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 7 

  The severity and frequency of wildfires have risen dramatically in recent years, drawing attention to the 8 

term ‘wildland-urban interface’ (WUI). WUI refers to the region where man-made constructions meet 9 

wildland vegetation. Existing conterminous United States (CONUS) WUI mapping methodologies were 10 

based on the intersection of the area of wildland vegetation and houses, rather than taking into account the 11 

direct physical contact of their boundaries. We mapped WUI in California (CA) based on the intersection 12 

of these boundaries using building footprint data rather than census block data and thus obtaining a finer-13 

scale mapping. It is a point-based approach for WUI mapping and therefore, does not require accounting 14 

for the housing thresholds within a census block. This direct intersection of the housing and vegetation 15 

polygons is referred to as a direct WUI, whereas the intersection of the two polygon boundaries at 100 m 16 

is referred to as an indirect WUI. The linear WUI is a new WUI mapping that combines both direct and 17 

indirect WUI. We selected wildland vegetation polygons using NLCD 2016 data and Microsoft building 18 

footprint data for housing information. We chose shrubland, grassland, and woody vegetation types under 19 

the category of wildland vegetation. Our findings demonstrate that the direct WUI is less fragmented and 20 

has a slightly shorter length of 119,640 km than the indirect WUI (222,669 km) for the state of California. 21 

More fires were ignited closer to direct WUI than indirect WUI due to their proximity to communities. 22 

However, the overlap of past fire perimeters with indirect WUI is greater than that with direct WUI which 23 

shows that although more fires ignited in the direct WUI, they burned more areas in the indirect WUI due 24 

to embers transported by strong wind gusts during large wildfires. The study's findings will help land 25 

managers and policymakers in controlling fire dangers, planning land use, and reducing the threat to fire-26 

prone communities. 27 
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Plain Language Summary 29 

In this study, we mapped linear WUI and defined direct and indirect WUI for California. Direct WUI has 30 

direct physical contact between flammable vegetation and housing boundaries and thus, has a higher risk 31 



of fires due to human activities. While indirect WUI is mapped by the intersection of housing and a 100 m 32 

buffer boundary surrounding flammable vegetation and therefore, has a lower probability of wildfire. 33 

Results revealed that the direct WUI has a lower total length and is less fragmented than the indirect WUI 34 

in California. However, a higher percentage of fires are ignited in the vicinity of direct WUI because of the 35 

greater extent of human activities as compared to indirect WUI. Thus, even though direct WUI has a lower 36 

total length in California, it has a larger potential of fire ignitions in its proximity to historical sites of 37 

wildfires.  38 

1. Introduction 39 

The human propensity to live within the vicinity of natural amenities offered by forested lands and 40 

seashores has been recognized in past studies (Radeloff et al., 2001; Johnson et al., 2005; Bartlett et al., 2000). 41 

In the past few decades, there has been a dramatic proliferation in the number of regions where man-made 42 

structures are present within or near wildland vegetation, known as the Wildland-Urban Interface (WUI) 43 

(Radeloff et al., 2018; Martunizzi et al., 2015). This growth has been attributed to the increasing number of 44 

houses near forests and densely vegetated lands in the US since the mid-1900s (Radeloff et., al 2018, 45 

Martunizzi et al., 2015). In recent years, the term WUI has gained tremendous popularity and has been 46 

widely used in the context of wildfires. For the purpose of a more accurate analysis of the wildfire 47 

occurrences, tracking the location of wildfires, and land use planning, different WUI mapping 48 

methodologies have been developed in the past using a wide range of datasets across many countries 49 

including Europe, Australia, and Canada (Hanberry et al., 2020; Miranda et al., 2020; Bento-Gonçalves et 50 

al., 2020). A few studies have used point-based house locations, while others have implemented a zone-51 

based approach such as census block data for WUI mapping (Radeloff et al., 2005; Wilmer and Aplet, 2005). 52 

