
 

1 
 

A multisite Stochastic Watershed Model (SWM) with intermittency for 1 

regional low flow and flood risk analysis 2 
 3 

Zach Brodeur1, Rohini Gupta2, Scott Steinschneider3 4 
Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 5 

 6 
 7 

1. Postdoctoral Associate, 111 Wing Drive, Riley-Robb Hall, Department of Biological and 8 
Environmental Engineering, Cornell University, Ithaca, NY, 14853. Email: zpb4@cornell.edu, 9 
Phone: 607-255-2155 (Corresponding Author). 10 
 11 
2. Graduate Research Assistant, 111 Wing Drive, Riley-Robb Hall, Department of Biological 12 
and Environmental Engineering, Cornell University, Ithaca, NY, 14853. Email: 13 
rg727@cornell.edu, Phone: 607-255-2155. 14 
 15 
3. Assistant Professor, 111 Wing Drive, Riley-Robb Hall, Department of Biological and 16 
Environmental Engineering, Cornell University, Ithaca, NY, 14853. Email: ss3378@cornell.edu, 17 
Phone: 607-255-2155. 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 

Key Points: 30 

• We develop a Stochastic Watershed Model (SWM) that simulates multisite streamflow 31 
ensembles and captures spatial patterns in model error 32 

• The SWM also reproduces multisite and Markovian properties of flow intermittency 33 
• We show that capturing multisite error properties and intermittency is critical for 34 

reproducing regional high and low flow design events  35 
 36 

 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 



 

2 
 

Abstract 45 

Stochastic Watershed Models (SWMs) are an important innovation in hydrologic modeling that 46 

propagate uncertainty into model predictions by adding samples of model error to deterministic 47 

simulations. A growing body of work shows that univariate SWMs effectively reduce bias in 48 

hydrologic simulations, especially at the upper and lower flow quantiles. This has important 49 

implications for short term forecasting and the estimation of design events for long term 50 

planning. However, the application of SWMs in a regional context across many sites is 51 

underexplored. Streamflow across nearby sites is highly correlated, and so too are hydrologic 52 

model errors. Further, in arid and semi-arid regions streamflow can be intermittent, but SWMs 53 

rarely model zero flows at one site, let alone correlated intermittency across sites. In this 54 

technical note, we contribute a multisite SWM that captures univariate attributes of model error 55 

(heteroscedasticity, autocorrelation, non-normality, conditional bias), as well as multisite 56 

attributes of model error (cross-correlated error magnitude and persistence). The SWM also 57 

incorporates a multisite, auto-logistic regression model to account for multisite persistence in 58 

streamflow intermittency. The model is applied and tested in a case study that spans 14 59 

watersheds in the Sacramento, San Joaquin, and Tulare basins in California. We find that the 60 

multisite SWM is able to better reproduce regional low and high flow events and design statistics 61 

as compared to a single-site SWM applied independently to all locations. 62 

 63 

 64 

 65 

 66 
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1. Introduction  67 

Stochastic watershed models (SWM) are a recent innovation in hydrologic prediction that enable 68 

the generation of streamflow ensembles for water resources planning and management 69 

(Shabestanipour et al., 2023; Vogel, 2017). SWMs build from stochastic streamflow models 70 

(SSM) (Maass et al., 1962; Teegavarapu et al., 2019; Vogel, 2017), which are statistical models 71 

fit directly to observed streamflow and enable ensemble simulation of synthetic streamflow 72 

traces with plausible extremes that extend beyond the historical record. SSMs work well under 73 

an assumption of stationarity but are challenging to implement without that assumption (Vogel, 74 

2017). In contrast, SWMs produce simulations using the output from a deterministic watershed 75 

model (DWM) coupled with simulations of DWM error drawn from the model’s predictive 76 

uncertainty distribution (i.e., the distribution of errors between the DWM simulation and the 77 

observations). The stochasticity of SWMs is critical to ensure that hydrologic model simulations 78 

are unbiased around high and low extreme events (Farmer & Vogel, 2016), which is important 79 

for both short-term prediction (e.g., flood forecasting; Troin et al., 2021; Vannitsem, 2018; Zha 80 

et al., 2020) and long-term planning (e.g., design event estimation; Shabestanipour et al., 2023). 81 

