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Abstract12

Monitoring greenhouse gas (GHG) emissions is crucial for developing effective mitiga-13

tion strategies. Recent advances in satellite remote-sensing measurements allow us to14

track greenhouse gas emissions globally. This study assesses CO2 emissions from var-15

ious point/local sources, particularly power plants in India, using eight years of concur-16

rent high-resolution OCO-2 satellite measurements. Gaussian plume (GP) model was17

used to evaluate the power plant emissions reported in the Carbon Brief (CB) database.18

In total (39 cases), 42 different power plant CO2 emissions were assessed, with 26 of them19

being assessed more than once. The estimated power plant CO2 emissions were within20

± 25% of the emissions reported in the CB database in 11 out of 39 cases and within21

± 50% in 18 cases. To evaluate the EDGAR and ODIAC CO2 emission inventories in22

terms of missing or highly underestimated sources, we estimated the cross-sectional (CS)23

CO2 emission flux for 47 cases. We identified the possible omission of power plant emis-24

sions in three cases for both inventories. Furthermore, we also showed 21 cases in which25

CO2 emissions from unknown (non-power plant) sources were highly underestimated in26

the EDGAR and ODIAC CO2 emission inventories. Due to the simplicity of the employed27

approaches and their lower computational requirements compared to other methods, they28

can be applied to large datasets over extended time periods. This enables the acquisi-29

tion of initial emission estimates for various sources, including those that are unknown30

or underestimated.31

1 introduction32

Carbon dioxide (CO2) is a greenhouse gas (GHG) that is known to be a crucial con-33

tributor to global warming due to its high heat-trapping ability (Pachauri et al., 2014).34

The current global averaged CO2 concentration in the atmosphere has increased by 4735

percent since pre-industrial levels (WMO , 2019, 2020). Human activities such as rapid36

urbanization and industrialization are obvious causes of rising CO2 concentrations in the37

atmosphere. Climate change is strongly linked to global warming, and it has an impact38

on ecosystem health as well as global economics. Monitoring and evaluating greenhouse39

gas emissions from already known and unknown emission sources is hampered due to a40

lack of ground-based measurements (Boden et al., 2009; Chen et al., 2020, 2016; Diet-41

rich et al., 2021; Fiehn et al., 2020; Forstmaier et al., 2022; Jongaramrungruang et al.,42

2019; Kuhlmann et al., 2021; Lan et al., 2020; Ohyama et al., 2023; Zhao et al., 2019).43

The bottom-up approach has been used as a conventional emission estimation method,44

in which emissions were calculated by applying emission factors to known point and dif-45

fuse sources (Boden et al., 2009; Le Quéré et al., 2018). However, emission estimates from46

bottom-up approaches differ significantly at different spatial scales when compared to47

top-down approaches that derive emissions from real-time atmospheric measurements48

(Gately & Hutyra, 2017; Gurney et al., 2019; Hutchins et al., 2017; Jones et al., 2021;49

Klausner et al., 2020; Z. Liu et al., 2015; Marland, 2012; Miller et al., 2013; Saunois et50

al., 2020; Shekhar et al., 2020; Solazzo et al., 2021; R. Wang et al., 2013).51

Space-based remote sensing measurements are becoming increasingly capable of mon-52

itoring heterogeneous emission sources at a suitable scale (Beirle et al., 2011; Brunner53

et al., 2023; Bovensmann et al., 2010; Ehret et al., 2022; Heymann et al., 2017; Jacob54

et al., 2022; Rißmann et al., 2022; Kiel et al., 2021; Kuhlmann et al., 2019; F. Liu et al.,55

2020; MacDonald et al., 2023; Reuter et al., 2014; Rey-Pommier et al., 2023; Sadavarte56

et al., 2021; S. Wang et al., 2018; Varon et al., 2019; Zhou et al., 2022). The column-averaged57

dry-air mole fraction of CO2 (XCO2) retrievals from previous satellite measurements,58

such as SCIAMACHY and GOSAT, have been shown to be useful in localizing CO2 en-59

hancements from potential emission sources (Kort et al., 2012; Schneising et al., 2008;60

Shim et al., 2019). The XCO2 retrievals from the Orbiting Carbon Observatory-2 (OCO-61

2) satellite measurements are high-resolution (≈ 1.29 km × 2.25 km) and high-precision62

(≈ 1 ppm) data (Wunch et al., 2017), when compared to previous satellite measurements.63
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Despite the fact that the OCO-2 mission was not designed to monitor anthropogenic CO264

sources, studies have shown that OCO-2 measurements can be used to localize CO2 emis-65

sions at the subcontinental (Hakkarainen et al., 2016, 2019; Hwang & Um, 2016) and ur-66

ban scales (Labzovskii et al., 2019; Lei et al., 2021; Reuter et al., 2019; Schwandner et67

al., 2017; Ye et al., 2017; B. Zheng et al., 2020; Wu et al., 2020). OCO-2 measurements68

could also be used to estimate CO2 emission rates from point sources such as power plants69

(Hakkarainen et al., 2023; Hu & Shi, 2021; Lin et al., 2023; Nassar et al., 2022, 2021, 2017;70

T. Zheng et al., 2019). In addition, OCO-2 measurements can be used to detect wild-71

fire emissions (Guo et al., 2019; Reuter et al., 2019), and volcano emissions (Johnson et72

al., 2020). The main limitation of OCO-2 measurements is small swath width of about73

10 km (Bhattacharjee & Chen, 2020); thus, most of the time, the OCO-2 satellite does74

not overpass over the desired study region, such as an urban core or power plant. How-75

ever, under certain conditions, the cross-sectional downwind plume of CO2 emissions from76

the desired study region could be captured by OCO-2 (Reuter et al., 2019).77

The goal of this study is to identify XCO2 anomalies while also assessing CO2 emis-78

sions at the local scale over India using high resolution OCO-2 satellite measurements.79

India is the world’s third largest CO2 emitting country, with CO2 emissions reported to80

have increased 3.4 times in 2018 compared to 1990 due to rapid urbanization and indus-81

trialization (Crippa et al., 2019). Coal-consumption accounts for nearly 60% of total fos-82

sil fuel consumption in India. This highlights the importance of real-time CO2 emission83

monitoring in coal-processing sectors. Therefore, we primarily focused on power plant84

emissions in this study. Furthermore, we attempted to evaluate global CO2 emission in-85

ventories at the local scale, focusing on identifying missing or significantly underestimated86

sources. We analyzed the OCO-2 measurements for the period from September, 2014 to87

