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Introduction

In this supplementary material we provide details regarding our nondimensional
analysis and show additional simulation data. The codes are provided in our GitLab
repository at this link: git@zapad.Stanford.EDU:cansu.culha/crystal-fractionation.git

In the manuscript and through out this supplementary material, we use a set
of variables which are summarized in Table. 1 for the readers convenience. We note
that all of the values presented in the manuscript are dimensionless, but here we
differentiate dimensionless variables from dimensional by including [·]′ to the variable,
which is absent in the manuscript. We provide the methods section in Supp. Sec. 1,
which includes the caveats of non-dimensionalization of our results and of using 2D
experiments to describe 3D processes. A summary of all of all of the simulations are
shown in Supp Table 2. Additionally, we explain how we calculate the cluster size
(Supp. Sec. 2), the impact of the diffusive rim area on quantifying crystal segregation
and fractionation (Supp. Sec. 3), the impact of domain size and initial randomness
on cluster properties (Supp. Sec. 4), variability in efficiency (Supp. Sec. 5), and
variability in crystal populations (Supp. Sec. 6).

1 Methods

To understand crystal fractionation in crystal-driven convection, we employ an
idealized model setup where the upper boundary layer represents a cooling interface
with negatively buoyant crystals suspended above a crystal-free melt body. We as-
sume that the melt phase has constant density and viscosity, which means that the
ensuing flow is entirely driven by the crystal-melt buoyancy contrast. Therefore, we
are able to isolate crystal fractionation due to crystal-driven convection apart from
other potentially confounding factors.

In the melt phase, we solve the incompressible Navier-Stokes equations,
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Parameter Variable

time t
length L
velocity v
pressure P
gravity g
force F
location X
mass M
moment of inertia I
angular momentum ω
torque T
viscosity µ
density ρ
segregation speed of 1 crystal ∆u
segregation speed v∆

average segregation speed v∆

cluster-melt segregation speed V∆

av. spacing between crystals l
crystallinity φ
crystal radius a
control area A
area Ω
crystal rich layer ΩT
volume Ψ
crystal rich layer ΨT

cluster size R
Reynolds number Re
Froude number Fr
particle distribution B
speed correction n = 1.8

horizontal direction [·]x
vertical direction [·]y
of crystal [·]c
of melt [·]`
of cluster [·]d
of tracers [·]t
measured in simulation [·]m
modeled [·]s
mixture of crystal and melt [·]cl
dimensionless + [·]′ +

Table 1. + only applies for supplementary material
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∇ · v′` = 0 (1)

Re
Dv′`
Dt′

= −∇P ′ +∇2v′` +
1

Fr
ŷ′ + F′c (2)

where v′` is the non-dimensional velocity of the liquid, P ′ is the local non-dimensional
pressure field, ŷ′ is the unit vector parallel to gravity, and t′ is non-dimensional time.
F ′c is the non-dimensional force exerted by the crystals on the liquid. D

Dt′ = ∂
∂t′ +v′` ·∇

is the material derivative. We assume that the melt is Newtonian and the non-linear
interactions result from the presence of crystals. We describe the crystals as rigid
bodies and they obey Newton’s laws. For further detail on the approach, benchmarks
for low Re number and high Re number, see Qin & Suckale (2017); Qin et al. (2019).

In order to isolate the mechanical aspect of crystal fractionation, all simulations
are isothermal and isochemical, and we neglect crystal nucleation, growth, and disso-
lution. Throughout each simulation, we maintain a constant number of crystals in the
domain. The simulations are performed on a 2D domain tens to hundreds of crystal
radii wide, and with free-slip boundary conditions on the walls. The parameters for
all simulations performed are summarized in Supplementary Table 1 and a summary
of the non-dimensionalization relations are summarized in Supp. Sec. 2.

We assume that particles are rigid bodies and each crystal obeys Newton’s laws:

Mc
dVc

dt
= F̃c +Mcg (3)

d (Ic · ωc)
dt

= Tc (4)

dXc

dt
= Vc (5)

where c defines an individual crystal, Mc is the mass of an individual crystal, Vc is
the crystal velocity at center of mass, Xc is the position at center of mass, Ic is the
particle’s moment of inertia tensor, and ωc is the angular velocity of the crystal. F̃c
and Tc are the hydrodynamic force and torque resulting from the surrounding fluid.

