methods constructed in 3.1, are also pre-307

sented.308

4.1 Measured in-situ, and simulated currents309

The instrumental limit for the NorSat-1 m-NLP probes is estimated to be approx-310

imately 1 nA (Hoang, Clausen, et al., 2018). However, in order to ensure a sufficient signal-311

to-noise ratio, a lower bound of 10 nA should be applied for all four probes, as the noise312

level of the environment is now estimated to be of order 10 nA. This is done by filter-313

ing out all data that contain a current that is below 10 nA in any of the four probes. The314

+9 V probe currents against the +10 V probe currents for both NorSat-1 data above 10315

nA, and the corresponding currents from the synthetic data set are plotted in Fig. 8. The

Figure 8. Correlation plot between currents collected by the +9 V and the +10 V probes for

both NorSat-1, and synthetic data.

316

overlap between the two sets of currents, and the fact that simulated currents cover a317

wider range, indicates that our synthetic data should be applicable to NorSat measured318

currents.319

4.2 Density and satellite potential inference320

Our models, trained with synthetic data as described in Sec. 3, are now applied321

to infer plasma densities and satellite potentials from in situ measured currents, for the322

time period considered. The results obtained with the different models presented in Sec.323

3 are shown in Fig. 9 for the inferred densities, satellite potentials, and measured cur-324

rents collected by the four probes. The position of the satellite relative to the Earth and325

the Sun given by the solar zenith angle, is also plotted in the figure. For example, a small326

solar zenith angle means that the satellite is near the equator on the dayside. This fig-327

ure also shows inferences for densities and floating potentials using data in which the low-328
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Figure 9. Illustrations of NorSat-1 collected currents considered in this study in panel a, in-

ferred densities in panel b, inferred potentials in panel c, and the NorSat-1 current near 0 A in

panel d. The solar zenith angle is also plotted against the secondary axis. Curves in darker colors

are from model inferences using data above 10 nA, whereas those in lighter colors show inferences

using data with currents between 1 nA and 10 nA.
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est collected current is between 1 nA and 10 nA in lighter colors, to demonstrate that329

our model inferences made with these lower currents, remain consistent with those ob-330

tained with currents above 10 nA. A word of caution is in order, however, for inferences331

made from these lower currents, as a conservative estimate of the threshold for accept-332

able signal-to-noise ratios, is approximately 10 nA. This lower bound on acceptable cur-333

rents is supported by a consistency check made with models 1 and 2 described in Sec.334

3.3, and presented below in Sec. 4.3.335

The densities shown in Fig. 9 panel b are obtained using the four density inference336

methods mentioned in Sec. 3.1. Direct Jacobsen’s density is not shown as it is too large337

by about a factor of 3. At 10:45, neural network density, RBF corrected Jacobsen den-338

sity, and RBF density overlap nicely, while affine transformed Jacobsen density inferences339

are smaller than other inferred densities, particularly near the density maxima. The den-340

sity inferences at other ranges nevertheless agree with each other nicely. Using the pre-341

ferred RBF inferred density as base and data above 10 nA, the calculated RMSr is 15%342

and the MRE is 29% using densities calculated from other techniques.343

Using the +10, +9, and +8 NorSat-1 probe currents and Eq. 14 for the OML ap-344

proximation, the inferred satellite floating potential is about -8 V for most of the data345

range considered in this study as shown in Fig. 9 panel c. This is in stark contradiction346

with observations in Fig. 9 panel d, which shows that the +6V biased probe collects net347

positive electrons during most of the period considered. However, there are periods be-348

tween 10:15 to 10:30, and after 11:45 when the + 6V probe collects ion current(negative),349

indicating drops in the satellite potential below -6V. The poor performance of OML to350

infer the satellite potential here, results from the fact that Eq. 14 yields erratic values351

of β ranging from 0.3 to 1.2. Attempts have also been made to approximate the satel-352

lite potential with Eq. 14 using a fixed value of 0.58 and 0.78 for β, also resulting in satel-353

lite potentials in the −8 V range, and no improvement was found. This failure to pro-354

duce acceptable values of the satellite potential clearly show that this generalized OML355

approximation in Eq.14 is not applicable to NorSat-1 satellite data.356

As a test, the RBF model trained with synthetic data set is applied to measured357

currents between 1 and 10 nA. The inferred densities and satellite potentials appear in358

Fig. 9 are in lighter colors. Interestingly, the inferred satellite potential is seen to join359

smoothly with the darker color inferences, and to decrease below -6 V around 10:25, where360

the current from the +6 V biased probe becomes negative, indicating that it collects mostly361

ions. In Fig. 9, the density and floating potential are seen to peak at around 10:45 and362

11:00 respectively. The two major factors that influence the probe current collection are363

density and floating potential. The currents from the +8, +9, and +10 V probes (green,364

orange, and blue) in panel a peak at around 10:45, coinciding with the peak in the plasma365

density at this time. Then, as time goes forward to 11:00, the currents of the three probes366

decrease, also coinciding with a decrease in plasma density. However, the +6 V probe367

(red) current is increasing during these times, likely due to an increase in floating po-368

tential. This increase is captured in the RBF inferred floating potential but not in the369

one obtained from OML. Another observation is that the inferred floating potential de-370

creases significantly at 10:15, as the satellite crosses the terminator. On NorSat-1, the371

negative terminals of the solar cells are grounded to the spacecraft bus while the pos-372

itive side is facing the ambient plasma (Ivarsen et al., 2019). A likely explanation for the373

potential drop is that the solar cells facing the ambient plasma get charged positively374

and is suddenly starting to collect more electrons upon exiting solar eclipse. This would375

agree with findings reported by Ivarsen et al. (Ivarsen et al., 2019).376

4.3 Consistency check377

In the absence of accurate and validated inferred densities and satellite potentials378

from NorSat-1 data, it is not possible to confidently ascertain to what extent the infer-379
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Figure 10. Consistency check is performed in the in situ data following the same procedure as

in the synthetic data set. Both models 1 and 2 are trained with our synthetic data, and applied

to currents from the +10 V probe on NorSat-1. Darker colors refer to inferences made with cur-

rent above 10 nA, while lighter colors refer to inferences obtained with currents between 1 and 10

nA.