December, 2022. To the best of our knowledge, no study has used long-term OCO-2 satel-88

lite measurements to report XCO2 anomalies and emissions caused by different anthro-89

pogenic CO2 sources over India, which has been done in this study. Studies, such as Nassar90

et al. (2017, 2022) have already focused on estimating emissions from point sources such91

as power plants using Gaussian plume model. We employed similar methods for estimat-92

ing emissions, in addition, cross-section emission flux method was employed to verify the93

results. This study also discusses the advantages of combining both methods. Further-94

more, the emission inventories were used to interpret the emission estimates.95

2 Data sets used in this study96

In this study, we used bias-corrected XCO2 retrievals from OCO-2 measurements97

(level-2 & version-11r) from September 6, 2014 to December 31, 2022. The OCO-2 satel-98

lite overpass occurs approximately at 13.30 local time. The spatial and temporal reso-99

lution of XCO2 retrievals are ≈ 1.29 km × 2.25 km and 16 days, respectively. The XCO2100

retrievals product from the OCO-2 satellite measurements consists of eight parallelogram-101

shaped footprints across track, with a swath width of about 10 km (Crisp et al., 2008).102

This product also includes total column vapor and surface pressure, which we used to103

convert the modeled CO2 vertical column in grams per square meter (g m-2) to parts104

per million (ppm) (Eq. 3). We applied quality filtering (qa = 0; recommended by OCO-105

2 (2017)) to the bias-corrected XCO2 retrievals before use.106

EDGAR (Emissions Database for Global Atmospheric Research, version: v7.0) CO2107

emission inventory (variable: CO2 excl short-cycle org C) is used in this study (Crippa108

et al., 2019). This includes emissions from fossil sources such as fossil fuel combustion,109

non-metallic mineral processes such as cement production, metal production processes,110

urea production, agricultural liming and solvent use. The EDGAR CO2 emission inven-111

tory provides CO2 emissions (kg m-2 s-1) at 0.1◦ × 0.1◦ spatial resolution for each year.112

The ODIAC (Open-source Data Inventory for Anthropogenic CO2, version: ODIAC2022)113

dataset is also used in this study (Oda et al., 2018). The ODIAC emission inventory pro-114

vides CO2 emissions in terms of tons of carbon per km2 per month. ODIAC estimates115
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fossil fuel CO2 emissions using satellite night-time data and individual power plant emis-116

sion profiles, and provides data at 1 km ×1 km spatial resolution. The EDGAR and ODIAC117

inventories are available only until 2021. Therefore, for the year 2022, we used data from118

the most recent year (2021).119

We used the ”ERA-5 hourly data on pressure levels” dataset for wind speed and120

wind direction (Hersbach et al., 2023). This dataset contains wind data at 47 pressure121

levels with a spatial resolution of 0.25◦ × 0.25◦ and a temporal resolution of one hour.122

Additionally, we used wind information from the Modern-Era Retrospective Analysis for123

Research and Applications, version 2 (MERRA-2) dataset (Molod et al., 2015), which124

has a spatial resolution of 0.5◦ × 0.625◦ and a temporal resolution of 3 hours, includ-125

ing 42 pressure levels.126

The coordinates (geo-location) of power plants were obtained from the Global En-127

ergy Observatory (GEO) database (GEO , 2018) and the Global Energy Monitor (GEM)128

wiki (GEM , 2023). Power plant CO2 emissions were obtained from the Carbon Brief (CB)129

database (CB , 2020). As a limitation, the CB database only provides CO2 emission as130

annual CO2 emission (Mt year-1), not adjusted for different years or months or days.131

CO2 emissions from biomass burning and vegetation fires were collected from the132

CAMS dataset (CAMS , 2023). This dataset is derived from two Moderate Resolution133

Imaging Spectroradiometer (MODIS) instruments, with a spatial resolution of 0.1◦ ×134

0.1◦ for each day. This dataset is utilized to analyze whether emissions from biomass burn-135

ing have an influence on the estimated emissions, as the CB database and emission in-136

ventories solely encompass anthropogenic emissions.137

3 Method138

3.1 Identification of XCO2 anomalies139

A 0.25-degree moving window mean was calculated along each track of OCO-2. Anoma-140

lies in XCO2 were identified when the 0.25-degree window mean exceeded the previous141

and next window mean by 1 ppm, followed by a visual comparison. To identify the pos-142

sible sources of identified XCO2 anomalies, we looked for power plants in the upwind di-143

rection, in conjunction with ERA-5 wind information (e.g., Fig. 3 (a)). Power plant emis-144

sions were determined using both the Gaussian plume model and the cross-sectional emis-145

sion flux method, if conditions discussed below were met. The majority of power plants146

in India are located far from densely populated areas (e.g., urban core). Therefore, power147

plants located in the upwind direction could be the sole source of identified XCO2 anoma-148

lies. EDGAR and ODIAC CO2 emission inventories were also used to determine whether149

emission sources other than power plants have an influence on observed XCO2 anoma-150

lies. In cases where no power plants were seen in the upwind direction, only the cross-151

sectional emission flux method was used to estimate emissions, and the results were com-152

pared with EDGAR and ODIAC.153

3.2 Gaussian plume model154

We simulated the expected CO2 enhancement for the corresponding CO2 emission155

reported in the CB database for each power plant located in the upwind direction of the156

identified XCO2 anomaly using a Gaussian plume (GP) model, described in Bovensmann157

et al. (2010), as follows:158

V (x, y) =
F√

2π · σy(x) · U
· e

−1
2 ( y

σy(x)
)2
, (1)

σy(x) = a · x0.894, (2)
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where V is the CO2 vertical column (g m-2), F is the emission rate (g s-1), σy(x)159

is the standard deviation in the y direction, which depends on atmospheric stability pa-160

rameter a in Eq. 2. The atmospheric stability parameter (a) was determined via the Pasquill-161

Gifford stability class, which depends on surface wind, cloud cover, and time of day (Hanna162

et al., 1982; Martin, 1976). It was calculated based on linear interpolation instead of step-163

wise classification as followed in Nassar et al. (2021). Because OCO-2 measurements were164

filtered for clear-sky days, we considered the clear-sky category (strong insolation) to cal-165

culate the atmospheric stability parameter. Surface wind information was obtained from166

ERA-5. x and y refer to the along-wind distance and across-wind distance. In Eq. 2, x167

is specified in kilometer (km) to calculate the standard deviation in the across-wind di-168

rection σy(x). U represents the wind speed (m s-1) at the height of plume mid line (smokestack169

height + plume rise). We linearly interpolated wind information from ERA-5 that cor-170

responds to the OCO-2 overpass time and plume mid line. Because information about171

the power plant smokestack height was unavailable, we assumed it to be 250 m (Nassar172

et al., 2017). The plume rise was taken as 250 m, following Brunner et al. (2019). Ac-173

cording to Nassar et al. (2017), we manually adjusted the wind direction to match the174

influence of upwind sources with identified anomaly. This is done by iteratively compar-175

ing modeled enhancements for different wind directions with observed enhancements. Wind176

direction is chosen based on the higher correlation coefficient (R) between observed and177

modeled enhancements, followed by a visual comparison. Wind direction rotation was178

allowed within ± 60 degrees of the ERA-5 values. This is due to the fact that we em-179

ployed a reanalysis data set for wind information, which may be biased. Modeled CO2180

vertical column enhancement (V ) in g m-2 was converted to ppm using the below Eq.181