In addition, these maps also depend on the context and purpose of the study; for example, housing-centric 53 

or fuel-centric WUI mapping, as demonstrated in Stewart et al., 2009. WUI maps in Canada show that these 54 

features could be also developed for different types of man-made structural regions, and a recent study 55 

mapped wildland industrial interface for dense industrial locations, as well as for urban and infrastructural 56 

interfaces (Johnston et al., 2018).  57 

In the US, WUI mapping was based on the 2001 federal register definition of the US Department 58 

of Interior (US DOI) and the US Department of Agriculture (USDA) which states that WUI are those areas 59 

where houses are present within or nearby wildland vegetation. In the original definition, it was not 60 

specified whether the intersection of these two types of land use were based on the intersected area or the 61 

common boundary of two polygons. However, previous studies were based on areal intersection, i.e., in 62 



terms of intersection of the area of these two features. Therefore, the resulting WUI had units in sq. m with 63 

a dimension in [L2]. In addition, past WUI maps focused on providing WUI areas and did not account for 64 

the length of the interface. Moreover, the past WUI maps were based on zonal approaches where either a 65 

housing density was defined or point based approaches where individual housing locations were used. 66 

These approaches lacked consistency on accurate information on all three components of the WUI 67 

definition together - accurate housing information, accurate vegetation information and a clear definition 68 

of the interface and the proximity of buildings to large vegetated areas. 69 

To address this gap, Pereira et al., 2018 argued that a semantically correct definition of an interface 70 

(Webster’s Third New International Dictionary (Gove, 1961)) should be a plane or other surface forming a 71 

common boundary of two bodies or spaces. Therefore, ideally, the result of WUI mapping would be a line 72 

segment that could show the common boundary or the physical contact between the boundaries of two 73 

features. Linear WUI offers greater simplicity in the storage and utilization of information over previous 74 

WUI mappings because each WUI line segment can be tagged with information about its surroundings, 75 

such as distance to nearby roads, fuel types, population, building and vegetation density, etc. (Pereira et 76 

al., 2018). Indeed, this novel approach would be very helpful in the identification of important physical 77 

features such as adjacent fuels, topography, nearby roadways, and other infrastructures from the linear 78 

WUI. The new WUI map for CA will yield a more accurate analysis of the wildfire events with respect to 79 

WUI as it maps at a 30-m finer-scale resolution. Furthermore, the statistical analysis based on these new 80 

maps and past wildfires would help future development, land use planning, and locating the high-risk 81 

sites. The distance between previous wildfire ignition points and WUI line will show how far wildfires 82 

occurred from the linear WUI. This would help in the identification of the wildfire risk prone areas. It is 83 

expected that more ignitions near the linear WUI segments due to human ignited fires. In addition, the 84 

wildfire burned area with respect to the WUI line segment will provide more information on the severity 85 

of the fire as well as the respective risk level.  86 

The resulting linear WUI features from this approach will be in vector format as opposed to rasters, 87 

which have been provided by the previous WUI mapping approaches. In geospatial analysis, vector data 88 

are associated with higher geographic accuracy because of lesser dependence on grid size. Additionally, 89 

storing, handling, and appending new data layers to vector data is significantly more efficient compared 90 

to rasters which are considerably larger in size. In addition, vector data are much more scalable, amenable 91 

to defining connections between topology and network structures, and easier for delineating boundaries 92 

and administrative maps in fine resolution, comparable to raster datasets. Moreover, storing of vector data 93 

is possible without the loss of generalization and preserving geolocation information. Therefore, it is 94 



envisioned that developing wildland fire policies under a changing climate and growing trends in WUI 95 

land use features will be more efficient using linear WUI features as developed in this manuscript. 96 

Wildland fires destroy thousands of buildings in the US annually. In recent years, CA wildfires 97 

have burned the highest number of acres of all states in the US, according to the National Interagency Fire 98 

Center (NIFC) report (2018). This wildfire season gained the title of 'giga fire' in the year 2020 and burned 99 

more than a million acres of land compared to previous years during which the burned area had been 100 

recorded as a few hundred thousand acres ('mega fire’). In 2020, 4,177,855 acres of California burned with 101 

a total of 9,639 wildfire incidents that destroyed 10,488 buildings and caused 33 fatalities according to the 102 

