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vary seasonally to a lesser degree. 31 
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Abstract 33 

Shallow areas of lakes, known as littoral zones, emit disproportionately more methane than open 34 

water but are typically ignored in upscaled estimates of lake greenhouse gas emissions. Littoral 35 

zone coverage may be estimated through synthetic aperture radar (SAR) mapping of emergent 36 

aquatic vegetation, which only grows in water less than ~1.5 m deep. To assess the importance 37 

of littoral zones to landscape-scale methane emissions, we combine airborne SAR mapping with 38 

field measurements of littoral and open-water methane flux. First, we use Uninhabited Aerial 39 

Vehicle SAR (UAVSAR) data from the NASA Arctic-Boreal Vulnerability Experiment 40 

(ABoVE) to map littoral zones of 4,572 lakes across four Arctic-boreal study areas and find they 41 

comprise ~16% of lake area on average, exceeding previous estimates, and exhibiting strong 42 

regional differences (averaging 59 [50–68]%, 22 [20-25]%, 1.0 [0.8-1.2]%, and 7.0 [5.0-12]% 43 

for the Peace-Athabasca Delta, Yukon Flats, and northern and southern Canadian Shield areas, 44 

respectively). Next, we account for these vegetated areas through a simple upscaling exercise 45 

using representative, paired open water and littoral methane fluxes. We find that inclusion of 46 

littoral zones nearly doubles overall lake methane emissions, with an increase of 79 [68 – 94]% 47 

relative to estimates that do not differentiate lake zones. While littoral areas are proportionately 48 

greater in small lakes, this relationship is weak and varies regionally, underscoring the need for 49 

direct remote sensing measurements using vegetation or otherwise. Finally, Arctic-boreal lake 50 

methane upscaling estimates can be improved by more measurements from both littoral zones 51 

and pelagic open water. 52 

Plain Language Summary 53 

Lakes are one of the largest natural sources of the greenhouse gas methane and are especially 54 

common in high latitudes. The shallow, near-shore areas of lakes, known as littoral zones, emit 55 

disproportionately more methane than open water areas, but are typically ignored in broad-scale 56 

estimates of lake greenhouse gas emissions. While lake depths are difficult to map from airborne 57 

imagery, littoral zone coverage can be approximated by mapping emergent aquatic vegetation, 58 

which only grows in water less than ~ 1.5 m deep, and are detectable via radar remote sensors. 59 

To assess the importance of littoral zones to landscape-scale methane emissions, we combine 60 

airborne radar mapping with field measurements of littoral and open-water methane emissions. 61 

Littoral zones vary regionally and comprise ~16% of lake area on average, a greater amount than 62 

previous estimates. A simple estimate using paired open water and littoral methane emission 63 

values shows inclusion of littoral zones nearly doubles overall lake methane emissions estimates. 64 

Littoral zone coverage has little relationship with lake size, making it hard to predict. Therefore, 65 

to better estimate methane emissions, we suggest using remote sensing to inform littoral zone 66 

maps and collecting methane emission measurements from both littoral zones and lake centers. 67 

1 Introduction 68 

Inland waters are the single largest natural source of the greenhouse gas methane (CH4) 69 

(Saunois et al., 2020; Wik, et al., 2016). Lakes are estimated to be responsible for ~24% of all 70 

inland water emissions, second only to wetlands (Bastviken, Tranvik, Downing, Crill, & Enrich-71 

Prast, 2011; Saunois et al., 2020). They emit methane via diverse pathways of diffusion, 72 

ebullition, transport through aquatic plant tissue, and through a storage flux during turnover in 73 

stratified lakes. Emissions are strongly dependent on temperature, sediment carbon content, 74 

redox environment, and gas transfer velocity (Bastviken, Cole, Pace, & Tranvik, 2004; Wik et 75 
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al., 2016). Uncertainties in upscaling lake emissions therefore have vast spatial and temporal 76 

heterogeneities (Loken et al., 2019; Natchimuthu et al., 2016; Stephanie et al., 2020).  77 

 Lake emission upscaling efforts have only recently begun to account for lake surface 78 

area (DelSontro et al., 2016; Hastie et al., 2018; Holgerson & Raymond, 2016), but it is still rare 79 

to consider other aspects of morphometry, such as slope and littoral area (Casas-Ruiz et al., 80 

2021). “Bottom-up,” or process-based, methane models tend to over-predict methane fluxes 81 

compared to “top-down,” or inversion-based, models, and double-counting of small lakes as 82 

wetlands caused by mismatch in scale and methods among datasets has been suggested as a 83 

possible cause (Thornton, Wik, & Crill, 2016). Small (< 0.001 km2) lakes and wetlands are 84 

poorly mapped, especially in Arctic-boreal regions containing the world’s greatest abundance of 85 

lakes (Verpoorter et al., 2014). Indeed, uncertainty in wetland extent is frequently cited as the 86 

leading cause of uncertainty in bottom-up methane estimates (Zhang et al. 2017), and errors 87 

arising from large-scale extrapolations of heterogeneous wetlands have also been noted 88 

(Bridgham et al., 2013).  89 

As the most “wetland-like” zone within lakes, littoral zones are important sources of 90 

carbon and known methane emission hot spots (Bergström et al., 2007; Burger et al., 2016; 91 

Huttunen et al., 2003; Juutinen et al., 2003; Larmola et al., 2004; Natchimuthu et al., 2016). The 92 

littoral zone is the area in or near a lake or pond lying between the outer edge of the eulittoral 93 

zone (inundated for only part of the year), to the maximum depth supporting submerged 94 

macrophyte (aquatic vegetation) growth, i.e., the deepest water where light can penetrate the 95 

entire water column (but no greater than ~10 m for vascular angiosperms; Wetzel, 2001). 96 

Emergent macrophytes can only grow in water < ~1.5 m deep, denoted the upper littoral zone 97 

(Wetzel, 2001). These plants can act as conduits to the atmosphere for methane produced in lake 98 

sediments (Dacey and Klug, 1979; Colmer, 2003). They also produce carbon compounds that are 99 

preferentially consumed by methanogens (methane-producing bacteria), and their decomposing 100 

biomass and root exudates are a large contributor to sediment organic carbon (Christensen et al., 101 

2003; Joabsson, Christensen, & Wallén, 1999; Ström, Mastepanov, & Christensen, 2005). 102 

Previous studies have noted the tendency for small (Michmerhuizen, Striegl, & McDonald, 1996; 103 

Bastviken et al., 2004; Holgerson & Raymond, 2016; Engram et al. 2020) and shallow (West et 104 

al., 2015; Wik et al., 2016; Li et al., 2020) lakes to emit more methane than larger and deeper 105 

ones. Within a single lake, depth often prohibits methane ebullition due to water overburden 106 

pressure (Bastviken et al., 2004), although there are exceptions (Huttunen et al., 2003). Deeper 107 

waters also provide more opportunity for microbe-mediated oxidation of dissolved methane 108 

(DelSontro et al., 2016). Emergent aquatic plants may thus be used as a proxy for shallow (up to 109 