(3).182

XCO2 = V · Mair

MCO2

· g

Psurf −W · g
· 1000, (3)

where M is the molecular weight (kg mol-1), g is the gravitational acceleration (m183

s-2), Psurf is the surface pressure (Pa) and W is the total column vapor (kg m-2). Psurf184

and W were derived from the OCO-2 product.185

CO2 emission rate was estimated by weighted linear least square fitting between186

the modeled XCO2 enhancements (sum of all upwind power plants) and the observed187

XCO2 enhancements from OCO-2. The reciprocal of uncertainty of XCO2 retrievals was188

used as weight. When performing the fit, we only considered the emission plume. The189

geographical locations of the emission plume were defined by a cutoff of at least 1% of190

modeled enhancements, as described in Nassar et al. (2017). The emission rate was es-191

timated by scaling the emission reported in the CB database by a scaling factor deter-192

mined from a least squares fit. This approach was used in studies, such as Hu and Shi193

(2021); Nassar et al. (2021, 2017), to compute the emissions from a single power plant.194

However, we find that other upwind power plants have a significant influence on observed195

enhancements in several cases. Therefore, when there were multiple power plants in an196

upwind direction that influence the observations, we considered them as a power plant197

cluster and scale their emissions together (Chen et al., 2020).198

3.3 Cross-sectional emission flux199

To verify the results of emissions estimated using GP model, we estimated the CO2200

emission using another method called cross-sectional (CS) emission flux. In addition, CS201

emission flux method was used to assess the EDGAR and ODIAC CO2 emission inven-202

tories in terms of missing or highly underestimated sources. As emissions are represented203

as area sources in the EDGAR and ODIAC CO2 emission inventories, GP model can-204

not be applied. However, the following CS emission flux method can only be applied to205

the identified XCO2 anomalies with an isolated and single downwind plume peak (e.g.,206
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Fig. B1). The following equation was fitted to the XCO2 anomalies to estimate the CS207

CO2 emission flux.208

y = m · x + b +
F

σ ·
√

2π
· e

−(x−µ)2

2(σ)2 , (4)

where y is XCO2 (ppm), F, µ and σ are the unknown parameters (scaling constant,209

shift and standard deviation, respectively) that define a Gaussian plume with a single210

peak, determined from nonlinear curve-fitting. The part of equation m · x + b describes211

the linear change in background, where x is the distance along the OCO-2 track. The212

cross-sectional CO2 emission flux (g s-1) was estimated by multiplying the area (g m-1)213

under the fitted curve after subtracting the background with wind speed normal to the214

OCO-2 track (e.g., Fig. B2); please refer Reuter et al. (2019) and B. Zheng et al. (2020)215

for the detailed description of the method. In power plant cases, the wind speed value216

that corresponds to the plume midline was taken. For non-power plant cases, the aver-217

age wind speed below 500 m (effective wind speed) was used (B. Zheng et al., 2020). We218

also rejected the case if R value between observed enhancements and fitted curve is less219

than 0.5. Given that our objective is to identify missing or highly underestimated sources,220

the estimated cross-sectional CO2 emission flux was then compared with the inventory221

CO2 emissions within a 50-km upwind range. The 50-km upwind range is chosen based222

on the previous study (B. Zheng et al., 2020), which demonstrated that relating the CS223

emission flux with emission sources in the 50-km upwind range is reasonable. Due to the224

unavailability of temporal (diurnal/weekly/seasonal) changes of CO2 emissions, we di-225

rectly extrapolated this instantaneous CS emission flux (g s-1) to annual mean emissions226

(Mt year-1).227

3.4 Background selection228

To calculate the observed XCO2 enhancements, the background was removed from229

XCO2 retrievals by assuming that the background is linear along the OCO-2 track (Reuter230

et al., 2019; B. Zheng et al., 2020). This is done by fitting Eq. 4 to the observed XCO2231

measurements, and then subtracting the linear component m · x + b from the observed232

XCO2 measurements (e.g., Figure B2).233

3.5 Uncertainty estimation234

The uncertainty in the background concentration is the major uncertainty in cal-235

culating the observed enhancement, whereas the uncertainty in the wind speed leads to236

the major uncertainty in modeling the enhancement. In addition, emission uncertain-237

ties related to plume rise were also considered. The emission uncertainty was calculated238

as follows (Nassar et al., 2022),239

ϵ =
√
ϵ2w + ϵ2b + ϵ2pr, (5)

where ϵw represents the uncertainty due to the wind speed, calculated as the dif-240

ference in emission estimate for wind speed from ERA-5 values and MERRA-2. The term241

ϵb represents the uncertainty due to the background, calculated as the standard devi-242

ation in emission estimates for the four different background choices instead of a linear243

fit. The four different choices of background were chosen at random by taking the 10 km244

mean outside of the emission plume (e.g., Fig. B2). Emission uncertainties related to plume245

rise are represented as ϵpr. This value was calculated as the standard deviation in emis-246

sion estimates for the plume rise values of an ensemble of emission estimates, assuming247

plume rise values of 100, 200, 250, 300, and 400 meters (Nassar et al., 2021). For non-248

power plant cases, ϵpr was not considered.249
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Figure 1. Inter and intra-annual XCO2 variability over India (8-36.5◦N, 67.5-98◦E) . The

daily mean of XCO2 retrievals from OCO-2 measurements is shown for the period from Septem-

ber 6, 2014 to December 31, 2022. The table inset show the yearly mean XCO2 (row 2), and a

year-to-year increase of XCO2 compared to the previous year (row 3).