Moreover, the incorporation of process-oriented predictions from the DWM allows for non-82 

stationary simulations that can capture the hydrologic response to climate or land use change 83 

(Steinschneider et al., 2015). 84 

 85 

This technical note focuses on the development of a multisite SWM, which to date has been 86 

understudied but is needed to capture joint hydrologic risks. Joint behaviors in streamflow 87 

extremes across locations can create spatially compounding events (Zscheischler et al., 2020) 88 

that produce far greater risks than those events considered at individual locations (Serinaldi & 89 
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Kilsby, 2018; Simpson et al., 2021; Zscheischler, 2020). Joint hydrologic risks extend both to 90 

regional floods and to extreme low flow events, the latter which threaten human and 91 

environmental water needs (Hanak, 2011; Loucks & Van Beek, 2017).  92 

 93 

Over the last decade, copulas have been widely employed to capture joint behaviors in the 94 

observational data directly, allowing both risk quantification and stochastic simulation for joint 95 

hydrologic risk assessments (Chen et al., 2015; Chen & Guo, 2018; Favre et al., 2004; 96 

Teegavarapu et al., 2019). However, capturing joint risk in multisite DWM simulations is a 97 

subtly different problem. This endeavor requires accounting for the multisite dependencies in 98 

DWM predictive errors, not the observations directly. These dependencies result when attributes 99 

of DWM errors at individual sites (e.g., underprediction bias, autocorrelation; Vogel, 2017) are 100 

correlated in space and time. DWM predictive errors are difficult to model, as they exhibit 101 

heteroscedasticity, non-normality, autocorrelation, and conditional bias, especially when the 102 

model operates on short (e.g., daily, hourly) timescales (McInerney et al., 2017; Schoups & 103 

Vrugt, 2010; Vogel, 2017). Intermittency in the observed streamflow data further complicates 104 

SWM development (Ye et al., 2021). The most commonly employed deterministic hydrologic 105 

models use an exponential decay to simulate baseflow, making them incapable of producing zero 106 

flows (Shabestanipour et al., 2023). For a SWM to capture intermittency, simulated errors must 107 

produce periods of zero flow that occur across sites with the correct spatial correlation and 108 

persistence.  109 

 110 

A number of recent studies have explored different SWM approaches (Farmer & Vogel, 2016; 111 

Hah et al., 2022; Koutsoyiannis & Montanari, 2022; McInerney et al., 2017; Sikorska et al., 112 
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2015; Vogel, 2017; Shabestanipour et al., 2023), but they all have targeted SWM simulations at 113 

individual sites and without consideration of streamflow intermittency. In contrast, much recent 114 

work has been devoted to multisite, intermittent SSMs (Efstratiadis et al., 2014; Haktanir et al., 115 

2022; Saad et al., 2015; Papalexiou, 2018; Papalexiou & Serinaldi, 2020; Tsoukalas et al., 2019, 116 

2020). Many of these studies use ‘Nataf-based’ approaches that rely on a framework of copulas, 117 

multivariate autoregressive models, and flexible distributional forms to capture a wide range of 118 

spatiotemporally correlated stochastic behavior. Intermittency is accounted through the use of 119 

censored distributions (Papalexiou, 2018; Papalexiou & Serinaldi, 2020; Wang & Robertson, 120 

2011), mixture distributions (Ye et al., 2021), or other techniques (e.g., truncation, Markovian 121 

models, and non-parametric methods; Efstratiadis et al., 2014; Nowak et al., 2010). 122 