~1.5 m), carbon-rich, methanogenic lake sediments with less opportunity for oxidation of 110 

methane in the overlying water column. 111 

Plant-based emissions are measured least frequently of all lake pathways (Bastviken et 112 

al., 2011; Wik et al., 2016), along with open-water emissions near plants, so methane upscaling 113 

estimates in lakes (DelSontro, Beaulieu, & Downing, 2018; Tranvik et al., 2009) usually rely 114 

solely on pelagic open water fluxes. Yet fluxes measured from vegetated regions can be 115 

statistically greater than those from open water (Villa et al., 2021), often contributing the 116 

majority of whole-lake emissions, with estimates derived from open water measurements shown 117 

to underestimate total flux by 5-78% (Natchimuthu et al., 2016). Plant-based fluxes can be 118 

significant at the landscape scale, for example exceeding peatland emissions in southern Finland 119 

by 30%, despite covering only 40% as much area (Bergström et al., 2007). Another study of 120 
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three Finnish lakes found that the vegetated littoral zone produced 66-77% of whole-lake 121 

emissions (Juutinen et al., 2003). Emergent macrophytes are estimated to emit 11% of the 122 

equivalent from all open water lakes, rivers, and reservoirs combined globally (Bastviken et al., 123 

2011). For these reasons, more methane flux measurements in lake littoral zones and estimates of 124 

total macrophyte coverage are needed (Bergström et al., 2007; Schmiedeskamp et al., 2021). 125 

However, vegetated littoral coverage is poorly constrained. Duarte et al. (1986) suggested 126 

that emergent macrophytes colonize on average 7% of a lake regardless of its area, while 127 

submerged macrophyte coverage generally declines with area. They list light availability, 128 

sediment characteristics, and trophic status as key characteristics for macrophyte growth, with 129 

slope as the greatest predictor of emergent macrophyte coverage. Others have theorized that the 130 

percent of a lake’s surface area covered with macrophytes scales with nitrogen concentration and 131 

the inverse of mean depth (Smith and Wallsten 1986), or scales inversely with lake area 132 

(Michmerhuizen et al., 1996) or perimeter (Bergström et al., 2007). Mäkelä et al. (2004) 133 

similarly found that an average of 6% (range: 1-100%) of total lake area was covered by 134 

macrophytes in a sample of 50 lakes and that total fractional macrophyte coverage per lake 135 

steeply declined with lake area. Zhang et al. (2017) compiled a synthesis database of aquatic 136 

macrophytes in 155 global lakes and observed an average coverage of 26% (range: 0.000-100%) 137 

with an accelerating decline since 1900. 138 

Remote sensing studies have used both optical and synthetic aperture radar (SAR) 139 

sensors to map macrophytes in lakes. Optical satellites are better suited to detecting vegetation 140 

type, while SAR can detect water even through vegetation canopies (Hess, Melack, & Simonett, 141 

1990). Ghirardi et al. (2019) used optical Sentinel-2 satellite data to map submerged aquatic 142 

macrophytes in an Italian lake and noted both inter- and intra-annual variations in aerial 143 

coverage. Nelson et al. (2006) used Landsat Thematic Mapper imagery to map various types of 144 

macrophytes in 13 lakes in Michigan and found total macrophyte coverage ranging from 5-42%. 145 

Zhang et al. (2018) used TerraSAR-X SAR imagery to map macrophytes in nine Brazilian 146 

reservoirs and similarly found large spatial and temporal variation in coverage. Thus, many 147 

remote sensing studies have demonstrated spatial and/or temporal differences in aquatic 148 

macrophyte cover, yet few have measured total coverage across large geographical areas and 149 

numerous lakes.  Littoral zone area statistics, therefore, remain confined to a handful of studies 150 

of small numbers of lakes. 151 

Here, we aim to quantify the fractional coverage of emergent macrophytes for thousands 152 

of lakes across four Arctic-boreal regions in order to assess lake littoral zone extents and their 153 

potential importance in scaling methane emissions. To estimate littoral zone extent, we use the 154 

canopy-penetrating properties of L-band synthetic aperture radar (SAR) flown during the NASA 155 

Arctic-Boreal Vulnerability Experiment (ABoVE) airborne campaign (2017-2019) to map 156 

emergent macrophyte coverage, a proxy for littoral zone extent. Next, we compile paired 157 

measurements of methane flux from open water and vegetated littoral zones. Finally, we use 158 

these flux measurements and our remote sensing-derived ranges in vegetated littoral coverage to 159 

estimate the sensitivity of lake methane emissions to littoral zone coverage.  We conclude with 160 

discussion of the causes of regional differences, some broader recommendations for landscape-161 

scale methane upscaling, study limitations, and recommendations for future research.  162 
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2 Study areas, data sources, and methods 163 

2.1 Study areas 164 

The NASA Arctic-Boreal Vulnerability Experiment (ABoVE) campaign is a decade-long 165 

effort to measure environmental change in the Arctic and boreal regions of western North 166 

America via coordinated ground measurements and airborne remote sensing (Miller et al., 2019). 167 

Here, we focus on four study areas within the ABoVE domain, each corresponding to one or 168 

more flight lines from its airborne campaigns: 169 

1) Peace-Athabasca Delta, Alberta, Canada (PAD); 170 

2) Southern Canadian Shield near Baker Creek (CSB), Northwest Territories, Canada;   171 

3) Interior Canadian Shield near Daring Lake (CSD), Northwest Territories, Canada; and 172 

4) Yukon Flats National Wildlife Refuge, Alaska, USA (YF). 173 

These four study areas were chosen because of their high lake density and contrasting geological, 174 

hydrological, and ecological conditions. The PAD is one of the world’s largest inland deltas and 175 

is located on the western edge of Lake Athabasca (Figure 1).  The overall relief of its lowland 176 

regions is 11 m, causing numerous marsh-type wetlands, mudflats, and lakes, many of which are 177 

recharged by the Athabasca River (Pavelsky & Smith, 2008), and more rarely, by ice-jam floods 178 

in the Peace River (Timoney, 2013). These floods can inundate up to 80% of the 5,600 km2 delta 179 

(Töyrä & Pietroniro, 2005; Wolfe et al., 2006), while in typical years, 26% is covered by 180 

intermittently-inundated wetlands (Ward & Gorelick 2018). It is a Ramsar Wetland, UNESCO 181 

World Heritage site, and home to numerous endemic species of birds, fish, and mammals 182 

including the endangered whooping crane and the largest remaining herd of wood bison (Parks 183 

Canada, 2019).  The two Northwest Territories study areas (CSD, CSB) are located on the 184 

Canadian Shield, the world’s largest deposit of Precambrian-age bedrock and source of the oldest 185 

known terrestrial rocks (Slaymaker, 2016). Deglaciated only nine thousand years ago and with a 186 

rocky, sparse surface drainage pattern, the Shield is also the world’s most lake-rich region and 187 

contains many peatlands (Slaymaker, 2016; Spence & Woo, 2006). CSB is underlain by 188 

discontinuous permafrost, while CSD crosses the tree line and contains a transition to continuous 189 

permafrost and the tundra/taiga ecotone (Figure 1). The YF is underlain by discontinuous 190 

permafrost in alluvial soils and contains lakes of various hydrologic connectivity to the Yukon 191 