1.1 Nondimensionalization

We introduce dimensionless numbers to characterize the basic physical scales in
the problem and present results in that framework for ease of comparison. In this
section, we explain how we introduce a correction factor, n, to address the discrepancy
in using 3D parameters to non-dimensionalize 2D simulation results. We describe the
Stokes speed of a single crystal as the crystal-melt segregation speed and use it as
the characteristic speed in our particle Reynolds number, Re. We model the Stokes

settling speed as 2(ρc−ρ`)ga2

9µ and hence define the crystal-melt segregation speed as

∆us =
2(ρc − ρ`)ga2

9µ
, (6)

where ρc and ρ` are crystal and liquid densities, a is crystal radius, and µ the liquid
viscosity. This expression for the Stokes speed assumes a 3D flow field, but our sim-
ulations are only 2D. Ignoring this inconsistency would lead to a misrepresentation
of Re. We hence re-scale the crystal-melt segregation speed, ∆u, by our simulation
results. We model a single crystal randomly placed in the domain and measure the
segregation speed as described in the Manuscript v∆. We use the ratio of the stokes
speed as shown in eq. 6 and our simulation speed of a single crystal to obtain a ratio,
∆us

∆um
= n where ∆um is the simulation result. The table below reports 3 simulations

in n = ∆us

∆um
.
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a[m] µ[Pa·s] ∆us eq. 6[m/s] ∆um stokes simulation[m/s] n

0.001 95 1.4488e-5 8.0692e-6 1.8
0.003 95 1.3039e-4 7.6076e-5 1.7
0.001 10 1.3764e-4 6.3561e-5 2.2

For simplicity, we scale all of our simulations by the same segregation speed
correction factor and choose n = 1.8. Using this speed correction, we update our
non-dimensional relationships,

L′ =
1

a
L (7a)

t′ =
∆um
a

t =
∆us
na

t (7b)

v′ =
1

∆um
v =

n

∆us
v (7c)

P ′ =
∆um
µa

P =
∆us
nµa

P (7d)

Re =
ρ`∆uma

µ
=
ρ`∆usa

nµ
(7e)

Fr =
∆u2

m

ag
=

∆u2
s

agn2
(7f)

We use the non-dimensional number, B, to characterize the particle distribution.
Our definition of B is B = φa

l , as stated in the paper, where l indicates the average
crystal spacing,

l =
(ΨT −N 4

3πa
3)1/3

N
(8)

=
Ψc(ΨT (1− φ))1/3

ΨTφ
(9)

where ΨT , Ψc, and N are the total crystal rich fluid volume, individual crystal volume,
and the number of crystals, respectively for 3D and

l =
(ΩT −Nπa2)1/2

N
(10)

=
Ωc(ΩT (1− φ))1/2

ΩTφ
(11)

where ΩT and Ωc are the total crystal rich fluid area and individual crystal area,
respectively for 2D .

Our numerical set up for all of the simulations is dimensional and keeps liquid
and crystal density constant at 2360kg/m3 and 3000 kg/m3, respectively. Gravity is
9.8 m/s2 for all of the simulations. We vary domain size, crystal size, viscosity, and
crystal volume fraction to test different nondimensional regimes.

1.2 Implementing Passive Tracers

In order to track the liquid phase and identify the difference between residual melt
and ambient melt, we add Lagrangian tracers into the domain. Unlike the crystals,
which obey Newton’s Laws of Rigid Body motion, tracers do not have mass and volume.
They only track the flow field. These tracers are initially placed in a uniform spacing
throughout the domain; then are randomly adjusted in space up to a distance that is
half way between two tracers. By introducing a component of randomness, we hope
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to minimize the effects of tracer clustering and gap formation with time. At each
time step, these tracers advect to a new location, Xnew

t based on the liquid velocity
interpolated to coincide with their original location, Xold

t .

Xnew
t = Xold

t + vl ∗ dt (12)

1.3 2D versus 3D

In summary, our set of results are conducted as 2D experiments, when the natural
process is 3D. The general description of fractional crystallization is consistent between
the dimensions. The formation of crystal-rich clusters during settling is consistent with
analog experiments in 3D (Michioka & Sumita, 2005). Similarly, the crystal clusters
come in different sizes and the crystal clusters sizes are independent of the domain size
(Michioka & Sumita, 2005), which is a characteristic often associated with Rayleigh-
Taylor Instability. However, quantifying the transition from 2D to 3D of the process
is nontrivial. For example, 2D volume fraction of crystals is not the same as 3D
volume fraction of crystals. Although we approximate a linear correction factor n,
segregation speeds and, hence, the rate of crystal fractionation might not translate
linearly. Therefore, these results should be taken to describe the general process.
Crystal clusters at low to intermediate crystallinity dominate the terrestrial magmatic
systems. They result in crystal fractionation that is more efficient than hindered
settling but the efficiency decreases under certain conditions. Crystal clusters can
lead to crystals sampling different melt environments. Depending on the dynamic
nature of the crystals, neighboring crystals may have different compositional content
and profiles.