 123 

This technical note contributes for the first time a multisite, intermittent SWM by adapting these 124 

recent advances in SSM to the case of process-oriented hydrologic model error simulation. We 125 

develop and test the multisite, intermittent SWM in a case study of 14 watersheds in California 126 

across the Sacramento, San Joaquin, and Tulare basins that feed the agriculturally and 127 

ecologically important Central Valley and San Francisco Bay-Delta. We utilize the adaptable 128 

framework developed in previous work (Brodeur & Steinschneider, 2021) and related stochastic 129 

simulation studies (Efstratiadis et al., 2014; Papalexiou, 2018; Papalexiou & Serinaldi, 2020) to 130 

account for complex properties of DWM predictive errors across watersheds, and introduce an 131 

auto-logistic model to account for multisite intermittency. We compare the proposed model 132 

against a univariate SWM benchmark to evaluate the importance of spatiotemporally correlated 133 

errors and intermittency for the simulation and estimation of joint high and low flow events 134 

relevant to water resources planning.  135 



 

6 
 

 136 

2. Data  137 

This study spans 14 watersheds in California that make up the Sacramento, San Joaquin, and 138 

Tulare basins and collectively drain into the San Francisco Bay at the Sacramento-San Joaquin 139 

Delta (Figure 1a). These watersheds range from mostly perennial, snowmelt dominated 140 

catchments in the north to smaller, rain-fed catchments with high intermittency in the south. All 141 

14 watersheds exhibit some degree of intermittency, which is not uncommon in U.S. watersheds 142 

(Levick et al., 2008; Ye et al., 2021). Observed flows between water years (WY) 1988-2013 143 

were collected for each watershed from the full natural flow dataset from the California Data 144 

Exchange Center (CDEC). The Sacramento Soil Moisture Accounting (SAC-SMA) model (i.e., 145 

the DWM) was calibrated to each watershed, as detailed in Wi & Steinschneider (2022). The 146 

SAC-SMA model was forced with 1/16o meteorological data (Livneh et al. 2013) and calibrated 147 

by maximizing the Nash-Sutcliffe Efficiency (NSE) using a genetic algorithm. We direct readers 148 

to Wi & Steinschneider (2022) for further details on the hydrologic model setup, calibration, and 149 

validation. Multisite correlations are prevalent in the DWM errors (Figure 1b), motivating the 150 

need for additional treatment of multisite correlation in a SWM. 151 

 152 
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The multivariate error model (Figure 2a; described in Section 3.1) is adapted from Brodeur & 170 

Steinschneider (2021). This model captures the cross-correlation and autocorrelation of 𝑒௧,௞ 171 

while faithfully preserving distributional attributes like heteroscedasticity and conditional bias. 172 

After simulation of new synthetic errors via this model, we post-process streamflow simulations 173 

to incorporate intermittency with a novel, multisite auto-logistic model, which we compare to a 174 

simpler truncation approach (Figure 2b; described in Section 3.2).  175 

 176 
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underestimate high flows (Farmer & Vogel, 2016). Conditional bias can lead to unstable 186 

estimation of the autoregressive models employed later in the modeling process, and so need to 187 

be removed beforehand. We estimate conditional bias by fitting a locally weighted polynomial 188 

regression (LOESS) for each site between the raw DWM simulations ቀ𝑆௧,௞ = 𝐹൫𝑋௧,௞, 𝜋௞൯ቁ and 189 

the observations (𝑄௧,௞). Application of this LOESS model yields a conditionally debiased DWM 190 

estimate of 𝑄௧,௞, which we refer to as 𝑆መ௧,௞. To reduce edge effects in the sparse upper tail of the 191 

data, we linearly extrapolate 𝑆መ௧,௞ from the monotonic portion of the LOESS model into the upper 192 

tail. Replacing 𝐹൫𝑋௧,௞, 𝜋௞൯ in Eq. 1 with 𝑆መ௧,௞ leaves 𝑒௧,௞ as the conditionally debiased errors.  193 

 194 

We then account for heteroskedasticity in 𝑒௧,௞ by fitting a model between 𝑆መ௧,௞ and |𝑒௧,௞|, where 195 |𝑒௧,௞| serves as a proxy for the standard deviation of the errors at time t and site k. We again use a 196 