4 Results250

4.1 Mean spatio-temporal variation of XCO2 and XCO2 anomalies over251

India252

First, we examined the mean spatio-temporal variation of XCO2 and XCO2 anoma-253

lies over India (Fig. 1 and 2). The temporal variation in mean XCO2 provides insight254

into the variation in background CO2 concentration, whereas the spatial variability of255

XCO2 anomalies provides insight into the presence of potential large scale sources (Hakkarainen256

et al., 2016, 2019). We considered all days between September 6, 2014 and December257

31, 2022 with at least 500 OCO-2 measurements on a single day to create the mean spatio-258

temporal variability of XCO2 and XCO2 anomalies over India. The daily mean of XCO2259

retrievals from OCO-2 measurements over India is shown in Fig. 1. The intra-annual vari-260

ability of XCO2 retrievals from OCO-2 measurements follows an expected seasonal cy-261

cle, with a steady increase from October to April and a steady decrease from May to Septem-262

ber (Singh et al., 2022). This is primarily driven by the plants through the processes of263

photosynthesis (sink of CO2) in the spring and summer, and respiration (source of CO2)264

in the fall and winter. Furthermore, higher fossil-fuel consumption in the winter due to265

heating purposes contributes to higher CO2 concentrations in the winter. It is impor-266

tant to note that the number of available OCO-2 measurements is lower in the summer267

due to the presence of clouds in the monsoon season (Sen Roy et al., 2015). As reported268

(WMO , 2019, 2020), CO2 levels have been rising; the average year-to-year increase rate269

of XCO2 from OCO-2 over India was about 2.45 ppm over the study period. WMO (2020)270

reported a global increase of 2.37 ppm per year over the last decade.271

To obtain the mean spatial variability of XCO2 enhancements (XCO2 anomalies)272

caused by the potential emission sources over India (Fig. 2(a)), we subtracted the back-273

ground concentration from the daily XCO2 retrievals. For each specific overpass, we chose274

the median value of XCO2 over India as the background concentration (Hakkarainen et275
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Figure 2. (a) Mean spatial variability of XCO2 anomalies for the period from September

6, 2014 to December 31, 2022 at 0.5-degree grid (only with at least 5 measurements over each

grid are shown). A refers to the Indian states of Punjab and Haryana. B refers to West Bengal,

Jharkhand, Odisha, and Chhattisgarh. (b) EDGAR CO2 emission inventory for 2021-year.

al., 2016). The estimated XCO2 anomalies were then spatially averaged over the study276

period. Positive XCO2 anomalies were most noticeable over Northern India. The main277

two hotspots (A and B in Fig. 2(a)) were identified over India; A refers to the Indian states278

of Punjab and Haryana, while B refers to West Bengal, Jharkhand, Odisha, and Chhat-279

tisgarh. Both of these hotspot regions have a high density of coal-fired power plants (see280

https://vedas.sac.gov.in/energymap/view/powergis.jsp). Hotspot (A) also co-281

incides with the location of extensive crop residue burning, which is further corroborated282

by MODIS satellite measurements (T. Liu et al., 2021).283

4.2 Assessment of the CO2 emission rate284

According to the method described in section 3.1 (identification of XCO2 anoma-285

lies), we examined 955 days of available OCO-2 measurements over India, from Septem-286

ber 6, 2014, to December 31, 2022, to identify XCO2 anomalies at each overpass. In to-287

tal, 39 XCO2 anomalies (cases) were considered to estimate emissions from power plants288

using the GP model. These 39 cases were chosen based on four conditions: 1. Power plants289

were located within 50 km of the observed plume. 2. Wind direction was not parallel290

to the OCO-2 track. This is because the assumption of a linear background along the291

OCO-2 track is no longer valid when the wind flows along the OCO-2 track. 3. Wind292

speed at plume mid line was more than 1 m/s because in lower wind speed conditions,293

wind information are expected to be more uncertain. 4. The correlation coefficient be-294

tween modelled and observed enhancements was more than 0.5.295

From these 39 cases, we identified emission signals from 42 different power plants,296

26 of which were assessed multiple times (refer to Table C1). These 42 power plants were297

grouped into 12 clusters, and three single power plant cases (refer to Table C2). In the298

main text, we focused on three clusters (Cluster 1, 2, and 11). Cluster 1 and 2 were se-299

lected as prime examples to showcase OCO-2’s capability in detecting emission changes300

resulting from the addition of new units or new power plants. Cluster 11 is also discussed301

in the main text, demonstrating that estimated emissions using the GP model were af-302

fected by sources other than power plants. Remaining clusters and single power plant303

cases are discussed in the appendix A.304
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Figure 3. (a) XCO2 retrievals from OCO-2 measurements on 2014-10-23 were overlaid on

the EDGAR CO2 emission inventory. White arrow represents wind data from ERA-5 at the

OCO-2 overpass. Power plant locations were represented by red stars. (b) XCO2 retrievals were

plotted against the distance between the peak of observed XCO2 and OCO-2 measurements. (c)

Observed XCO2 enhancements were overlaid on the modeled XCO2 enhancements (sum of all up-

wind power plant signals). (d) Comparison between modeled and observed XCO2 enhancements.

4.2.1 Cluster 1305

On 2014-10-23, the OCO-2 satellite passed over the Sasan Ultra Mega Coal Power306

Plant in Madhya Pradesh state (Fig. 3(a)). The observed XCO2 enhancements reached307

upto 14 ppm (Fig. 3(d)). However, in the upwind direction, we noticed a group of power308

plants, which may have an impact on the observed XCO2 enhancements. The influence309

of upwind power plant emissions on the observed XCO2 enhancements depends on the310

emission strength and location. We used the GP model to simulate the expected XCO2311

enhancements using previously reported CO2 emissions in the CB database for each power312

plant. The reported CO2 emissions in the CB database for the Sasan Ultra Mega Power313

Plant, Vindhyachal STPS Coal Power Plant, Singrauli Super Coal Power Plant, Rihand314

Coal Power Plant, Renusagar Power Station, Anpara Coal Power Plant and Anpara-C315

Power Station were 16.45 Mt year-1, 23.76 Mt year-1, 11.42 Mt year-1, 14.17 Mt year-1,316

4.32 Mt year-1, 8.94 Mt year-1 and 5.08 Mt year-1, respectively. Sasan Ultra Mega Power317

Plant, Vindhyachal STPS Coal Power Plant and Singrauli Super Coal Power Plant were318

the main contributors for the observed plume. Despite being 18 km and 30 km away from319

the peak XCO2 enhancement, the Rihand, Renusagar and Anpara power plants collec-320

tively exert an influence of up to 2-2.5 ppm on OCO-2 measurement locations. There-321

fore, the observed plume from OCO-2 was influenced by all seven power plants. The model322

simulations captured these enhancements well as shown in Fig. 3(d). The correlation co-323

efficient (R) between modelled and observed plume XCO2 enhancements was 0.738. The324

estimated CO2 emission rate (64.78 ± 17.6 Mt year-1) using the GP model was lower325

than that in the CB database (84.14 Mt year-1). Both the Sasan Ultra Mega Power Plant326

(Unit-6) and the Vindhyachal STPS Coal Power Plant (Unit-13) commissioned new units327

in 2015. The emission rate provided for these power plants in the CB database includes328
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Figure 4. Modeled and observed XCO2 enhancements for the case referred in Fig. 3, but for

different days. In addition to the power plants considered in Fig. 3, Anpara-D Power Station

emission was included in the model for these three cases as it was commissioned after 2015.