River and its tributaries (Anderson et al. 2013, Johnston et al., 2020). Like the PAD, the YF has 192 

flat topography, permitting seasonal flooding during the early summer to cover large areas, and it 193 

is a source of both lateral riverine and water-air carbon fluxes (Striegl, et al., 2012). All four 194 

study areas are home to multiple indigenous and First Nation communities, as well as the city of 195 

Yellowknife and numerous smaller settlements. 196 
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 197 

Figure 1. Location map of study areas (YF = Yukon Flats; CSD = Canadian Shield, Daring 198 

Lake; CSB = Canadian Shield, Baker Creek; PAD = Peace-Athabasca Delta). Study area 199 

boundaries (red polygons) are derived from intersecting UAVSAR airborne flight coverage with 200 

physiographic boundaries. Major water bodies are shown in blue; Canadian Shield with 201 

stippling, and the northern tree line limit (Brown et al., 2002) in green. 202 

 203 

2.2 Data sources 204 

2.2.1 Airborne polarimetric SAR  205 

L-band synthetic aperture radar (SAR) data from the Uninhabited Aerial Vehicle 206 

Synthetic Aperture Radar (UAVSAR) were obtained in multi-look ground-projected format 207 

(GRD) and reprojected to ~5.5 m spatial resolution (NASA/JPL 2017-2019) on the ABoVE 208 

Science Cloud computing environment. With a wavelength of 23.8 cm, UAVSAR has been used 209 

extensively for vegetation mapping and inundation detection, including in lowlands or deltas 210 

with flooded vegetation (Ayoub et al., 2018; Jensen et al., 2021; Z. Zhang et al., 2017). All 211 

available ABoVE UAVSAR flight dates from non-contiguous days during summers 2017-2019 212 

were used. Both early (June) and late (August-September) summer images were acquired by 213 

UAVSAR in 2017, and only late summer/early autumn dates were imaged in 2018 and 2019. 214 

 215 
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2.2.2 Water and land cover maps 216 

Several ABoVE land cover data sets were referenced to help build a land cover training dataset 217 

for UAVSAR (see Section 2.3.1). High-resolution imagery and derivative water masks were 218 

obtained from the AirSWOT color-infrared camera (Kyzivat et al. 2018; Kyzivat et al. 2019; 219 

Kyzivat, et al. 2020), supplemented by high-resolution satellite imagery from Maxar 220 

(https://evwhs.digitalglobe.com/myDigitalGlobe/). Two satellite-based land cover maps 221 

available for the ABoVE domain were also referenced (Bourgeau-Chavez et al., 2017, 2019; 222 

Wang et al., 2019; Wang et al., 2019). Although these maps use a different classification scheme 223 

than our derived UAVSAR classification, they are particularly useful for partitioning between 224 

trees, shrubs, and graminoid vegetation. 225 

 226 

2.3 Methods 227 

2.3.1 Land cover classification training dataset  228 

To estimate littoral zone extent, we aimed to develop a land cover classifier focused on 229 

emergent lake vegetation, which only grows in littoral zones. A training dataset was created 230 

using inundation status from field measurements in 2015 and 2017-2019 and vegetation 231 

categories from ABoVE land cover maps (Bourgeau-Chavez et al., 2017, 2019; Wang et al., 232 

2019; Wang et al., 2019). As part of the field measurements, lake and wetland shorelines and 233 

vegetation zones were mapped by field teams carrying handheld GPS receivers, as described in 234 

Kyzivat et al. (2019). In YF, airborne GPS tracks from a low-hovering helicopter were used, as 235 

no suitable ground GPS tracks were available. Contextual photos were also taken by camera, 236 

both from the ground and from aircraft windows, and by uninhabited airborne vehicles (UAVs). 237 

UAV photos were processed into orthomosaics using DroneDeploy web software. All of these 238 

measurements were digitized into polygon shapefiles in ArcGIS 10.6 denoting 13 land cover 239 

classes falling into five broad categories of open water, dry land and three types of emergent 240 

macrophytes (Table 1). The resulting vector data set (Kyzivat et al., 2021) was used to train and 241 

validate a supervised classification from the radar data. 242 

 243 

Broad Grouping UAVSAR land cover class 

Open surface water Open Water (OW), Rough Water (RW), Sedimentary Bar 

(SB), Wet Herbaceous (WH)  

Wet Graminoid Wet Graminoid (WG)  

Wet Shrub Wet Shrub (WS) 

Wet Forest Wet Forest (WF) 

Dry land Dry Graminoid (DG), Dry Shrub (DS), Dry Forest (DF), 

Bank Scarp Double-Bounce (BS), Dry Woodland (DW), 

Bare Ground (BG) 

Table 1. Classification Schema: RW refers to wind roughening at the time of acquisition. WG 244 

refers to cattails (Typha latifolia), bulrushes (Scirpus spp.), and sedges (Carex spp.), as well as 245 

aquatic horsetails (Equisetum fluviatile). WS typically refers to willows (Salix spp.). DW refers 246 
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to a mix of trees and shrubs as defined by Wang (2019). WH refers to water lilies (Nuphar 247 

variegatum), and both WH and SB were not separable from the other open water classes. Further 248 

details are in the accompanying data publication (Kyzivat et al., 2021). 249 

 250 

2.3.2 Synthetic aperture radar data pre-processing  251 

UAVSAR GRD data for the PAD, YF and CSB flight lines were transformed to the C3 252 

complex covariance matrix using PolSAR Pro 6.0 software. Images were corrected for incidence 253 

angle-dependent backscatter using a fitted exponential function multiplied by the cosine of 254 

incidence angle as per Ulander (1996) and Zhang et al. (2017). Due to its more rugged 255 

topography, CSD was corrected for both incidence angle and terrain slope as per the look-up 256 

table method of Simard et al. (2016). For all flight lines, a Freeman-Durden polarimetric 257 

decomposition was performed. The decomposition comprises a physical scattering model and is 258 

commonly used to identify scattering mechanism contributions to each pixel (single bounce, 259 

modeled as Bragg scattering; double bounce, modeled as from a pair of orthogonal surfaces; and 260 

volume scattering, modeled as from a cloud of randomly-oriented dipoles) (Freeman & Durden, 261 

1998). Although it is known to overestimate the double bounce component (Chen et al., 2014), it 262 

is sufficient as an input feature to an empirical, machine-learning based classification.  263 

2.3.3 Land cover classification  264 

Each of the three scattering mechanism output bands was used for feature extraction via 265 

three moving-window filters designed to introduce spatial contextual information for the 266 

classifier. The chosen filters were standard deviations, offsets oriented along the radar look 267 

direction, and an edge-preserving guided filter to reduce speckle (Table S.2). Additional input 268 

bands of incidence angle and elevation-derived indexes were tested, but ultimately omitted, due 269 

to their high spatial autocorrelation, which led to model over-fitting. The training class BS was 270 

developed specifically to identify bright double bounce scattering between water surfaces and 271 

steep bank scarps, which would otherwise have appeared as inundated vegetation. SB and WH 272 