2 Calculating cluster size

We want to be able to describe when crystals settle collectively versus individ-
ually. In order to identify whether crystals are in collective units, we look at the
horizontal cross sectional size of the negative vertical velocity and compute a wave-
length that is scaled by crystal size. In a crystal cluster, the center of mass of particles
does not necessarily define the convective head. We therefore take a horizontal cross
section at the crystal center of mass, at 0.1 domain lengths below and 0.1 domain
lengths above the crystal center of mass. We collect the dominant widths for the en-
tire time the particles are advecting in the center half of the domain. Then we average
over all the widths that are greater than the crystal radius to compute R′m = Rm/a.
These values appear as filled circles in Fig. 1I of the Manuscript.

In order to generalize the system and depict the transition of individual to col-
lective settling behavior, we developed a scaling relationship dependent on Re and B.
As suggested by our cluster size measurements, the cluster size increases with increase
in long range interactions, which is dependent on viscous forces (at low Re) and B. We
hypothesize that the cluster formation occurs at the balance of particle speed, which
is set by cluster speed, and speed at which long range interactions communicate. We
identify the long range interaction speed as ηclB

R , where η = µ
ρcl

is the kinematic effec-
tive viscosity as a function of φ and R is the suitably defined size of the cluster. We
generalize the Stokes settling speed to clusters to approximate cluster speed.

∆usd =
2(ρcl − ρ`)gR2

9µ
(13)

where ρcl is the mixture of the crystal and melt density, µ is the mixture viscosity
which is dependent on crystallinity of the bottom melt and R is a suitably defined size
of the cluster. We set the two speeds equal to one another,

µ
ρcl
B

R
=

2(ρcl − ρ`)gR2

9nµ
(14)
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solving for R, we obtain the dimensional form,

R =

(
n

9µ2B

2ρcl∆ρclg

) 1
3

. (15)

The plotted relationship in the Manuscript, Fig. 1, is the non-dimensionalized R,

R′ =
1

a

(
n

9µ2B

2ρcl∆ρclg

) 1
3

. (16)

This relationship approximates the pattern of decrease in cluster size with de-
crease in Re and B. We show the results from this analysis as the background color of
Fig. 1I of the Manuscript.

3 Impact of the diffusive rim area on crystal segregation and fraction-
ation

Our approach in measuring segregation speed and crystal fractionation uses a
diffusive rim control area of radius A around the crystal. We test the sensitivity of A
on crystal fractionation and crystal segregation in Supp. Fig. 1.

In Supp. Fig. 1A–B, we show that the choice of A uniformly alters the degree of
fractionation. However, the non-linear effects of crystal-melt interactions result in a
slight increase in segregation speed with increase in A for cluster-forming simulations
(Supp. Fig. 1C–D). The A we use provides a lower segregation speed than the larger
As we could have picked from such that we can be conservative with our findings.

4 Impact of domain size and initial randomness on cluster properties

Two immersible fluids that are unstably stratified in density was first proven
to have a convective instability by Rayleigh (1883) and Sir Geoffrey (F.R.S.) (1950).
The size of the diapiric instability depends on domain size. Since the introduction
of Rayleigh-Taylor, many multiphase fluid systems were identified as an instability
reminiscent of the original instability. Since our system also includes unstable density
stratification, we test the dependence of cluster size on domain size. We find that
our results are independent of domain size (Supp. Fig. 2). However, we do find that
the randomness of the initial crystal placements results in variable number of clusters
and variable cluster sizes as captured by Fig. 1I in the Manuscript. We provide 4
simulations to illustrate this variability in Supp. Fig. 3.

5 Efficiency of crystal fractionation is dependent on crystallinity

In the Manuscript, we notice that there is an increase in crystal-melt and cluster-
melt segregation speed with increase in B. Our results show that at a constant Re,
increasing B has a positive correlation with increase in segregation speeds. Supp.
Fig. 4 summarizes this finding where we plot each of the simulations as a dark spot
to indicate cluster-melt segregation and an open circle as crystal-melt segregation.
Because the simulations are all at a constant Re, we only vary crystallinity in the top
domain in these simulations. There are multiple segregation speeds for each B because
each simulation had a different cluster form. The enhanced crystal-melt segregation
speeds compared to single crystal stokes sinking speed may lead to comparable or
higher crystal fractionation rates. The formation of the quickly sinking cluster forces
the outer rim crystals to also quickly segregate from their surrounding melt compared
to individually settling crystals.