these new units, which were not present during the 2014 measurements. Therefore, the329

estimated emission rate on 2014-10-23, is lower than that in the CB database.330

We also found three more XCO2 anomalies that were influenced by all seven power331

plants at different time periods (2017-02-01, 2017-03-05 and 2021-01-13). Apart from the332

new units in Sasan Ultra Mega Power Plant (Unit-6) and Vindhyachal STPS Coal Power333

Plant (Unit-13), there is a new power plant (Anpara-D Power Station), which was com-334

missioned in 2015, with 4.32 Mt year-1 emission rate reported in the CB database. For335

these three cases, which occurred after 2015, we included the Anpara-D Power Station336

into our model. The estimated CO2 emission rates using GP model were 114.8 ± 33.58337

Mt year-1, 99.85 ± 30.04 Mt year-1 and 91.02 ± 28.27 Mt year-1, for 2017-02-01, 2017-338

03-05 and 2021-01-13 overpasses (Fig. 4). The emission estimates of these days are higher339

compared to those on 2014-10-23. This can be attributed to the emissions from new units340

and a new power plant. The estimated emission rates from the 7 power plants were also341

slightly higher than in the CB database (88.37 Mt year-1) for these three cases. The un-342

certainties associated with these estimates were 29.25 %, 30.01 % and 31 % respectively.343

However, these results are also influenced by the fact that some power plants emitted344

higher/lower emission than reported in the CB database. Power plant emissions vary de-345

pending on energy demand, as well as the type of coal used. These information are not346

publicly available, and are not adjusted in emissions provided by CB database.347

4.2.2 Cluster 2348

We found six cases in Telangana state that allowed us to estimate the CO2 emis-349

sions over different time periods (Fig. 5). We considered the Ramagundam Power Sta-350

tion and the Ramagundam B (RTS-B) Coal Power Station for the overpass on 2015-01-351

16. Additionally, we included the Pegadapalli Power Station for the remaining five over-352

passes since it was commissioned in 2016. For all cases, the estimated emissions using353

the GP model were within ± 50% of the reported emission: the estimated scaling fac-354

tor ranges between 0.55 and 1.24. The cross-sectional CO2 emission flux for these cases355

can also be estimated because OCO-2 captures the downwind plume with a single and356

isolated peak. The estimated CS CO2 emission fluxes for these six cases were 18.41 ±357

5.99 Mt year-1, 7.92 ± 4.31 Mt year-1, 29.6 ± 12.85 Mt year-1, 19.32 ± 12.01 Mt year-1,358

24.9 ± 13.4 Mt year-1 and 25.2 ± 5.36 Mt year-1, respectively. These CS emission es-359

timates were comparable to the emission estimated using GP model. For the 2016-12-360

20 overpass, the estimated emission using the Gaussian plume model was significantly361

lower than the reported emission, a result further supported by the CS emission flux method.362
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Figure 5. Observed XCO2 measurements from OCO-2 (blue points) and fitted curve points

(red points) based on the eq. 4 for the case of Ramagundam STPS Coal Power Station, Rama-

gundam B (RTS-B) Coal Power Station and Pegadapalli (Jaipur Mandal) Power Station. The

Pegadapalli (Jaipur Mandal) Power Station was not commissioned in 2015, therefore its emissions

were not included in the model for the 2015-01-16 case.
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Figure 6. (a) Comparison between CO2 emissions estimated using the Gaussian plume (GP)

model and emission reported in the CB database for power plants (39 cases). (b) Comparison

between CO2 emissions estimated using Gaussian plume (GP) model and cross-sectional (CS)

emission flux method (28 cases). The cases in which the estimated CO2 emissions from the GP

model higher or lower than (±) 50% of the reported emission in the CB database are marked

with red markers in (a) and (b).

Data from the GEM and CB databases indicate that the Pegadapalli Power Station be-363

gan operating in 2016. On 2016-12-20, the lower estimated emissions could indicate that364

either the Pegadapalli Power Station had not yet started operating or that it was shut365

down in Ramagundam or Pegadapalli Power Station.366

4.2.3 Cluster 8367

We observed three emission plumes corresponding to a cluster of four plants in West368

Bengal state (Durgapur Steel City Power Station, Durgapur SAIL Power Station, Dur-369

gapur Projects Limited Power Station and Mejia Power Station) on 2014-11-19, 2017-370

03-16, and 2017-12-29. The estimated emissions for these three cases were significantly371

higher (56.77 ± 12.98 Mt year-1, 71.33 ± 36.71 Mt year-1, and 55.38 ± 19.3 Mt year-1,372

respectively) than the reported emissions in the CB database (20.98 Mt year-1). In fact,373

the estimated emissions were about 2-3 times higher than the reported values. Based on374

the information from GEM, no new units or power plants were commissioned/planned.375

In the EDGAR emission inventory, the emissions provided within a radius of approxi-376

mately 50 km in the upwind direction of the observed plume were 53.84 Mt year-1, 76.01377

Mt year-1, and 61.86 Mt year-1, on 2014-11-19, 2017-03-16, and 2017-12-29, respectively.378

Since the estimated emissions were high, the higher EDGAR emissions might also sug-379

gest the existence of other emission sources besides the considered power plants. How-380

ever, the emissions provided in the ODIAC were 19.67 Mt year-1, 25.08 Mt year-1, and381

23.07 Mt year-1, on 2014-11-19, 2017-03-16, and 2017-12-29, respectively, which is ap-382

proximately equal to the emissions provided in the CB database. This suggests that pos-383

sibly the ODIAC did not take into account the other emission sources around the power384

plants. Furthermore, we examined emissions from biomass within a radius of approx-385

imately 50 km in the upwind direction of the observed plume. However, the emissions386

from biomass were found to be very low. The emissions from biomass on these three days387

were 0 Mt year-1, 0 Mt year-1, and 0.12 Mt year-1, respectively.388
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Figure 7. Comparison between CO2 emissions estimated using the Gaussian plume (GP)

model and the emission reported in EDGAR (a) and ODIAC (b) emission inventories within 50-

km upwind range (Power plant cases: 39 cases). The cases in which the estimated CO2 emissions

using the Gaussian plume (GP) model higher or lower than (±) 50% of the reported emission in

the CB database are marked with red markers.