(defined as protruding <20 cm from the water surface, as determined from field measurements) 273 

were found to be inseparable from OW, so they were treated as open surface water in the 274 

analysis. The radar dataset was further prepared for classifier training by randomly under-275 

sampling the majority training classes and cropping out pixels taken at low incidence angles. 276 

Incidence angle limits as well as filter parameters (Table S.2) were chosen by trial and error. 277 

Finally, pixel values within training polygons in all input bands from the appropriate date were 278 

extracted, and the results split using stratified sampling into training (85%) and validation (15%) 279 

datasets with 15 bands each. A description of this workflow, parameter settings, and other 280 

technical details is provided in the accompanying data publication (Kyzivat et al. 2021). 281 

Finally, a random forests classifier was trained using the TreeBagger function in Matlab 282 

R2017b and evaluated using the validation dataset via the confusion matrix and Cohen’s kappa 283 

coefficient. One model was used for the areas with incidence angle correction and another for the 284 

CSD area with the look-up table correction. The models were then applied over the extent of 285 

their corresponding study areas for all available dates. The original 13 classes were aggregated 286 

into the five generalized classes for analysis (Table 1). 287 

 288 
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2.3.4 Quality control and conversion to vegetated littoral coverage 289 

The derived five-class land cover maps were used to identify lake littoral zones and open 290 

water areas and quantify their total landscape coverage. First, maps were clipped to the 291 

intersection of all flight lines per study area excluding any roads or urban areas, if present. Raster 292 

mosaics were created for the PAD and YF, since they were acquired in multiple flight lines on 293 

most dates (Table S.1). Next, candidate lakes were identified as connected pixel groups of at 294 

least five pixels with at least one open water pixel and any number of inundated vegetation pixels 295 

(or none at all). This criterion permitted inclusion of open water wetlands, since there is no 296 

reliable way to differentiate them from lakes and ponds. Rivers were removed by applying a 297 

manually-created river mask, modified from Kyzivat et al. (2019). Littoral zones were 298 

operationally defined as emergent macrophyte classes 8-connected to lakes, with the remaining 299 

emergent macrophyte pixels considered wetlands. Although dependent on pixel size, this 300 

definition permitted a consistent definition, valid across all study areas. At this stage, the total 301 

landscape coverage of lake littoral zones (wet graminoid, shrub, and forest classes) and open 302 

water were calculated so they could be compared between dates. 303 

Then, to calculate coverage on a per-lake basis, lakes smaller than 250 m2 (0.00025 km2 304 

or 7-8 px) were discarded, since they were too small to consistently resolve and likely included 305 

false detections. Although hardly affecting total lake area, spurious lakes caused by false 306 

detections would be disproportionately small and thus impact the distribution of lake macrophyte 307 

coverages. Partially observed lakes intersecting the flight line boundary were discarded as well, 308 

since fractional macrophyte coverage could not be reliably measured. A third category of lakes 309 

were discarded if they did not overlap with any water pixels in the 2017 AirSWOT color-infrared 310 

camera open water masks, which had a slightly narrower ground footprint in all study areas. By 311 

comparing our UAVSAR retrievals to an independent, optical data set, this step removed many 312 

falsely-identified lakes caused by classification error. Finally, we calculated the areas of the 313 

remaining lakes and the fractional area of their vegetated littoral zones (AVL), i.e., emergent 314 

macrophyte coverages, defined as the proportion of pixels in a lake classified as any of the three 315 

inundated vegetation classes. For visualization and analysis, these data were divided into 24 316 

logarithmically-spaced lake area bins across the four study areas, and the mean, lake area-317 

weighted mean, and median AVL computed for each study area. For each study area, confidence 318 

intervals were calculated for each of the 24 bins and for the area-weighted means using the 95th 319 

percentile of 10,000 bootstrapped simulated datasets. 320 

 321 

2.3.5 Methane flux chamber measurements  322 

Methane flux chamber measurements were collected at 15 lakes in the PAD during July 323 

and August 2019 (Kyzivat et al. 2021, Figure S.6). In all 15 lakes, fluxes were taken from an 324 

open water region near the lake center via inflatable raft, anchored canoe, or motorboat. In five 325 

lakes, one to three additional flux measurements were made amidst macrophytes short enough to 326 

fit into the flux chamber without excessive disturbance. The chamber comprised an inverted 25.4 327 

cm tall bucket with a 34.2 cm diameter opening wrapped with a buoyant skirt made of foam 328 

tubing. An infrared greenhouse gas analyzer (EGM-4, PP Systems) was used to measure 329 

chamber air carbon dioxide (CO2) concentration and circulate chamber air via an inlet on the side 330 

of the chamber and an outlet in the center of its ceiling. A metal handle was used to steady the 331 

bucket for a 15-minute measurement period. At 0, 5, 10, and 15 minutes, gas samples were 332 
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drawn from the chamber’s headspace through the gas analyzer inlet tubing and injected into 333 

evacuated exetainers using a 30 mL polypropylene syringe fitted with a 3-way stopcock for 334 

subsequent analyses of methane concentration.  335 

The samples were analyzed on a Shimadzu GC-2014 gas chromatograph for methane 336 

partial pressure within two months of collection. Gas flux across the water-air interface was 337 

calculated from the rate of change in the chamber methane concentration over the deployment 338 

time and chamber area (mol∙min-1∙m-2). The rates of change of methane concentrations in the 339 

chamber were generally linear with r2 values greater than 0.90. Given this linear response, 340 

ebullition was deemed negligible during the measurement periods. Thus, the closed, static 341 

chamber measurements included both diffusive fluxes from the water surface as well as any 342 

plant-based fluxes. When multiple fluxes were taken at one location, measurements from each 343 

water zone were averaged by lake. Finally, for sites where paired open water vs. littoral zone 344 

measurements were collected, we calculated the littoral:pelagic flux ratio (hereafter: flux ratio) 345 

as the ratio between the average emergent macrophyte and open water measurements for each 346 

lake. 347 

During sampling, care was taken not to disturb the sediment, and if any bubbles were 348 

observed before or during the period, the measurement was aborted. Even so, three 349 

measurements were extremely high, implying sediment disturbance. To avoid potential bias, 350 

these measurements, which were greater than 2.2 standard deviations from the median, were 351 

discarded (the next-highest value was 0.17 standard deviations from the median). These three 352 

measurements all came from vegetated sites, so this data omission lessened the impact of 353 

emergent vegetation in our subsequent analyses. 354 

 355 

2.3.6 Published flux chamber measurements  356 

In addition to our own field measurements, we compiled a synthesis dataset of 44 paired 357 

lake center (pelagic zone) and littoral zone flux measurements, with the aim of determining the 358 

flux ratio for each lake. Each pair corresponded to one of 38 distinct lakes or lake regions during 359 

a single or multi-year-averaged sampling season, published in 14 papers (Kankaala et al. 2005; 360 