LOESS model to estimate the conditional standard deviation 𝜎ො௧,௞, which is then used to estimate 197 

standardized errors ൫𝜀௧,௞൯ for each site: 198 

 199 𝜀௧,௞ = ௘೟,ೖఙෝ೟,ೖ      (Eq. 2) 200 

 201 

We then fit a vector autoregressive (VAR) model to the multisite vector of standardized errors 202 (𝜺𝒕) using a robust, multivariate least trimmed squares estimator (Croux & Joossens, 2008; 203 

Galanos, 2022). We used a lag-3 VAR model in line with our previous work (Brodeur & 204 

Steinschneider, 2021). Application of the VAR model yields a vector of decorrelated and 205 

standardized residuals (𝝐𝒕). We then model these residuals at each site with the skew exponential 206 

power distribution (SEP; Schoups & Vrugt, 2010), alternately called the skew generalized error 207 
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distribution (SGED; Wuertz et al., 2022), which is well suited for non-Gaussian, fat tailed, and 208 

skewed distributions.  209 

 210 

Samples of 𝜖௧,௞ (denoted 𝜖௧̃,௞) from the fitted SEP distributions form the basis for the synthetic 211 

generation of new model errors. However, even after the VAR model, the residual vector 𝝐𝒕 may 212 

still exhibit multisite correlations, and so independent, site-by-site samples of 𝜖௧̃,௞ from the SEP 213 

distribution may lose important multisite patterns of correlation. To address this issue, we 214 

employ the empirical copula and kNN sampling procedure developed in Brodeur & 215 

Steinschneider (2021). In short, the approach randomly generates new sequences of residuals 216 

(𝜖௧̃,௞) by sampling from the SEP distribution for each site, and then reorders the samples via the 217 

Schaake Shuffle (Clark et al. 2004) to emulate the rank correlation structure of the empirical 218 

residuals. For each time step in the simulation, kNN sampling is then used to sample a vector of 219 

sampled residuals (𝝐෤௞) conditional on the bias-corrected DWM simulations at that time (𝑺෡௧), 220 

which ensures that any correlation between residuals and DWM simulations is preserved.  221 

 222 

As depicted in Figure 2, after the generation of a new residual vector, the remainder of the steps 223 

are inverted to produce stochastic hydrologic model ensembles. First, multisite autocorrelation is 224 

reintroduced via sequential VAR simulation to produce 𝜀௧̃,௞. Then, the heteroscedasticity is 225 

reintroduced via inversion of Eq. 2 to produce 𝑒̃௧,௞. Finally, the conditional bias is reintroduced 226 

by adding the resultant errors to the DWM conditional bias estimator 𝑆መ௧,௞, producing SWM 227 

simulations 𝑄෨௧,௞: 228 

 229 𝑄෨௧,௞ = 𝑆መ௧,௞ + 𝑒̃௧,௞     (Eq. 3) 230 
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 231 

We note that the multivariate error model described above is fit separately for each month, since 232 

the properties of DWM errors can vary depending on prevailing hydrologic regimes (e.g., snow 233 

vs. rain dominated runoff response) that vary across the year.  234 

 235 

3.2. Multisite Intermittency  236 

After generating a SWM simulation, we post-process the data to simulate streamflow 237 

intermittency. A simple approach is to truncate any negative SWM simulations to zero. We term 238 

this the mv-trunc approach, which serves as a benchmark method. However, the mv-trunc 239 

approach is not designed to preserve the persistence of zero flow events or cross-correlation of 240 

zero flows, and so an alternative approach based on an auto-logistic regression model is also 241 

forwarded that is designed to preserve these properties. This approach (termed mv-alog) relies on 242 

a logistic regression to estimate the Bernoulli probability 𝑝 of a zero-flow event based on a set of 243 

predictor variables (𝑥ଵ, 𝑥ଶ,…, 𝑥௠): 244 

 245 𝑝 = ଵଵା௘ష(ഁబశഁభೣభశഁమೣమశ⋯శഁ೘ೣ೘)    (Eq. 4) 246 

 247 

To implement this model we use a sequential fitting procedure (see Figure S1 for a graphical 248 