However, the efficiency of crystal fractionation decreases with increasing overall
crystallinity and removing the crystal gradient. We show the limits of crystal cluster

–7–
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Figure 1. (A–B) The dependence of crystal fractionation on A as defined in the Manuscript.

(C–D)The dependence of crystal-liquid segregation speed on A as defined in the Manuscript.

(A& C) are for 1 vol% crystallinity whereas (B & are for 10 vol% crystallinity.
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Figure 2. Testing sensitivity of cluster size, R′, to width of the domain. These are both at 10

vol% crystallinity with same viscous liquid properties.
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Figure 4. The variation in the average crystal segregation speed, v∆, and the cluster segrega-

tion speed, V∆ with B.

fractionation in Supp. Fig. 5 for 10 vol% crystallinity gradient and 0 vol% crystallinity
gradient. We compare 4 simulations, Sim. (1) with 10 vol% crystallinity on top and
0 vol% crystallinity on the bottom, Sim. (2) with 20 vol% crystallinity on top and
10 vol% crystallinity on the bottom, Sim. (3) with 30 vol% crystallinity on top and
20 vol% crystallinity on the bottom, and Sim. (4) with 10 vol% crystallinity on
top and 10 vol% crystallinity on the bottom. We compare different snapshots of the
simulations. The crystal fractionation is most efficient for Sim. (1) but the efficiency is
comparable to Sims. (2–3) and (4) is the least efficient. Crystal-melt segregation speed
is comparable for Sims.(1-3), but crystal-melt segregation speed on average is much
lower for Sim. (4). However, segregation speed for Sim. (4) is faster than hindered
settling. Cluster-melt segregation speed is comparable for (1–3).

With time, crystals in (2-3) lock up with other crystals, preventing advection of
the crystals. Whereas crystals in (1) are able to freely settle through crystal-free melt.
This is an explanation as to why the clusters in (2-3) experience less and slower crystal
fractionation. Cluster formation still occurs in (4), making it faster than hindered
settling would have suggested; however removing the gradient significantly slows down
the speed of crystal-melt segregation and hence crystal fractionation.

6 Variability in crystal population

The flow fields that result from cluster settling are unlikely to be preserved in
erupted lava because the transport from magma processing zone to volcano conduit will
disrupt the collective motion that defines the clusters. Also, because cluster settling
is a process unique to liquid-rich regions, the transition from melt-rich to crystal-
rich systems could overprint the clusters. Therefore, it is unlikely for clusters to
be preserved in plutonic bodies. However, the crystal population in igneous rock
samples may preserve indirect signatures of cluster settling. We show one analysis in

–11–



manuscript submitted to Geophysical Research Letters

F
ig

u
re

5
.

S
im

u
la

ti
o
n

ru
n
s

te
st

in
g

e
ffi

c
ie

n
c
y
.

T
h
e

fi
g
u
re

is
se

t
u
p

to
m

im
ic

F
ig

.
2

in
th

e
M

a
n
u
sc

ri
p
t.

S
im

u
la

ti
o
n
s

1
–
3

h
av

e
a

g
ra

d
ie

n
t

in
cr

y
st

a
ll
in

it
y

o
f

1
0

v
o
l%

.
S
im

u
la

ti
o
n

1
is

th
e

sa
m

e
a
s

th
e

si
m

u
la

ti
o
n

in
F

ig
.

2
o
f

th
e

M
a
n
u
sc

ri
p
t.

W
e

sh
ow

th
e

se
g
re

g
a
ti

o
n

sp
ee

d
s

a
n
d

cr
y
st

a
l

fr
a
ct

io
n
a
ti

o
n

ra
te

s
Γ

.
W

e
o
n
ly

sh
ow

cl
u
st

er
-m

el
t

se
g
re

g
a
ti

o
n

sp
ee

d
fo

r
S
im

u
la

ti
o
n

1
–
3
,

b
ec

a
u
se

S
im

u
la

ti
o
n

4
d
o
es

n
o
t

fo
rm

a
si

n
g
le

la
rg

e
cl

u
st

er
.