2013; Smith and Lewis 1992; Larmola et al. 2004; Huttunen et al. 2003; Juutinen et al. 2003; 361 

Villa et al. 2021; Burger et al. 2016; DelSontro et al. 2016; Bergström et al. 2007; Striegl and 362 

Michmerhuizen 1998; Ribaudo et al. 2012; Casper et al. 2000; Dove et al. 1999) 363 

(Supplementary Table 1). Lakes included boreal, tropical and temperate regions and are located 364 

in Finland, Quebec, Colorado, Ohio, Minnesota, Italy, the UK, and the Amazon and Orinoco 365 

river basins. For each paper, the average—whether seasonal or annual—littoral and pelagic 366 

measurements were recorded and converted, if necessary, to units of mg CH4/m2/day. Three 367 

papers (Burger et al., 2016; Casper et al., 2000; Dove et al., 1999) separately measured each of 368 

the three methane emission pathways, and most of the others focused on diffusion and/or plant-369 

based fluxes. An additional three (Huttunen et al., 2003; Juutinen et al., 2003; Villa et al., 2021) 370 

measured diffusion and ebullition in both lake zones, but did not place the flux chamber over 371 

plants, thus not accounting for that pathway. One study (Bergström et al., 2007) did not provide 372 

open water values, so values were estimated based on lake area via the relationship of Holgerson 373 

and Raymond (2016). The compiled dataset therefore includes measurements of three methane 374 

flux pathways collected from both littoral vegetation and shallow open water. 375 
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Many papers stated the area covered by emergent macrophytes, but if not, Google Earth 376 

Pro and QGIS 3.10.11 were used to digitize, map project,  and measure the approximate 377 

coverage area, with attention paid to the papers’ description of the vegetation for context. 378 

Coverage areas were assigned an uncertainty value (typically 2–5%) based on interpretation of 379 

the methods used or confidence in our digitizing result. Although challenging to compare across 380 

methodologies, geographic regions, and plant types, this dataset served as a best estimate of flux 381 

ratios from a diverse global sample of lakes. 382 

 383 

2.3.7 Sensitivity analysis  384 

Likely ranges in whole-lake methane emissions were calculated using the following 385 

equation and the compiled flux dataset: 386 

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝐴𝑉𝐿 ∗  𝑓𝑉𝐿 + (1 − 𝐴𝑉𝐿) ∗ 𝑓𝑂𝑊      [1] 387 

where AVL is the fractional vegetated littoral area per lake, fVL is the corresponding flux per unit 388 

area, and fOW is the flux from open water. The littoral zone impact on whole-lake flux (relative to 389 

an estimate assigning open water flux values to the entire lake) was calculated as: 390 

𝐼 =   
𝑓𝑡𝑜𝑡𝑎𝑙− 𝑓𝑂𝑊

𝑓𝑂𝑊
          [2] 391 

where I represents the percent increase from including littoral zones. 392 

Equation [2] was applied using the median values of fVL and fOW and the lake area-weighted mean 393 

AVL. Median values were used due to the skewed distributions of fVL, fOW and the flux ratios. The 394 

equation was also applied to the bootstrapped confidence intervals of AVL in order to estimate 395 

uncertainty. 396 

 397 

3 Results 398 

3.1 Inundation patterns at the landscape scale 399 

3.1.1 Regional and seasonal inundation characteristics  400 

Significant open water, littoral zone, and wetland fractional areas are found in all study 401 

areas, vary seasonally as well as regionally, and are particularly extensive in the PAD and YF. 402 

The total area of the landscape covered by vegetated littoral zones varies from 0.5 – 0.6 % 403 

(CSD), 2.2 – 3.4 % (CSB), 7.6 – 15.5 % (PAD), and 1.7 – 2.8 % (YF) over the 2017-2019 404 

observational period (Figure 2, Table 2).  In comparison, non-littoral, or wetland, emergent 405 

vegetation (AWV) covers ≤ 2.7% of the area in all sites (mean of 1.4%, Table 2). Most of the 406 

emergent littoral vegetation area is classified as either wet graminoid (WG, weighted mean of 407 

69%) or shrub vegetation (WS, 29%), with wet forest comprising <1% of this area for all areas 408 

except YF, for which it covers a mean of 5.9%. Virtually all detected vegetated littoral zones are 409 

adjacent to shorelines, with < 0.2% of their area occurring completely within a lake with no 410 

connectivity to non-island land. These patterns show that the dominant littoral vegetation type in 411 

the study areas is graminoids, which almost always occur at the interface between land and 412 

water.  413 
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In all applicable study areas, total inundation (open water plus vegetated littoral zones) is 414 

greater or equal in the early summer (June) than in late summer (August/September), likely due 415 

to the effects of recent snowmelt and soil thawing. In the PAD, this change is caused by 416 

decreased littoral vegetation, with inundated wetland vegetation remaining constant, implying 417 

that seasonal inundation changes occurred in flood-tolerant eulittoral vegetation (Figure 2, 418 

Table 2). Thus, regional variations in emergent vegetation, as well as open water, are greater 419 

than seasonal/interannual variations within study areas. 420 

 421 

 422 

Figure 2. Significant littoral zone fractional areas are found in all study areas, vary seasonally as 423 

well as regionally, and are particularly extensive in the lowland PAD and YF. This chart shows 424 

landscape fractional areas of open water and emergent macrophyte classes for the Yukon Flats 425 

(YF), Peace-Athabasca Delta (PAD), Canadian Shield – Daring Lake (CSD), and Canadian 426 

Shield – Baker Creek (CSB), derived from airborne UAVSAR.  Littoral zones are defined as 427 

emergent macrophytes adjacent to open water, with remaining areas assigned to wetlands. Month 428 
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and year of UAVSAR flight acquisitions appear in text above each column.  429 

 430 
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Table 2. Within-lake vegetated littoral zone coverages (AVL) by vegetation type (AWF = area of 431 

wet forest, AWS = area of wet shrub, AWG = area of wet graminoid, AWV = area of wetland 432 

vegetation, as opposed to littoral vegetation) and by study area, along with landscape coverage in 433 

square kilometers and as percent coverages. Numbers in brackets give the bootstrapped 95% 434 

confidence intervals. Weighted mean columns are weighted by individual lake area, and 435 

summary weighted mean rows are weighted by the total lake area of each study area for all dates 436 

and late summer only (August and September, abbreviated as lt. s. when necessary). 437 

 438 

3.1.2 Validation of UAVSAR classifier  439 

The land cover classifier successfully retrieves the three broad classes of emergent 440 

vegetation. Based on visual inspection of the land cover maps, the most significant 441 

misclassification is evidenced by false detections of water in areas actually covered by dry 442 

graminoid vegetation (Figure 3e, top middle) and false detections of inundated vegetation in 443 

areas of forest. The most frequent misclassification occurs between Wet Shrub and Rough 444 