4.2.4 Summary389

In Table S1, the dates and locations of identified anomalies, reported emissions in390

the CB database, estimated emissions using the GP model and CS flux method, and emis-391

sions reported in EDGAR, ODIAC and CAMS biomass data were provided for power392

plant cases. Out of 39 cases, 11 cases showed estimated emissions were within ± 25%393

of the emissions reported in the CB database, while 18 cases were within ± 50% (Fig. 6).394

On the other hand, 17 cases exhibited very high emissions (above 2 times the reported395

emissions), potentially influenced by other emission sources alongside power plants. The396

CS emission flux was also estimated for 28 cases out of the 39, and it demonstrated strong397

agreement with the emissions estimated from the Gaussian plume model. In particular,398

the CS emission flux method confirmed cases with higher emission rates from the GP399

model compared to the CB database (Fig. 6 (b)).400

For power plant cases, the EDGAR emission inventory agreed well when compared401

to GP estimates, especially in cases influenced by additional emission sources other than402

power plants (Fig. 7). On the other hand, ODIAC showed poor agreement, notably in-403

dicating lower emissions in cases with high estimated emissions from the GP model. This404

implies that ODIAC might not have included the emission sources surrounding the power405

plants. It should be noted that both EDGAR and ODIAC did not include or highly un-406

derestimated the emissions from Tata Mundra Ultra Mega Power Project, Mundra Ther-407

mal Power Project, and Kawai Thermal Power Project. Additionally, Dongamahua Cap-408

tive Power Plant and Tamnar Power Station might not be included or highly underes-409

timated in the ODIAC emission inventories.410

5 Missing or highly underestimated unknown sources in EDGAR and411

ODIAC emission inventories412

In total, the CS emission flux was estimated for 49 XCO2 cases with single and iso-413

lated peaks, 28 of which corresponded to the power plant emission cases discussed above.414

The missing or highly underestimated power plant emissions in EDGAR and ODIAC415
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Figure 8. Comparison between CO2 emissions estimated using cross-sectional (CS) flux

method and the emission reported in EDGAR and ODIAC emission inventories within 50-km

upwind range (non power plant cases: 21 cases).

inventories were discussed in the previous section. In this section, we compared the CS416

emission flux of non-power plant cases (21 cases) with EDGAR and ODIAC (Fig. 8).417

The estimated CS emission flux ranged between 4.68 Mt year-1 and 111.55 Mt year-1.418

These emissions were 1.3 to 317.07 times higher than the emissions provided in the EDGAR419

inventory, whereas they were 2.67 to 119.41 times higher than the emissions provided420

in the ODIAC inventory. In these cases, it can be seen that there is a presence of a source421

over the upwind region of the observed plume (e.g., Fig. 9). This implies a high under-422

estimation of emissions over these regions. In further studies, the type of sources will be423

investigated. For non-power plant cases, in Table S2, the dates and locations of identi-424

fied anomalies are provided, along with the estimated emissions using the CS flux method,425

reported emissions in EDGAR, ODIAC, and CAMS biomass data. It can also be noted426

that biomass events have a very small impact on these identified anomalies.427

The discrepancies between estimated emissions and those provided in inventories428

are not surprising, considering that studies such as Gately and Hutyra (2017) and Gurney429

et al. (2019) have revealed that global inventories typically exhibit high uncertainty at430

the local scale. EDGAR and ODIAC use different approaches to estimate emissions: EDGAR431

uses activity data with spatial proxies such as population and road density, whereas ODIAC432

primarily uses space-based nighttime light data, which may underestimate CO2 emis-433

sions (Gately & Hutyra, 2017).434

6 conclusions435

This study assesses the anthropogenic CO2 emissions, particularly from power plants,436

using concurrent high-resolution OCO-2 measurements over India. We examined the data437

from September 2014 to December 2022, a period of more than eight years. We consid-438

ered 39 XCO2 anomalies that were influenced by power plants. The Gaussian plume (GP)439

model was used to estimate the power plants emission. In 11 out of 39 cases, we found440

that the estimated CO2 emissions for power plants using Gaussian plume model were441

within ± 25% of the CO2 emission reported in the Carbon Brief (CB) database, whereas442

18 cases within ± 50%. In total, 42 different power plants were considered in our study,443

with 26 of them being considered more than once. Our study also showed that the cases444

with high emissions were strongly influenced by emission sources other than power plants.445
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Figure 9. The example two cases where CS emission estimates from OCO-2 were significantly

higher than emissions provided in the EDGAR and ODIAC inventories.
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Emission estimations based on the CS emission flux method, including knowledge from446

multiple sources such as emission inventories, may be used to conform to these cases. We447

also demonstrated the capability of OCO-2 in detecting cases with changes in emissions448

due to the addition of new units or new power plants.449

To evaluate the EDGAR and ODIAC CO2 emission inventories, we selected 49 cases450

with isolated and single peak downwind plumes to estimate the cross-section (CS) emis-451

sion flux. When comparing our CS emission estimate for power plants, EDGAR showed452

better agreement than ODIAC. Besides the absence of power plant emissions in both the453

EDGAR and ODIAC inventories (3 cases), we also identified 21 highly underestimated454

or missing unknown sources in the inventory. These sources will be studied in future re-455

search.456

This study demonstrates the capability of OCO-2 measurements to detect small457

to large CO2 enhancements (≈ 1 to 14 ppm) caused by various sources; the estimated458

CO2 emissions from sources range from 4.6 to 114 Mt year-1 in our study. Although the459

Gaussian plume model is commonly used to model point source emission, it can fail over460

longer distances because it assumes constant wind speed and wind direction. The main461

source of uncertainty in modeling the expected enhancements and CS emission estimates462

was wind data, i.e., emission estimates are directly proportional to wind speed. The study463

relies on hourly ERA 5 reanalysis data, which is comprehensive; however, it would ben-464

efit from additional uncertainty information to improve the precision of emission esti-465

mation. Accurate wind measurements or extensive transport modelling work could re-466

duce errors in calculating emissions.467

Because our method requires less computation than other methods, it can be used468

as a first step toward discovering the missing or underestimated emission source and its469

initial emission, from which more advanced methods, such as Bayesian inversion com-470

bined with extensive transport modeling, such as STILT and XSTILT, to estimate emis-471

sion with less uncertainty can be conducted. The missing sources or highly underesti-472

mated sources in emission inventories and databases can then be routinely updated. Fi-473

nally, our study highlights the enhanced possibility of continuous monitoring of local scale474

CO2 emission sources using recent/future high-resolution and wide swath space-based475

CO2 measurements (e.g., OCO-3, Microcarb, Tansat 2, CO2M).476

Appendix A Assessment of emission rate477

The emission assessment for the remaining nine clusters and three individual power478

plants is discussed here.479

A1 Cluster 3480

Chandrapur Thermal Power Station, Dhariwal Power Station and Ghugus Power481

Station were identified as the sources of the observed plume on 2015-01-16. The estimated482

emission using GP model (12.31 ± 9.08 Mt year-1) was significantly lower than in the483

CB database (20.19 Mt year-1). The cross-sectional emission flux method also supported484

this finding, with an estimated emission of 13.4 ± 8.8 Mt year-1 for this particular case.485

The commissioning of new units took place at Chandrapur Thermal Power Station. Unit-486