2020 CAL FIRE summary report. In the same year, out of nearly 17,700 total damaged structures in the US, 103 

11,253 buildings were destroyed and affected by wildfires in CA which made it one of the most devastating 104 

wildfire seasons on record. From 2010 to 2020, a total of 52,955 buildings were destroyed in CA on its own 105 

(Headwater economics, November 2020: https://headwaterseconomics.org/natural hazards/structures-106 

destroyed-by-wildfire/). The biodiversity of nature was affected with the total extinction of a few species 107 

of flora and fauna in the local and regional forested lands. Whenever homes are constructed near flammable 108 

vegetation, it poses two types of major issues: first, the risk of human sparked fires increases, and second, 109 

it also escalates the risk of damage caused by wildfires (Radeloff et al., 2018). Recent studies suggest that 110 

most of the CA wildfires destroyed houses in the WUI but occurred outside the existing WUI regions 111 

(Kumar et al., 2020; Kramer et al., 2018). It is therefore important to analyze how far the linear WUI features 112 

are present from the past wildfire events and would be helpful in monitoring fires in proximity to these 113 

linear WUIs, as well as in making development plans in the immediate area. 114 

This paper contributes in a number of ways to existing WUI literature. To the authors’ knowledge, 115 

this paper is one of the first attempts to map the linear WUI for the US using a point-based approach, i.e., 116 

the location of individual buildings at a finer resolution of 30 m and linear features. This means that rather 117 

than providing the areas that WUIs contain, the focus of this mapping approach is the boundaries that 118 

mark the edges of the interface, which is semantically more accurate. This novel WUI map gives the most 119 

accurate representation of the intersecting boundaries between the flammable vegetation and houses. This 120 

map will guide local and regional government agencies to determine the location of infrastructures for 121 

further construction and development of buildings, roads, and power supplies, etc. Furthermore, it would 122 

also help in locating the highly risky areas where there are many communities living nearby these WUI 123 

lines and thus policies and activities will be implemented in a way to either reduce the density of houses 124 

or clear the fuel loading in such regions. Findings from this study will be helpful for wildfire management 125 

and will benefit policymakers and land managers at the state and local levels. More specifically, it will help 126 

https://headwaterseconomics.org/natural%20hazards/structures-destroyed-by-wildfire/
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to focus on the WUI line segments which will determine the nearby high-risk prone areas for future 127 

wildfires, help in land use planning and reduce risk of damages from severe wildfires to the communities 128 

living in the vicinity of flammable vegetation. 129 

The key objectives of this study are as follows: (i) map the linear WUI in terms of direct and indirect 130 

interfaces and determine which WUI is more widespread in CA; (ii) evaluate how much percentage of 131 

wildfires occurred in the linear WUI features in CA; (iii) examine the distance between wildfire ignition 132 

points and the linear WUI features to see how far the fires ignited from it since 2010 in CA. Thus, this paper 133 

aims to show the importance of the novel linear WUI features for CA at both the local and federal level. 134 

This paper is organized as follows. Data and methodology that are used to generate WUI maps for CA are 135 

presented in section 2. Section 3 describes the results and discussions of our novel linear WUI calculations 136 

using building footprint datasets. Finally, conclusions and implementation of this study are given in section 137 

4. 138 

2. Data and Methodology 139 

2.1. Vegetation data 140 

        The vegetation data used for this study was Landsat-based, the 2016 National Land Cover Database 141 

(NLCD) (Jin et al., 2019), a new generation of NLCD products, released by the U.S. Geological Survey 142 

(USGS). It was designed specifically for the rapidly growing demand for land cover change analysis and 143 

the related studies, and it represented the most robust land cover base ever produced by the USGS. It 144 

included land cover and its changes over the CONUS for seven years, 2001, 2003, 2006, 2008, 2011, 2013, 145 

and 2016. Thus, it increased the land cover time series from 10 years to 15 years (2001 to 2016) (Homer et 146 

al., 2020). It was downloaded from Multi-Resolution Land Characteristics (MRLC) Consortium (available 147 

on https://www.mrlc.gov/) and was available at 30 m spatial resolution. The accuracy and robustness of 148 

the NLCD 2016 map were also shown by recent studies including Jin et al., 2019 and Homer et al., 2020. 149 