Water, although errors of omission and commission are roughly equal, implying a near-zero net 445 

effect on the landscape totals (Figure S.1). Any misclassification among the dry land classes 446 

does not affect our lake analysis, and misclassification between the flooded and dry classes is 447 

rare, as expected, given the sensitivity of SAR to water presence (Figure S.1). Prior to the 448 

quality control measures (Section 2.3.4), Cohen’s kappa coefficients are 0.862 for the model 449 

used on the simpler CSD landscape and 0.824 for the model used for the remaining sites, 450 

implying good agreement with the validation data. Since the analysis only uses flooded classes 451 

connected to open water that could be validated by optical imagery, errors of commission 452 

(Figure S.1) represent an upper bound. 453 
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 454 

Figure 3. Example L-band SAR images of subsets within the four study areas (Colum I. a-d, YF 455 

6/2017, PAD 9/2019, CSD 9/2017, CSB 8/2018, respectively) and corresponding classification 456 

(Column II. e-h). SAR images are colorized by Freeman-Durden scattering mechanism (double 457 

bounce in red, primarily indicating emergent macrophytes; volume scattering in green, primarily 458 

indicating leafy vegetation; and single bounce scattering in blue, primarily indicating bare 459 

ground, bedrock, and some types of trees) and are stretched identically, with visual adjustments 460 

for brightness and color saturation. In column II., only inundated classes are shown and are 461 
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superimposed over a grayscale version of the color-infrared camera base map from Kyzivat et al. 462 

(2018), in which forests appear darker than grasslands or bedrock. 463 

 464 

3.2 Vegetated littoral zone extent 465 

3.2.1 Regional and morphological trends 466 

Although useful for integrating all flux components, landscape-scale descriptors obscure 467 

the nuance of individual lake characteristics. Consequently, we also present results normalized 468 

by each lake’s area and aggregated via weighted averaging (Table 2, Figure 4). With this 469 

normalization, it is more apparent that vegetated littoral zones (AVL) are quite prevalent in lakes, 470 

averaging 16.2 [13.9 – 19.1]% across the four study areas, weighted by lake area. Again, 471 

coverage is especially extensive in the lowland PAD and YF (Figure 2), averaging 59 [50 - 472 

68]% and 22 [20 – 25]%, respectively. AVL in the more topographically constrained, colder, 473 

sparsely vegetated CSB and CSD areas averages 7.0 [4.7 – 11.5]% and 1.0 [0.8 – 1.2]%, 474 

respectively. The lowland sites, therefore, have the most AVL, both as a percentage of total lake 475 

area as well as landscape area. 476 

While vegetated littoral zones are observed in every size bin in every area, we find only a 477 

weak relationship between AVL and lake area that holds for all study areas. The area bins 478 

comprising small to medium-sized lakes between 0.002 to 0.02 km2 always contain the primary 479 

histogram peak, with the exception of the PAD, for which these bins contain the secondary peak 480 

(Figure 4b). In all regions except the PAD, the smallest observable lakes (≥ 250 m2) have 481 

similar coverage to the largest (> 10 km2), resulting in unimodal area-binned histograms, even 482 

within the confidence intervals (Figure 4). The drop in AVL for small lakes is likely caused by 483 

mixed pixels in narrow littoral zones being detected as water. Even so, Pearson correlation is 484 

weak between log-transformed AVL and lake area (r2 = 0.124, p < 0.001, Figure 5), implying that 485 

the inverse relationship between the two variables is not consistent across sites. On an individual 486 

basis, the two Canadian Shield study areas have significant regression relationships (p < 0.001, 487 

Figure 5), with r2 = 0.25 (CSB) and 0.48 (CSD), likely explained by their simpler, bedrock-488 

dominated landscapes. 489 

 490 
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 491 

Figure 4. Vegetated littoral zones (AVL) are most prevalent in small to medium-sized lakes. Here, 492 

mean AVL, in green, is calculated for logarithmic lake area bins for each region (a) and for all 493 

regions combined (b). Error bars give the 95% confidence interval for AVL for all bins with > 2 494 

observations. The lake count in each bin is plotted in grey and shows that most observed lakes 495 

are much smaller than 1 km2. Accordingly, bins with fewer lakes generally have greater 496 

uncertainty in AVL, and the rightmost bins, which contain < 10 lakes, have considerable 497 

uncertainty. For a version of this figure showing bin sums, rather than means, see Figure S.2. 498 

 499 

  500 
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 501 
Figure 5. Scatter plot of lake area and emergent macrophyte coverage (AVL) for all 4,572 lakes 502 

by study area (a-d) and aggregated (e). There is only a weak relationship between the two log-503 

transformed variables. The diagonal bottom-left boundary in most plots is caused by area 504 

quantization by pixilation; since AVL is a fraction, the minimum possible AVL corresponding to a 505 

one-pixel littoral zone decreases as the denominator increases. Lakes with AVL = 0 are not shown 506 

nor included in the regression and regression lines are only included for p < 0.001. 507 

3.2.2 Seasonal trends  508 

Despite fluctuating water levels, the distribution of AVL remains largely similar across 509 

seasons and years (Figure S.3). In all study areas, there is a histogram peak at lakes with little or 510 

no vegetated littoral zone (Figure S.3 a-d, leftmost bin), as many areas lack the necessary 511 

conditions to support emergent macrophytes. The histogram drops sharply with increasing AVL 512 

coverage: extremely quickly in the sparsely-vegetated CSD, somewhat quickly in the more 513 

southern CSB, and gradually in YF. The negative-skewed PAD distribution (tail on left) is an 514 

anomaly with high-coverage lakes common. Accordingly, the area-weighted mean (58.9 %) is 515 

barely greater than the arithmetic mean coverage (58.6 %) in the PAD, unlike the rest of the 516 

study areas and the aggregated total, for which these values can differ by a factor of two (Table 517 

2). There are also more lakes overall detected in the PAD during early summer (Figure S.3), 518 

likely because temporarily submerged macrophytes would be detected as open water and thus 519 

constitute lakes in our analysis. These effects are likely due to prevalence of shallow open water 520 

wetlands, which are ubiquitous in the delta and are included in our lake dataset as long as some 521 

area of open water (> one pixel, or ~30 m2) is detected. The temporal invariance of the AVL 522 

histograms provides further validation of the consistency of the classifier, and it shows how 523 

changes in AVL are not relegated to the same small subset of lakes.  524 

 525 
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3.3 Methane fluxes from vegetated littoral zones vs. open water 526 

Field measurements confirm that methane fluxes from emergent macrophytes are 527 

consistently higher than open water, even within the same lake (Figure 6).  Although 528 

macrophyte fluxes were only collected at five of the visited PAD lakes, four had higher mean 529 

macrophyte values than open water, leading to a mean macrophyte: open water flux ratio of 2.7. 530 

The fluxes obtained by literature synthesis have an even more extreme median ratio of 8.0 531 

(Figure 7, top histogram). Of the 44 paired measurements, all but seven have flux ratios > 1. The 532 

PAD and literature measurements combined have a median flux ratio of 6.2, or 5.9 if only 533 