8 commenced operations after May 2015, and unit-9 followed in March 2016. However,487

the emission data provided in the CB database for Chandrapur Thermal Power Station488

included all units, which explains the discrepancy in the estimates. On 2016-12-22, the489

Chandrapur Thermal Power Station was the only source of the observed plume, with all490

units expected to be operational. The estimated emission using the GP model was found491

to be 12.97 ± 8.65 Mt year-1, which is 0.9 times the emission provided in the CB database492

(14.42 Mt year-1). However, the CS emission flux yields a low emission (7.3 ± 6.2 Mt493

year-1).494
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A2 Cluster 4495

On 2017-01-25, the estimated emission using the GP model (23.83 ± 10.94 Mt year-1)496

for the case of Angul Power Station and Talcher Kaniha Super Thermal Power Station497

was 1.22 times the emission reported (19.54 Mt year-1) in the CB database. On 2019-498

11-15, there was an additional source to consider, Angul Steel Power Station, but its in-499

fluence was relatively low (less than 0.5 ppm). The estimated emission using GP model500

(10.43 ± 4.7 Mt year-1) on 2019-11-15 was significantly lower than in the CB database501

(23.72 Mt year-1). The information on coal consumption/power production and main-502

tenance might explain this discrepancy. It is also important to note that biomass burn-503

ing (≈ 1.5 Mt year-1) also has a small influence on these two cases (Table S1).504

A3 Cluster 5505

The emission rate of the Tata Mundra Ultra Mega Power Project and the Mundra506

Thermal Power Project (considered as a cluster of two power plants) was estimated on507

2018-10-03. It was found to be 1.4 times the reported emission in the CB database, amount-508

ing to 51.89 ± 8.54 Mt year-1, whereas the CB database reported 37.07 Mt year-1. The509

emission rate was calculated using the CS emission flux method, resulting in an estimate510

of 57.04 ± 14.92 Mt year-1. It is important to emphasize that the emissions provided in511

the EDGAR and ODIAC inventories within 50 km radius of the observed plume in the512

upwind direction were 2.997 and 1.268 Mt year-1 respectively. This suggests that either513

these two power plants were not included, or they were significantly underestimated in514

both inventories.515

A4 Cluster 6516

A cluster of two power plants (Dongamahua Captive Power Plant and Tamnar Power517

Station) identified as a source for the identified anomaly on 2021-01-13, with a scaling518

factor of 1.41 from the GP model (26.29 ± 15.85 Mt year-1). The CS emission flux was519

25.44 ± 15.43 Mt year-1. It is important to note that the emissions provided in the ODIAC520

inventory within 50 km of the observed plume in the upwind direction was 3.2841 Mt521

year-1, which is too low compared to the estimated emissions and reported emission in522

the CB database. This indicates that these power plants were either not included or highly523

underestimated in the ODIAC inventory. On other hand, the emissions provided in the524

EDGAR inventory within 50 km of the observed plume in the upwind direction was 38.8885525

Mt year-1.526

A5 Cluster 7527

On 2018-01-10, the estimated emission using the GP model (10.65 ± 6.7 Mt year-1)528

for Khaperkheda Power Station and Koradi Thermal Power Station was lower than the529

reported emission in the CB database (17.76 Mt year-1). The reason for this discrepancy530

is unknown and requires further investigation. To clarify the situation and explain the531

lower emission, it is essential to cross-check the data with coal consumption/power pro-532

duction and maintenance information for both power stations.533

A6 Cluster 9534

Over Jharkhand state, we examined the emissions of Jojobera Power Plant, Jamshed-535

pur Works Power Station, and Adityapur Works Power Station (as a cluster of three power536

plants) on 2017-01-18, 2020-11-28, and 2022-10-31. In addition to the aforementioned537

power plants, the Mahadev Prasad Super Thermal Power Plant also had an influence538

on the observed plume on 2018-01-07. The estimated emissions from the GP model were539

8.32, 8.15, 5.2 and 5.52 times higher than in the CB database, respectively. The CS emis-540

sion flux method also confirms this findings (Table S1). The EDGAR emission inven-541
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tory indicated high emissions around the observed plume, potentially suggesting the ex-542

istence of other emission sources. In contrast, ODIAC indicates no potential emission543

sources besides power plants.544

A7 Cluster 10545

We have also identified another power plant cluster over the Jharkhand state, con-546

sisting of Bokaro Steel City Thermal Power Station and Chandrapura Power Station,547

with emission signatures on three different dates: 2014-12-30, 2015-01-31, and 2022-01-548

18. The estimated scaling factors from the GP model for these cases were 2.65, 5.5, and549

6.39, respectively. Additionally, on 2021-01-31, the Santaldih Thermal Power Station con-550

tributed to the observed plume, with an estimated scaling factor of 6.1. Notably, the emis-551

sion estimated using the GP model on 2014-12-30 was lower compared to the other cases,552

a finding that was supported by the CS emission flux method (Table S1). The higher553

emissions observed over this power plant cluster can be explained by EDGAR’s report,554

which indicated the presence of other emission sources (Table S1). Similar to the latter555

discussed cases, ODIAC reported emissions approximately equal to the CB database, pos-556

sibly indicating the exclusion of secondary emission sources apart from power plants.557

A8 Cluster 11558

Similar to cluster 9 and 10, a case for the cluster of two power plants (Bellary Ther-559

mal Power Station and JSW Vijayanagar Toranagallu Power Station), different scaling560

factors (1.48, 5.7, and 2.97; 17.87 ± 1.38 Mt year-1, 68.85 ± 15.82 Mt year-1 and 35.87561

± 4.1 Mt year-1) were estimated on 2018-03-04, 2019-01-18, and 2021-02-24. The CS emis-562

sion fluxes also show similar variation during these days. The emission in upwind direc-563

tion of these observed anomalies was ≈ 30 Mt year-1 in the EDGAR and 8 Mt year-1 in564

the ODIAC inventories. This scenario is similar to clusters 9 and 10 in that EDGAR sug-565

gests the presence of secondary emission sources, whereas ODIAC does not.566

A9 Cluster 12567

The emission rate for a cluster of three power plants (Neyveli Thermal Power Sta-568

tion I, Neyveli Thermal Power Station II and Neyveli Zero power station) from the GP569

model were estimated (37.55 ± 9.29 Mt year-1), which is 1.94 times the reported emis-570

sion in the CB database (19.96 Mt year-1). The CS emission flux yielded similar find-571

ings (38.8 ± 12.15 Mt year-1). Both EDGAR and ODIAC data also provides high emis-572

sion (36 and 40 Mt year-1) in the upwind direction of observed plume within 50 km, sug-573

gesting the presence of possible other emission sources.574

A10 Sipat Power Station575

The estimated emission for the Sipat Power Station on 2018-03-01, using the GP576

model (14.24 ± 8.54 Mt year-1) and the CS emission flux method (17.1 ± 10.46 Mt year-1),577

were comparable to the emission reported in the CB database (12.95 Mt year-1).578