NLCD 2016 could be used for the identification of the different features at a finer resolution and thus can 150 

be considered for the deeper analysis of the expanding areas and further planning of the developmental 151 

activities. It contained a total of 28 different types of land cover classes over the CONUS. For the purpose 152 

of mapping the linear WUI, we chose only those vegetation categories which were flammable vegetation 153 

and included shrubland, grassland, woody wetlands, and all kinds of forest vegetation (California fire 154 

alliance 2001; Radeloff et al., 2005). Specific steps used for extracting the vegetation layer using ArcMap 155 

tools will be discussed in methodology section 2.4. 156 

2.2. Building data 157 

https://www.mrlc.gov/


        With the improvement of remote sensing data in acquisition efficiency and resolution, it has become 158 

possible to extract detailed housing boundaries from it. Over the past few years, Microsoft has made great 159 

efforts in applying deep learning, computer vision, and Artificial Intelligence for mapping, and leveraging 160 

the power of Machine Learning in analyzing satellite imagery to trace the shape of buildings across the 161 

country.  More specifically, Bing Maps, a mapping platform from Microsoft had successfully generated the 162 

first comprehensive high-quality housing footprints database covering the entire CONUS by using Deep 163 

Neural Network (DNN) and the residual neural network (ResNet34) with segmentation techniques (Refine 164 

Net up-sampling) to detect individual building footprints from their imagery data. However, there was a 165 

need to develop some methodologies to put this data in a more usable format for the researchers and land 166 

planning management, to study and analyze the human and environmental impacts on small cities and 167 

regions (Heris et al., 2020; Demuzere et al., 2020). A new method of rasterizing building footprint was 168 

developed by Heris et al., 2020 and was used in this study to produce a robust WUI map. Taking advantage 169 

of the new building dataset from Microsoft product and rasterizing method, we propose a new framework 170 

of mapping novel linear WUI over California. The building dataset was extracted from the Microsoft 171 

dataset containing 124,885,597 computer-generated building footprints in GeoJSON format for the US. 172 

Regarding the accuracy metrics, the precision of the evaluation set is 99.3 % and the recall is 93.5 %. The 173 

California building footprint file implemented in this study contained 10,988,525 computer-generated 174 

building footprints in California and was extracted from the US building footprint dataset by Microsoft 175 

(2018), then converted to shapefile format. We used a rasterized format of Microsoft building footprint 176 

datasets, available at 30 m spatial resolution, and used the boundaries of houses for producing the linear 177 

WUI feature (Heris et al., 2020; Li et al., 2021). This boundary data was obtained from Heris et al., 2020 in 178 

which the value of each cell represents the area of the cell that was covered by building footprints. The cell 179 

values were calculated by developing an algorithm that used High Performance Computing (HPC) (Heris 180 

et al., 2020). This algorithm created a small meshgrid (a 2D array) for each building's bounding box, 181 

generating unique values for each meshgrid cell that was further coordinated with NLCD products to make 182 

it more usable (projected using Albers Equal Area Conic system) (Heris et al., 2020). The range of values 183 

was from 0 to 900 sq. meters. To better aid the implementation of building footprint data into large-scale 184 

computation, these values are represented as raster layers with a 30 m cell size covering each of the 48 185 

conterminous states. 186 

 187 

2.3. Wildfires data 188 



        Previous wildfire data were downloaded from Monitoring Trends in Burn Severity (MTBS), (available 189 

on https://www.mtbs.gov/direct-download). MTBS is an interagency initiative whose purpose is to 190 

continuously monitor the intensity of wildfires in terms of burn severity and the size of major fires from 191 

1984 to present in the US. It does not cover small fires and includes all those fires in the Western US of 1000 192 

or more acres, and 500 or greater acres in the Eastern part of the US (MTBS, 2021). In this study, we used 193 

two kinds of MTBS datasets, namely, wildfire occurrence dataset that showed wildfire ignition points, and 194 

burned area boundaries datasets, representing wildfire perimeters. For analyzing the overlap of previous 195 

wildfires with the linear WUI features, we used wildfire perimeter. While detecting the distance of previous 196 

wildfire events from the linear WUI features, we used wildfire ignition points data. Since the liner WUI 197 

was mapped using the recent land cover and housing information, therefore, to better analyze the WUI 198 

maps and their relationship with the previous wildfires, we included only those fires which occurred in 199 

the last decade i.e., from 2010 to 2018. It shows all 380 fire perimeters of all fire events that happened in 200 