depiction). At site 1, the auto-logistic regression model is estimated with the lag-1 binary 249 

timeseries from site 1 observations (𝑄௧ିଵ,௞௕௜௡ ;  0 for zero flow, 1 for non − zero flow) and the 250 

entire vector of DWM simulations across sites (𝑺𝒕),. That is, 𝑥ଵ, … , 𝑥௠ = {𝑄௧ିଵ,ଵ௕௜௡ , 𝑆௧,ଵ:௞}. Site 2 251 

includes the same covariates but adds the concurrent binary timeseries for site 1, i.e., 252 𝑥ଵ, … , 𝑥௠ = {𝑄௧ିଵ,ଶ௕௜௡ , 𝑆௧,ଵ:௞, 𝑄௧,ଵ௕௜௡}. Site 3 includes the same covariates as site 1 but adds the 253 
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concurrent binary timeseries for site 1 and 2, i.e., 𝑥ଵ, … , 𝑥௠ = {𝑄௧ିଵ,ଷ௕௜௡ , 𝑆௧,ଵ:௞, 𝑄௧,ଵ:ଶ௕௜௡ }.  This 254 

sequential fitting proceeds through to the final site 𝑘.  255 

 256 

Simulation proceeds in the same order, requiring only the specification of a random binary 257 

starting value for site 1. That is, the binary value generated for time 𝑡 = 1 is a Bernoulli draw 258 

based on the probability from Eq. 4, using as covariates the DWM simulation values across sites 259 

at  𝑡 = 1 ൫𝑆௧ୀଵ,ଵ:௞൯ and a random binary value for t=0 (𝑄௧ୀ଴,ଵ௕௜௡ ). The remainder of binary values 260 

at site 1 are generated sequentially through time, using the estimated binary values from the 261 

previous time step as a covariate. Once the binary simulation for site 1 is complete, the binary 262 

sequence for site 2 is simulated using the generated binary sequence for site 1 as an additional 263 

covariate. The remainder of the sites are generated sequentially in this manner. This novel 264 

procedure enables the generation of random binary sequences that preserve multisite correlations 265 

and persistence in zero flows, as well as dependence between DWM simulations and observed 266 

zero flows.  267 

 268 

To postprocess SWM simulations using mv-alog, we first need to remove negative flows 269 

generated via the baseline SWM algorithm. We employ a rudimentary procedure to do this by 270 

setting negative flows generated by the SWM to the minimum non-zero observation or minimum 271 

simulation value, whichever is smaller. We also note that the auto-logistic intermittency model is 272 

fit to the entire dataset, rather than by month, as zero flows were mostly isolated to the summer 273 

season.  274 

 275 

4. Results 276 
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To assess model performance, we generate 1000 samples from the multisite SWM model and 277 

employ the two post-processing techniques (mv-trunc and mv-alog) to the resulting ensemble. 278 

We also generate an independent SWM benchmark (termed ‘ind’) using a model very similar to 279 

the multisite SWM but with independent, univariate replacements for the VAR and copula 280 

models (i.e., replacing the VAR(3) with AR(3) and empirical copula with random, independent 281 

residual generation). SWM simulations are generated for all 14 watersheds shown in Figure 1, 282 

but we focus on a subset of 6 watersheds (ORO, YRS, FOL, NHG, MRC, SCC) when presenting 283 

results for the purposes of illustration. Additional verification results for all 14 sites are shown in 284 