A11 Kawai Thermal Power Project579

The emission rate for the Kawai Thermal Power Project was estimated using both580

the GP model and the CS emission flux method, resulting in estimates of 9.31 ± 3.34581

Mt year-1 and 12.14 ± 3.61 Mt year-1, respectively. These estimates were found to be582

higher (1.7 and 2.2 times, respectively) than the emission rate provided in the CB database583

(5.48 Mt year-1). It should be noted that the emissions provided in EDGAR and ODIAC584

within 50 km of the observed plume in the upwind direction were 0.5 and 1 Mt year-1,585

respectively. This suggests that the Kawai Thermal Power Project was not included in586
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either the EDGAR or ODIAC inventories, or its emissions may have been highly under-587

estimated in the CB database.588

A12 Bhilai Steel Power Station589

We have found different scaling factors (14.7, 2.54, 3.76, and 16.42) for the Bhi-590

lai Steel Power Station from the GP model on four different dates: 2017-01-07, 2017-02-591

08, 2019-02-14, and 2020-02-10. The CS emission flux aligned well with the estimates592

from the GP model. According to the Edgar inventory, there is a significant emission593

source in the vicinity of observed plume in the upwind direction, amounting to ≈ 58 Mt594

year-1. On the other hand, ODIAC data suggests the presence of a source of around ≈595

15 Mt year-1. All these values were higher than the emission rate provided in the CB596

database for the Bhilai Steel Power Station, which was 3.17 Mt year-1.597

Appendix B Methodology598

The example cases illustrate the methodology for selecting cases in the CS emis-599

sion flux method, as seen in Fig. B1, and demonstrate background estimation as depicted600

in Fig. B2 (a). Additionally, Fig.B2 (a) represents background uncertainty, while Fig.B2601

(b) illustrates CS emission flux estimation.602

Figure B1. (a) The case, referred to Fig. 3, where Gaussian plume with single peak is not

satisfied. (b) The case, referred to Fig. 5(e), where Gaussian plume with single peak is satisfied.

Fitted curve points are based on the Eq. 4.

–19–



manuscript submitted to Earth’s Future

Figure B2. (a) The case referred to in Fig. 5(e) is where the Gaussian plume with a single

peak is satisfied (blue), and the fitted curve points are based on Eq. 4 (red), along with the linear

component of the fitted curve based on Eq. 4 (yellow). (b) The fitted curve area after removing

the background by assuming that the background is linear along the OCO-2 track.
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Appendix C Power plants603

The power plants considered in this study are listed in Table C1, and they are clus-604

tered based on the identified anomalies, as shown in Table C2.605

Table C1: List of power plants were analysed in this study.

S
No.

Power Plants Name
(number of time emissions are assessed)

1. Adityapur Works Power Station (4)
2. Angul Power Station (2)
3. Angul Steel Power Station (1)
4. Anpara Power Station (5)
5. Anpara-C Power Station (5)
6. Anpara-D Power Station (5)
7. Bellary Thermal Power Station (5)
8. Bhilai Steel Power Station (4)
9. Bokaro Steel City Thermal Power Station (4)
10. Chandrapur Thermal Power Station (2)
11. Chandrapura Power Station (4)
12. Dhariwal Power Station (1)
13. Dongamahua Captive Power Plant (1)
14. Durgapur Projects Limited Power Station (3)
15. Durgapur SAIL Power Station (3)
16. Durgapur Steel City Power Station (3)
17. Ghugus Power Station (1)
18. Jamshedpur Works Power Station (4)
19. Jojobera Power Plant (4)
20. JSW Vijayanagar Toranagallu Power Station (3)
21. Kawai Thermal Power Project (1)
22. Khaperkheda Power Station (1)
23. Koradi Thermal Power Station (1)
24. Mahadev Prasad Super Thermal Power Plant (1)
25. Mejia Power Station (3)
26. Mundra Thermal Power Project (1)
27. Neyveli Thermal Power Station I (1)
28. Neyveli Thermal Power Station II (1)
29. Neyveli Zero Power Station (1)
30. Pegadapalli (Jaipur Mandal) Power Station (5)
31. Ramagundam Power Station (6)
32. Ramagundam-B Power Station (6)
33. Renusagar Power Station (5)
34. Rihand Power Station (5)
35. Santaldih Thermal Power Station (1)
36. Sasan Ultra Mega Power Project (4)
37. Singrauli Super Thermal Power Station (5)
38. Sipat Power Station (1)
39. Talcher Kaniha Super Thermal Power Station (2)
40. Tamnar Power Station (1)
41. Tata Mundra Ultra Mega Power Project (1)
42. Vindhyachal Power Station (4)
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Table C2: Power plant clusters and their corresponding list of
power plants.

Cluster No. Power Plants Name

Cluster 1

Sasan Ultra Mega Coal Power Plant
Vindhyachal STPS Coal Power Plant

Singrauli Super Coal Power Plant
Rihand Coal Power Plant
Renusagar Power Station
Anpara Coal Power Plant
Anpara-C Power Station
Anpara-D Power Station

Cluster 2
Ramagundam Power Station

Ramagundam B (RTS-B) Coal Power Station
Pegadapalli Power Station

Cluster 3
Chandrapur Thermal Power Station

Dhariwal Power Station
Ghugus Power Station

Cluster 4
Angul Power Station

Talcher Kaniha Super Thermal Power Station
Angul Steel Power Station

Cluster 5
Tata Mundra Ultra Mega Power Project

The Mundra Thermal Power Project

Cluster 6
Dongamahua Captive Power Plant

Tamnar Power Station

Cluster 7
Khaperkheda Power Station and
Koradi Thermal Power Station

Cluster 8

Durgapur Steel City
Durgapur SAIL Power Station

Durgapur Projects Limited Power Station
Mejia Power Station

Cluster 9

Jojobera Power Plant
Jamshedpur Works Power Station,

Adityapur Works Power Station
Mahadev Prasad Super Thermal Power Plant

Cluster 10
Bokaro Steel City Thermal Power Station

Chandrapura Power Station
Santaldih Thermal Power Station

Cluster 11
Bellary Thermal Power Station

JSW Vijayanagar Toranagallu Power Station

Cluster 12
Neyveli Thermal Power Station I
Neyveli Thermal Power Station II

Neyveli Zero Power Station
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The manuscript (OCO-2/OCO-3 Science Team, 2022) utilized XCO2 retrievals from607

OCO-2 satellite measurements, accessible upon registration. Hourly ERA5 wind infor-608

mation from the fifth generation ECMWF reanalysis is credited to Hersbach et al. (2023)609

and can be accessed with registration. Global emission inventory data, such as EDGAR610
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cessible without registration.612
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