California from 2010 to 2018 and are represented by the legend in Figure 3. 201 

 202 

2.4. Methodology 203 

        NLCD data was clipped for California from the CONUS. Clipped land cover data was converted to 204 

polygons from the original raster data using the conversion tool from the ArcGIS geoprocessing. A 205 

wildland vegetation layer was generated for WUI mapping using selection by attributes from the attribute 206 

table using ArcGIS. Only shrub/grassland, herbaceous, woody wetlands, emergent herbaceous wetlands, 207 

and forests including evergreen, mixed, and deciduous were selected for the wildland vegetation layer 208 

(Radeloff et al., 2005; Martunizzi et al., 2015). The building raster layers were converted into vectors. The 209 

boundaries of the building were intersected with the wildland vegetated areas to map the wildland-urban 210 

interface. The resulting feature is a line, called direct WUI or indirect WUI at a 100-m buffer distance from 211 

the building boundary.  212 

        Direct WUI was calculated using the intersection tool from ArcMap using the vegetation polygon and 213 

housing boundary, and it represents the direct physical contact of buildings with the flammable vegetation. 214 

There is always a higher risk of damage to the communities living at the direct WUI feature as compared 215 

to those living at the indirect WUI as studied by Pereira et al., 2018. To map the indirect WUI, first, we took 216 

a buffer distance of 100-m from the vegetation polygon and then extracted those areas in California which 217 

had neither buildings nor vegetation using the erase tool from ArcMap. We then intersected the extracted 218 

layer with the buffered vegetation layer. Finally, we intersected the previously intersected layer with the 219 

https://www.mtbs.gov/direct-download


housing boundary to get the Indirect WUI. We did not intersect the vegetation layer with a buffer and 220 

housing boundary to avoid the repetition/duplication of indirect WUI lines with the direct WUI. The 221 

resulting WUI, both direct and indirect, have units of length in meters (m) with [L]1 dimension. 222 

3. Results and Discussions 223 

3.1. Wildland fire ignition frequency 224 

        A total of 380 wildfires occurred in California from 2010 to 2018 as reported by MTBS. These included 225 

both man-made fires as well as fires ignited by natural causes, such as lightning. In the left panel of Figure 226 

1, we show the countywide fire frequency in California, with more than 20 large fires in some of the 227 

counties, as shown with the red colorbar. We observe that northernmost and southern California have the 228 

highest number of fires (Figure 1, left panel). Notably in southern California, the counties of San Diego 229 

(SDG) and Kern (KER) each had 27 fires from 2010 to 2018. While in the northern part, Siskiyou (SIS) County 230 

had a maximum of 24 fires during the same period. Strong wind events, more specifically, Diablo winds in 231 

northern California and Santa Ana winds in southern California are the main drivers for the larger and 232 

more devastating wildfires. Furthermore, human ignition is one of the most significant factors in the last 233 

few decades for a majority of the deadliest fires. Counties with zero wildfires were shown with no color 234 

and thus left blank white spaces, as can be referred to in the left panel of Figure 1. A few counties had no 235 

or very few wildfire events during 2010-2018; however, these counties more recently recorded severe 236 

wildfires that are not shown here. For example, the Silverado fire occurred in October and November 2020 237 

in southern Orange County, California. However, such wildfire occurrences are not included in this study 238 

because of the unavailability of adequate datasets for the recent wildfire events. 239 



 240 

Figure 1. The left panel on the figure above shows wildfire frequency in all the counties of California from 241 

2010 to 2018. The blue triangular-shaped symbols represent the wildfire ignition points in the respective 242 

counties, while the colorbar shows the number strength of these fire frequencies for each County. The white 243 

portions of the map represent those counties where the fire activity was absent. The right panel on the 244 

figure above shows the spatial pattern of NLCD data, the wildland vegetation data used to map the linear 245 