Supporting Information S2. 285 

 286 

We first verify that the multisite SWM can replicate the statistical attributes of the data to which 287 

it was trained (Stedinger & Taylor, 1982;  Shabestanipour et al., 2023). In Figure 3a, we 288 

highlight univariate distributional properties of the VAR residuals (𝝐𝒕) and the fitted SEP 289 

distributions for a selection of sites and months. Overall, the residual distributions are centered 290 

around 0 and have standard deviations near unity (𝜇 ≈ 0, 𝜎 ≈ 1), suggesting that the conditional 291 

bias correction and heteroscedasticity models function properly. This is true for two 292 

geographically separate sites (FOL in the north that is snowmelt driven and NHG in the south 293 

that is rainfed and highly intermittent) and two separate months (cold/wet December and 294 

warm/dry June). The distributions are relatively symmetric, albeit with a slight tendency towards 295 

right skew (𝜉 > 1) in some months (i.e., larger underpredictions). The distributions across sites 296 

and months differ the most based on their shape parameter (𝛽), where the NHG site in December 297 

exhibits a near-Gaussian shape (𝛽 = 0), while other site/month combinations exhibit fat-tailed, 298 

Laplace-like distributions (𝛽 = 1). 299 
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 300 

For streamflow intermittency at individual sites, we compare the 0-0 transition probabilities 301 

(zero-flow persistence) between the truncated (mv-trunc) and auto-logistic (mv-alog) approaches 302 

across the subset of 6 watersheds (Figure 3b). At all selected sites, the mv-alog approach 303 

reproduces zero-flow persistence well and with limited sampling variability. In contrast, the mv-304 

trunc approach performs well at certain sites but with high sampling variability, and it 305 

underpredicts persistence at NHG and MRC. We also examine the frequency of non-zero flows 306 

across the two methods (Figure 3c). Again, we find that the mv-alog approach reproduces the 307 

fraction of non-zero flows well across all sites, whereas the mv-trunc approach tends to 308 

overestimate non-zero flow days for NHG and to a lesser extent MRC. These findings suggest 309 

that simple truncation can work well at sites with moderate intermittency, but may underestimate 310 

zero-flow behavior at sites with higher intermittency (NHG). 311 

 312 
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 313 

Figure 3. a) Empirical residuals (histogram) and fitted SGED pdf (red line) for two locations 314 
(FOL and NHG) and two months (December and June). b) 0-0 Markov transition probability 315 
(zero flow persistence) across six locations in the observations (diamonds) and for the SWM 316 
simulations using both the mv-alog and mv-trunc approaches. The bars show the median values 317 
and the whiskers show the full range of values across the 1000 SWM simulations. c) Same as in 318 
(b) but for the fraction of days with non-zero flows. d) Spearman correlations in empirical 319 
debiased errors (lower left triangle) versus the median correlation across 1000 simulated 320 
samples (upper right triangle). Results here are only shown for the mv-alog approach. e) Same 321 
as in (d) but for Pearson correlations on binary flow outcomes (0/1 = zero-flow/non-zero flow). 322 

 323 

Across the 6 selected sites, we examine Spearman rank based correlations in empirical and SWM 324 

simulated errors in Figure 3d, while Figure 3e shows Pearson correlations for both empirical and 325 

SWM simulated binary series (0 = zero-flow, 1 = non-zero-flow). Correlations from the 326 

empirical errors are shown in the lower left portion of each matrix, while simulation-based 327 
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correlations are shown in the upper-right. Here, results are only shown for the SWM with mv-328 

alog. Broadly, the model replicates well the general pattern of correlations in error magnitude 329 

and intermittency. There is a tendency towards overestimating correlations between certain sites 330 

in error magnitude (i.e., MRC against ORO, YRS, and FOL), while intermittency correlations 331 

are generally underestimated (e.g., see SCC versus FOL, NHG, and MRC). However, these 332 

biases are relatively small.  333 

 334 

The results in Figure 3 show that the SWM correctly captures many multisite statistical 335 

properties of DWM errors. However, we are most interested in whether the SWM ensemble is 336 

‘fit for purpose’ in hydrologic risk analysis (Stedinger & Taylor, 1982; Shabestanipour et al., 337 