A
d
d
it

io
n
a
ll
y,

fo
r

fi
g
u
re

si
m

p
li
ci

ty
,

w
e

d
o

n
o
t

sh
ow

th
e

in
d
iv

id
u
a
l

cr
y
st

a
l-

m
el

t
se

g
re

g
a
ti

o
n

a
n
d

cr
y
st

a
l

fr
a
ct

io
n
a
ti

o
n

in
d
a
rk

tu
rq

u
o
is

e.

–12–



manuscript submitted to Geophysical Research Letters

Figure 6. Explaining the observational signatures of convection driven fractiona-

tion. Individual crystal segregation speed is shown in (A) and individual crystal fractionation is

shown in (B). Figures on the left show a simulation with 10 vol% crystallinity at a single point in

time. Individual crystals are colored yellow (slow) to red (fast) to indicate the degree of crystal

segregation speeds and dark (no crystal fractionation) to light (full crystal fractionation) green to

indicate the degree of crystal fractionation. Dark gray crystals are part of the simulation but are

not included in the calculation. The middle figures show which crystals were hand selected to fall

in the rim (dark gray) and in the cluster center (light gray). The histograms in the right indicate

the distribution of these metrics at either crystal center or crystal rim.
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the Manuscript that has direct connection to natural data set. Here we will explore
another example that still needs to be connected to natural data set.

We observe that each crystal in a collectively settling cluster segregates and thus
fractionates at a different rate depending on its location between the cluster center
and rim. We manually identify the crystals that are inside the cluster (light gray) and
along the cluster rim (dark gray) in Supp. Fig. 6. On average, the crystals on the rim
show higher crystal segregation speeds compared to crystals within the cluster (Supp.
Fig. 6A). However, the degree of crystal fractionation is highly variable throughout
the cluster (Supp. Fig. 6B).

The degree of crystal fractionation at any given time is a snapshot of the crystal’s
integrated segregation history. For example, the highlighted red crystal in the 10 vol%
crystallinity simulation shown in the Manuscript Fig. 2D-F travels through the cluster
neck to the cluster center and finally to the cluster rim. Along this trajectory, its crystal
segregation speed is initially higher than the average segregation speed, before slowing
down to values similar to the individual settling speed, and finally ending up faster
than the average speed again. Each of the crystals continuously shift position relative
to one another in the cluster. Clusters are hence dynamically evolving structures. This
dynamic evolution allows crystals that formed in opposite ends of the domain to reside
next to one another. Examples of olivine crystals with different compositions next to
one another could be an example of this subtle variability (e.g., Wieser et al., 2019).

Our results suggest that static clusters would preserve a crystal fractionation
population that is similar to the histogram in Fig. 6A, two distinct distributions,
whereas dynamic clusters would preserve Fig. 6B. Although growth, dissolution, and
nucleation properties of crystals are difficult to model, we hypothesize that histograms
of crystalline populations at idealized regions–such as the thick flood-basalts (e.g.,
Cornwall, 1951; Greenough & Dostal, 1992; Puffer & Horter, 1993) containing hori-
zontal layers of magma that have experienced fractional crystallization post eruption–
could determine how dynamic clusters are in magmatic units. This would allow us to
better characterize the ideal properties of quickly fractionating magma.

6.1 Quantifying disequilibrium

A relatively low segregation speed between a given crystal and the surrounding
melt suggests that the crystal interacts with it for longer than the average crystal
interacts with its surrounding melt. This prolonged interaction could translate to
an increase in degree of chemical equilibration with the surrounding melt. Since each
crystal takes a different path within the cluster, crystals that might come to rest next to
each other might show different degrees of chemical interaction with surrounding melt.
Generally, the crystals in a cluster will record greater heterogeneity than individual
settling crystals. This heterogeneity might be recorded in hand samples as subtle
variability in crystal sizes or geochemistry.

At the crystalline scale, the degree of equilibration of crystals with the nearby
melt during settling can be characterized by the non-dimensional ratio Dc/(v∆a), a
function of the chemical diffusivity, Dc, crystal segregation speed, v∆, and crystal size,
a. If the segregation speed is large relative to the chemical diffusion rate, the crystal
will remain in geochemical disequilibrium. At the mesoscale, since the cluster rims are
chemically isolating the cluster center, the cluster rim is most prone to disequilibrium.
The crystal-melt segregation speed of crystals in the cluster rim approach V∆. There-
fore, Dc/(V∆a) would approximate the maximum degree of disequilibration of crystals
in crystal-driven convection.
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