Arctic-boreal lakes are included. We use the latter, smaller value for the subsequent sensitivity 534 

calculation. Despite a limited and spatiotemporally uneven global sampling, lakes in our study 535 

areas and worldwide significantly trend towards higher emissions from vegetated littoral zones 536 

(paired t-test, t = 6.5, p < 0.001.537 

 538 

Figure 6. Vegetated littoral zones produce greater methane fluxes than open water zones based 539 

on the literature (a) and from field measurements in the Peace-Athabasca Delta in July and 540 

August 2019 (b). Green lines show the median, hinges are drawn at the lower and upper 541 

quartiles, and flyer bars give the extent of data not considered outliers, which are plotted as 542 

points. Note the different scales demonstrating much greater flux values (mg of CH4 /day) from 543 

the literature (a) than in the PAD (b). 544 

 545 

3.4 Sensitivity of whole-lake methane emissions to inclusion of littoral zone areas  546 

By applying the median Arctic-boreal macrophyte:open water ratio of 5.9 (Figure 7) to 547 

our remotely sensed UAVSAR littoral maps (Figure 3), we estimate the relative importance of 548 

accounting for vegetated littoral zones in whole-lake methane flux estimates. Assuming a lake 549 

area weighted average AVL of 16.9 [13.9 - 19.1]% increases the overall methane emissions from 550 

the four study areas by 79 [68 – 94]% (Figure 7). Spatiotemporally, this ratio I, varies from 4% 551 

to 321%, with the lower bound coming from CSD in September 2017 (where only ~0.9% of lake 552 
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areas have vegetated littoral zones) and the upper bound from the PAD in June 2017 (~66% 553 

coverage, Table 2). Although these are the most extreme values observed, these scenarios show 554 

that accounting for even small littoral zone areas significantly raises whole-lake emissions 555 

estimates. 556 

 557 

Figure 7. Plotting study lakes in a flux ratio-littoral vegetation fraction feature space shows that 558 

most would have higher calculated fluxes (shaded area) if their littoral zones are accounted for 559 

separately from open water, with median increase of 79%. The distributions of both variables are 560 

shown as histograms along the relevant axes. Vertical error bars show the temporal range in 561 

coverage for the field data (orange circles) and the estimated mapping uncertainty for the 562 

literature data (purple squares) and can extend to zero (beyond axis limits). For scale, the 563 

uppermost data point in the figure (Lake Mekrijӓrvi, Finland) corresponds to a 56-fold increase 564 

in emissions compared to the no littoral zone case. Note the logarithmically-scaled x and y axes. 565 

For a version of this figure with contour lines showing how much higher this calculated flux 566 

would be, see Figure S.4. 567 

 568 
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4 Discussion and Conclusion 569 

4.1 Littoral zone coverage in lakes 570 

Littoral zones are often theorized to cover greater portions of small lakes than large 571 

(Bergström et al., 2007; Wetzel, 1990, 2001). It is logical that smaller lakes with larger 572 

perimeter:area ratios would be dominated by near-shore areas, which are overwhelmingly 573 

shallow. However, while our results generally show greater fractional vegetated littoral area 574 

(AVL) in small and medium-sized lakes (Figure 4), there is weak correlation at best (Pearson r2 = 575 

0.124, p < 0.001; Figure 5). This discrepancy can likely be explained by emergent macrophytes 576 

comprising only a portion of the littoral zone, as well as mixed pixels obscuring narrow littoral 577 

margins in small lakes. Bergstrӧm et al. (2007) similarly observed that medium-sized lakes (0.1 578 

to 1 km2) had the greatest AVL of ~11% on average for 50 Fennoscandian Shield lakes in Finland, 579 

which, plotted as an area-binned histogram, also resembles an inverted V-shaped curve. Mäkelä 580 

et al (2004), using the same dataset, pointed out that large, lowland lakes had the largest total 581 

macrophyte coverage, also noting that area and pH only account for 15% variation in AVL.  582 

In comparison, the Canadian Shield areas we sampled contained the greatest AVL in small-583 

to-medium lakes (0.0001 - 0.002 km2 in area), with values ranging from 7.3 [4.5 – 10.7] % 584 

(CSD) to 55 [35 – 81] % (CSB). We also observe a large contribution to total littoral zone area 585 

from the large lakes (Figure S.2), underscoring the need not to discount them due to their small 586 

fractional AVL. The largest 100 lakes (area ≥ 0.9 km2) comprise 62.7% of total lake area and 587 

39.2% of total vegetated littoral area across all four study areas, and this trend holds across all 588 

study areas (Fig S.2). The observed region-specific dependence on lake area further highlights 589 

the need for remote sensing to accurately estimate littoral zone coverage. 590 

The ~16% mean AVL coverage we observe is greater than the globally-inclusive estimate 591 

of 7% (Duarte et al.,1986) and Southern Finland estimate of 5.2% (Bergstrӧm et al., 2007). Since 592 

the number is an intermediate average derived from much lower values on the Canadian Shield 593 

(1.0%, and 7.0% for CSD and CSB, respectively, Table 2) and much higher values for the PAD 594 

(59%) and YF (22%), it is highly sensitive to the choice of study areas and their relative sizes.  595 

Although the relationship between coverage and lake area does not appear as simple as suggested 596 

by Duarte et al. (1986), their conclusion that lake area is not a strong predictor of emergent 597 

macrophyte coverage is still supported. Clearly, AVL coverage varies greatly across different 598 

areas, again highlighting the need for regionally-varying remote sensing products for methane 599 

upscaling. 600 

4.2 Importance of vegetated littoral zones for methane upscaling 601 

4.2.1 Toward improved upscaling of lake methane emissions  602 

This broad-domain study supports previous studies demonstrating the importance of 603 

accounting for vegetated and/or littoral areas in upscaling lake methane flux estimates 604 

(Bergström et al., 2007; Casas-Ruiz et al., 2021; DelSontro, del Giorgio, & Prairie, 2018; 605 

Juutinen et al., 2003; Kankaala et al., 2013; Natchimuthu et al., 2016; L. K. Smith & Lewis, 606 

1992; Striegl & Michmerhuizen, 1998). However, in addition to the challenges of measuring 607 

wetland extent more generally (Melton et al., 2013), a knowledge gap remains about the 608 

distribution and area of lake littoral zones (Huttunen et al., 2003). The airborne UAVSAR 609 

approach presented here has limited spatial coverage and is unsuitable for broader-scale studies.  610 
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Satellite approaches, however, have good utility for pan-Arctic or global wetland mapping (Hess 611 

et al. 1990, Nelson et al. 2006, Ghirardi et al. 2019, Zhang et al. 2021) and are well suited for 612 

study of large lakes, which contribute most to total vegetated littoral area (Fig S.2). These lakes 613 

are otherwise considered low methane emitters on a per-area basis (Holgerson & Raymond, 614 