2023), which in this case involves capturing the attributes of multisite extremes. For 338 

demonstration, we choose three northern sites (ORO, YRS, FOL) and focus on both multisite 339 

flooding and low flow events. These three locations are near one another in snowmelt dominated 340 

catchments, and so have correlated floods that are often driven by rain-on-snow events. In 341 

addition, these locations have important environmental low flow requirements driven by 342 

Chinook salmon and Steelhead spawning requirements.  343 

 344 

For flooding, we first focus on the largest observed event in the record (January 1, 1997). Figure 345 

4a shows daily flows from the observations, the DWM simulation, a single trace from the SWM 346 

ensemble, and the 90% bounds from the SWM ensemble, all for 15 days prior to and after the 347 

event. The DWM simulations are all biased below the observations at the peak of the event, 348 

while the SWM ensembles correct for this low bias and encapsulate the observations. Focusing 349 
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on the single SWM trace, one can also see deviations both above and below the observations that 350 

are correlated across the three sites.  351 

 352 

Next, we focus on flood metrics that are commonly used in planning studies, such as design 353 

events. Figure 4b shows the 10-year flood for flows summed across the three sites (ORO, YRS, 354 

FOL), which provides one measure of joint flood risk. The 10-year flood was estimated from the 355 

observations and the DWM simulation by fitting a GEV distribution to the annual maxima of the 356 

combined flows, and are shown as triangles in Figure 4b. A similar approach was taken for the 357 

1000 multisite SWM simulations (green density), as well as for flows simulated for each location 358 

separately from the independent SWM benchmark (orange density). Figure 4c shows the same 359 

results as Figure 4b, but for the 100-year event.  360 

 361 

For both the 10-year and the 100-year events, the DWM results are biased low compared to the 362 

observations. The median of both the multisite and independent SWM flood event distributions 363 

are closer to the observed flood event estimates than the estimate from the DWM. However, the 364 

multisite SWM exhibits more probability density in the upper tails and brings the median of the 365 

SWM distribution closer to the observed estimate, especially for the 10-year event. This finding 366 

shows that preserving multisite correlations has important ramifications for SWM estimation of 367 

combined extreme outflows from multiple watersheds, and that independent simulations from a 368 

SWM at multiple sites can underestimate combined flood flows.  369 

 370 

A similar result is seen in Figure 4d, which shows the likelihood (expressed as a return period) of 371 

the SWM ensemble producing 3-day summed flows (𝑄௧∗ଷௗ) at each of the three locations that 372 
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exceed the January 1, 1997 observed 3-day summed flow (i.e., the probability that 𝑄෨௧ைோைଷௗ ≥373 𝑄ଵିଵିଽ଻ைோைଷௗ  𝑎𝑛𝑑 𝑄෨௧௒ோௌଷௗ ≥ 𝑄ଵିଵିଽ଻௒ோௌଷௗ  𝑎𝑛𝑑 𝑄෨௧ிை௅ଷௗ ≥ 𝑄ଵିଵିଽ଻ிை௅ଷௗ ). We use 3-day summed flows to 374 

highlight longer duration flow dynamics important for water systems design and that are 375 

characteristic of the most intense storms in the region (Lamjiri et al., 2017; Ralph et al., 2019). 376 

We show these results using simulations from the independent SWM and the multisite SWM 377 

using both the mv-alog and mv-trunc approaches. Both multisite versions of the SWM estimate a 378 

substantially lower return period (~ 85-year event) for the January 1, 1997 flood across the three 379 

sites compared to the single site SWM (~ 125-year event), again showing how the multisite 380 

version of the model produces joint extremes across sites with much higher likelihood than a 381 