ences presented above are accurate. We therefore proceed with a consistency check, fol-380

lowing the same procedure as presented in Sec. 3.3 for synthetic data, but using mea-381

sured currents as input. This is done by first applying M1(ne) and M1(Vf )) trained with382

synthetic data, to infer floating potentials and densities from measured currents. Then383

M2 (also trained with synthetic data) is used to infer currents from the M1 - inferred384

floating potentials and densities. If the models constructed from the synthetic data also385

apply to NorSat-1 data, the inferred currents should closely reproduce the measured NorSat-386

1 currents. A correlation plot of inferred against measured currents is shown in Fig. 10387

for the +10 V probe. In this plot, the green and orange curves are obtained from M2388

using densities inferred from currents obtained with direct RBF, and transformed Ja-389

cobsen in M1(ne), and direct RBF potentials in M1(Vf ). The parts in lighter color are390

obtained using data with a 1nA filter, whereas the darker color parts are obtained us-391

ing data with currents above 10 nA. Inferred currents based on Jacobsen’s density (β=0.5)392

as M1(ne) are also plotted here as a comparison. While not shown, the 1 nA filter curve393

extends to the left down to about 5 nA, however, these calculated +10 volt probe cur-394

rents plateau in this range and are far from the measured currents. This behavior is likely395

due to the noise level of the environment which is about 10 nA, thus extra caution should396

be taken when using model inferences for data below 10 nA. The RMSr calculated for397

the 10 nA NorSat-1 current using direct RBF density as M1(ne) is 9%, and the MRE398

is 28 %, whereas these numbers for affine transformed Jacobsen densities are 11 % and399

23 %, respectively. These numbers are smaller than the RMSr and MRE calculated in400

the synthetic data set, likely due to the fact that in situ data covers a smaller range in401

density. The inferred currents calculated from M2 using Jacobsen’s densities and RBF402

potentials, are significantly and systematically larger than the input currents, indicat-403

ing that Jacobsen’s densities alone are again, not applicable in this case. The calculated404

+10 V probe current based on RBF regression and affine transformed Jacobsen method405

nicely follows with the true +10 volt probe current except for a small increase in the vari-406

ance at lower currents, thus indicating that our model constructed with synthetic data407

set should be applicable to in situ data.408
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5 Conclusions409

A new approach is presented to infer plasma and satellite parameters from Lang-410

muir probe measurements. The method consists of creating solution libraries with ki-411

netic simulations capable to calculate probe measurements encountered by satellites in412

low Earth orbit conditions, and with physical processes, which cannot be accounted for413

analytically. Simulation results are then used to construct solution libraries from which414

multivariate regression inference models are constructed. In addition to accounting for415

more physical processes than possible in theories such as OML, this approach has the416

advantage of producing inferences with quantifiable uncertainties. The proposed simulation-417

regression approach is applied to the Norwegian satellite NorSat-1 m-NLP instrument418

as a case study. Four density inference techniques are used and compared for their in-419

ference skills, when applied to synthetic data, and actual measurements made in space.420

It is found, as reported in previous studies, that OML based inferences overestimate the421

plasma density by approximately a factor of three, when applied to our synthetic solu-422

tion library. RBF regression is used to correct OML based inferences, the combined RBF-423

OML based inference, direct RBF inference, and the use of affine transformation applied424

to OML based inferences are found to yield excellent results. Another method consid-425

ered is based on neural network regression. After applying and assessing all four mod-426

els with our synthetic solution library, they are applied to the NorSat-1 m-NLP data.427

The density inference from all four methods shows good agreement, which we believe,428

is a significant improvement over the commonly used OML based inference method. Based429

on our findings, the direct RBF method and the affine transformed Jacobsen’s method430

are the preferred methods to infer density. The direct RBF method yields the lowest max-431

imum relative error, whereas the affine transformed Jacobsen’s method is the simplest432

method and produces inferences with comparable accuracy. The spacecraft floating po-433

tential is also inferred using RBF regression and the OML approach. OML inferences434

are inconsistent with the measurements from NorSat-1 data since it indicates that the435

satellite potential is below -6V, while measurements indicate that the +6 V probe is col-436

lecting electron current. Conversely, spacecraft potentials inferred with RBF regression437

yield positive voltages for the probe when they collect electrons, which is more consis-438

tent with observation.439

In the absence of validated and accurate measurements of density and spacecraft440

potential for Norsat-1 satellite, it is unfortunately impossible to ascertain to what ex-441

tent our inference techniques improve inference skills compared to conventional techniques,442

largely based on analytic approximations. Therefore, in lieu of comparisons with accu-443

rate densities and satellite potentials, a consistency check is performed to assess the ap-444

plicability and confidence level of our inference models. Compared to generally used an-445

alytic inference approaches, our simulation-regression based techniques will, of course,446

take more time to run and be trained. Our approach, however, has the advantage of ac-447

counting for more realistic conditions of geometry, and more physical processes than pos-448

sible analytically, while being able of reproducing known analytic results under condi-449

tions where the assumptions made in these underlying theories are satisfied. The work450

presented here is by no means final. The development of improved inference approaches451

based on simulations and regression techniques will require significantly more efforts, in-452

volving collaborations between experimentalists and modelers; an effort well worth, con-453

sidering the cost and years of preparation involved in scientific space missions.454
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