2016) and have little risk of being double-counted in wetland datasets, so they would be a good 615 

starting point for future studies. The upcoming NISAR satellite mission is likely to provide high-616 

resolution, freely available global coverage of L-band SAR, which may facilitate similar analysis 617 

over larger scales. 618 

Unfortunately, our results do not reconcile the gap between modeled methane fluxes from 619 

bottom-up and top-down models (Thornton et al. 2016). In fact, they suggest bottom-up fluxes 620 

are greater than previously thought, which further widens the discrepancy. With more, high-621 

quality input data besides lake area, upscaling estimates can be made more nuanced, and 622 

ultimately, more accurate. Development of global mapping capacity focused on vegetated lake 623 

littoral zones could aid landscape scale modeling of methane emission processes and fluxes to 624 

the atmosphere. 625 

 626 

4.2.2 Limitations and future directions  627 

Our 79% estimate for I (Equation 2), the percent increase due to including vegetated 628 

littoral zones in lake methane flux accounting, is a conservative estimate influenced by a variety 629 

of assumptions and is most likely too low. First, our use of emergent macrophytes as a proxy for 630 

littoral zones can cause underestimation, since high littoral emissions are not solely restricted to 631 

vegetated regions. The floating-leaved macrophytes not detectable from UAVSAR, such as 632 

water lilies, can cover roughly equal areas, although typically with lower methane emissions 633 

(Bergström et al., 2007; Juutinen et al., 2003; Laanbroek, 2009). Non-vegetated littoral zones are 634 

also excluded from our mapping and upscaling estimate, but can be high emitters, especially 635 

when within the reach of carbon-exuding roots and rhizomes (Bansal et al. 2020). Furthermore, 636 

three of the studies in the synthesis dataset did not measure the plant-based emission pathway. 637 

Bansal et al. (2020) observed lower sediment pore water concentrations near plants than in a 638 

plant-free control in a mesocosm experiment, implying that the presence of a plant pathway can 639 

detract from the others, which suggests the three studies may have under-estimated the flux ratio. 640 

To the opposite effect, our estimate includes emergent shrubs and trees, which lack the 641 

aerenchyma tissue that allows most wetland plants to transport methane from the sediments. 642 

Recent work has shown the potential for microbes living inside trees to produce methane (Covey 643 

& Megonigal, 2019), although this effect is likely less than soil microbe production. Even so, 644 

like emergent graminoids, the presence of inundated trees indicates shallow water and abundant 645 

organic matter inputs, which are both drivers of methane emissions. Future work should develop 646 

remote sensing techniques that can more accurately quantify the ratio of emergent vegetation 647 

area to total littoral zone area. 648 

Secondly, the estimate has the potential to be too high, since the relatively narrow swath 649 

width of UAVSAR causes large (and likely less-vegetated) lakes to be under-represented in the 650 

calculation of weighted mean AVL. Adding to this effect is the use of the same littoral:pelagic flux 651 

ratio for lakes of all sizes, when smaller lakes and ponds are known to be higher open-water 652 

methane emitters than large (Michmerhuizen, Striegl, & McDonald, 1996; Bastviken et al., 2004; 653 

Holgerson & Raymond, 2016; Engram et al. 2020), probably because littoral zones (vegetated 654 
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and unvegetated) cover most of their areas. Indeed, Kankaala et al. (2013) showed that the flux 655 

ratio increases with lake size. It follows that our concept of a littoral:pelagic flux ratio is less 656 

useful for small lakes, and would likely be even larger for the largest lakes, which were under-657 

represented in our literature synthesis. Future studies could better quantify how this ratio varies 658 

based on lake area. Nevertheless, since the contribution to total AVL from the small lakes is so 659 

slight (Fig S.2), they don’t have a large negative impact on our estimate.  660 

Finally, our estimate may be too low because it assumes that the vegetated littoral area 661 

not accounted for in open water upscaling estimates should come from what were considered 662 

open water regions. In reality, most global lake area estimates (Lehner & Döll, 2004; Verpoorter 663 

et al., 2014; Meyer et al., 2020) have relied indirectly on optical remote sensing, which is likely 664 

to exclude AVL, which may appear as dry vegetation. Thus, it might be more realistic for a global 665 

upscaling estimate to use larger total lake areas to account for the unobserved vegetated littoral 666 

zones. One would have to use care to ensure that wetlands are being adequately accounted for 667 

and not double-counted (Thornton et al., 2016) with vegetated littoral zones. Littoral zones often 668 

have fluctuating inundation, and there are valid reasons to count them as either lakes or wetlands, 669 

which complicates upscaling efforts, which should be consistent. In the absence of a global lake 670 

littoral zone accounting, future studies could look at relationships between remotely-sensed 671 

measurements such as lake morphology, topography, and littoral vegetation, as well as other 672 

known factors that influence methane production. 673 

Comparison of our sensitivity study with previous Arctic-boreal and global lake studies 674 

suggests that our finding of a 79% increase in whole-lake methane flux is conservative. Using 675 

flux chamber measurements from two Swedish lakes, Natchimuthu et al. (2016) found that 676 

methane emissions from lake centers are 2.1 times smaller than whole-lake fluxes. Similarly, 677 

Kankaala et al. (2013) found that 74-82% of methane emissions in 12 Finnish lakes derived from 678 

littoral macrophyte stands comprising only 5% of their total area. These amounts correspond to a 679 

flux ratio of 54-86, leading to an impact, I, on whole-lake fluxes between 270 and 430% greater 680 

than a case where pelagic fluxes were assumed throughout. The global estimate of Bastviken et 681 

al. (2011) implies a flux ratio of 43.2 for lakes and reservoirs, signifying I of 219 to 640 % for 682 

5% to 15% AVL, respectively. The high flux ratio derived from the latter two cases is likely due to 683 

the area-weighted analyses including much larger, and thus lower-emitting per unit area, lakes 684 

than our airborne-based study. Furthermore, our mean Arctic-boreal zone flux ratio of 5.9 is 685 

much smaller than the Finnish and global estimates, so more paired flux measurements are 686 

needed to better constrain these estimates. Thus, our estimate is conservative and the lowest of 687 

these three estimates, although all have different spatial and lake size domains. 688 

4.3 Conclusion 689 

Vegetated littoral zones are ubiquitous in Northern lakes but limited data prohibit their 690 

inclusion in upscaling lake methane emissions. We provide a first assessment of their prevalence 691 

across 4,572 lakes in four Arctic-boreal regions using airborne UAVSAR mapping and find that 692 

they cover 16.2 [13.9 – 19.1]% of Arctic-boreal lakes on average, a higher amount than other 693 

estimates, but with strong differences between study areas. Vegetated littoral zone areas (AVL) are 694 

greatest in lowland riverine areas, where changing water levels cause seasonal variability. 695 

Consistent with previous studies, we find that littoral vegetation is more common in small than 696 

large lakes, but this relationship is weak and varies regionally. Accounting for AVL, together with 697 

a synthesis of paired open water and littoral field measurements of methane flux, leads to an 698 
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upscaling estimate 79 [68 - 94]% greater than an estimate that assigns the same pelagic flux to 699 

the entire lake. We conclude that remote sensing of littoral zones, based on vegetation or 700 

otherwise, and collection of flux data from both pelagic and littoral zones are necessary for 701 

accurate upscaling of lake methane emissions. 702 
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