SWM applied independently to multiple sites.  382 

 383 

 384 
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Figure 4. a) Timeseries of daily flows in the ORO, YRS, and FOL watersheds around the flood of 385 
Jan 1, 1997, where flows are shown for 15 days prior and after the maximum flow on January 1. 386 
Observed flows (black), simulated flows from the DWM (blue), and a single flow simulation from 387 
the SWM (pink) are shown, along with the 90th percentile bounds from the SWM ensemble 388 
(grey). b) Point estimates of the 10-year flood event for flows summed across ORO, YRS, and 389 
FOL, shown for both the observations (black triangle) and the DWM simulation (blue triangle). 390 
Also shown are the distributions of the 10-year flood event across the ensemble of SWM 391 
simulations from the multisite model (green density) and the independent SWM benchmark 392 
(orange density). c) Same as in (b) but for the 100-year event. d) A trivariate return period 393 
estimate of the largest observed joint flow event (Jan 1, 1997) for 3-day summed flows from 1000 394 
concatenated samples of the independent SWM (ind) and two versions of the multisite SWM (mv-395 
alog, mv-trunc). e) Joint low flow frequency of 7-day average flows below environmental flow 396 
minimums for the three sites, shown for the independent SWM and two versions of the multisite 397 
SWM. 398 

 399 

Finally, Figure 4e shows a similar analysis to that in Figure 4d but for low flow extremes 400 

relevant to environmental flow requirements. We focus on the period of October-January when 401 

fall-run Chinook migrate upstream to their spawning grounds. We define environmental 402 

thresholds of 700 cfs, 700 cfs, and 500 cfs for ORO, YRS, and FOL, respectively, based on 403 

applicable local environmental flow regulations (Cain & Monohan, 2008; Lauer & McClurg, 404 

2009; USACE, 2017; Yuba Water Agency, 2023), and then determine how often 7-day average 405 

low flows simulated by the SWM are below these environmental low flow thresholds 406 

simultaneously across all three sites. The joint occurrence of these low flow events is important 407 

because they would stress the regional ecology and could require joint releases from all three 408 

reservoirs to support environmental flows, with implications for water supply later in the season.    409 

 410 

The results in Figure 4e show that the independent SWM never produces events that are jointly 411 

below the environmental thresholds at all three sites. In contrast, the two multisite SWM 412 

ensembles produce more than 20 occurrences per year on average. In the observations, these 413 

joint low flow events occur 16.5 times per year on average. The mv-alog model produces about 414 



 

21 
 

25% more occurrences per year compared to the mv-trunc approach, showing a moderate effect 415 

from employing an explicit zero-flow model in the SWM simulations.  416 

 417 

5. Conclusion 418 

In this study, we contribute a multisite SWM that captures correlated behavior in DWM 419 

simulations across sites, leveraging recent advances in SSM (Papalexiou, 2018; Papalexiou & 420 

Serinaldi, 2020; Tsoukalas et al., 2019, 2020) and tailoring them for the SWM context. We also 421 

developed a multisite auto-logistic regression to account for streamflow intermittency and its 422 

spatial and Markovian structure. We demonstrate that the multisite SWM replicates multivariate 423 

statistical attributes of DWM errors, and that the multisite auto-logistic regression helps improve 424 

the representation of zero-flow behavior over a simpler truncation method. We further 425 

investigated the importance of multisite modeling in the context of operationally relevant design 426 

statistics, and found that the multisite version of the SWM estimated joint flood and low flow 427 

events across sites with a much greater likelihood than a comparable SWM applied 428 

independently to each site. These results show that single-site applications of SWMs can 429 

significantly underestimate joint hydrologic risks.  430 

 431 

Future work should consider the application of multisite SWMs with different transforms of the 432 

predictive uncertainty (e.g. logarithm, logarithmic ratio, Box-Cox) and the application of Nataf-433 

based multivariate designs employed in recent stochastic simulation studies (Papalexiou & 434 

Serinaldi, 2020; Tsoukalas et al., 2020). In addition, intermittency modeling featuring mixture 435 

models or censored distributions could be considered (Ye et al., 2021). The application of 436 

machine learning based hydrologic prediction and uncertainty estimation techniques, especially 437 
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regionalized approaches, offers an exciting area of exploration for SWMs (Frame et al., 2021; 438 

Klotz et al., 2022; Nearing et al., 2020). Finally, the need to understand SWM predictive 439 

uncertainty under non-stationarity is critical to its use for water resources planning purposes and 440 

is an important area of future work. 441 
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