WUI for California at 30 m resolution; it includes three kinds of forest, shrubs, and emergent herbaceous & 246 

woody wetlands; white color represents the water bodies and other vegetation types that were not included 247 

for mapping the linear WUI. 248 

        Figure 1 (right panel) depicts the wildland vegetation cover used in the mapping of linear WUI. This 249 

map clearly shows that the majority of southern California is covered by shrubland vegetation, whereas 250 

the dominant land cover type in the north is evergreen forest and shrubland. Furthermore, the variability 251 

in land cover type is greater in the northern counties of California than in the southern regions. Overall, 252 

shrubland is the most common type of vegetation in California. Shrublands are defined as ecosystems with 253 

a minimum of 30% shrub or sub-shrub cover and tree densities of up to 10 trees per hectare (USDA).  They 254 

are one of the significant regions where wildfire season lasts the longest (Jolly et al., 2015). Although it has 255 

a low fuel presence, those available fuels are very dry and therefore, the fire spread is very high in 256 

shrublands (Bond et al., 2001). Also, recent studies have shown that the shrublands are one of the areas 257 



most affected by wildfires (Jolly et al., 2015). The white colorbar in the right panel of Figure 1 also reflects 258 

water and other land cover types that are not classified as wildland vegetation while mapping linear WUI. 259 

3.2. Linear WUI features in California 260 

 261 

 262 

Figure 2. The left panel on the figure above shows the spatial pattern of Microsoft building footprints and 263 

vegetation data in San Diego. A section of the County map has been enlarged to depict the direct, indirect, 264 

and non-WUI lines as well as their actual visualization at 30 m resolution. This is displayed in the right 265 

panel of the figure above. 266 

        Direct WUI is a linear WUI feature that is shown in Figure 2, with pixel lengths in meters (m) and is 267 

represented with a green colorbar. Enlarged portion of Figure 2 on the right panel depicts a very clear 268 

visualization of the different linear WUI (direct and indirect WUI) and Non-WUI segments and it became 269 

possible only due to the finer-scale mapping using building footprint data at 30-m resolution. In addition, 270 

such a finer-scale WUI map provides more detailed information related to both housing and wildland 271 



vegetation. Linear WUI segments may be used to gather information about building density, population 272 

and the area of the housing cluster. Similarly, it can also be used to collect data related to flammable 273 

vegetation, such as, area of the flammable patch, types of near fuel availability, and proximity to roads, etc. 274 

The findings of this analysis will help foresters, land managers, and policymakers plan future development 275 

activities, mitigation, and evacuation. Most importantly, by shrinking the linear WUI, the risk of 276 

community damage can be reduced. It can be achieved by either clearing off flammable vegetation nearby 277 

buildings or slowing down the rate at which new houses are being built near flammable vegetation. 278 

         279 

3.3. Overlap of wildfires and linear WUI 280 

 281 



Figure 3. The figure shows the overlap of California historic wildfire perimeters (2010-2018) with direct 282 

WUI (top left panel) and indirect WUI (top right panel). Legends with green and blue lines represent direct 283 

and indirect WUI respectively in the above figure. The right-hand panels present enlarged views of the 284 

relevant sections of the two maps for clearer visualization. 285 

        Figure 3 depicts the overlap of wildfire perimeters with direct WUI from 2010 to 2018. This result 286 

clearly indicates that there is a very low percentage of overlap between the direct WUI and the fire 287 

perimeters. However, a maximum of up to 29 % of all direct WUI lines in California overlap within the past 288 

wildfire perimeters (left panel, Figure 4). Thus, the results show that the majority of wildfires are not 289 

occurring at WUI lines and may be burning farther away from the direct WUI lines. Similarly, a 290 

considerable percentage of fires ignited and burned outside WUI areas, according to a recent study by 291 

Kumar et al., 2020. In the case of indirect WUI, though, the percentage overlap between indirect WUI and 292 

wildfire perimeters is still low, but it is higher than what we have seen with direct WUI (Figure 4). Because 293 

of the devastating wildfire in Butte County in 2018, i.e., the Camp Fire, the maximum value of percentage 294 

overlap rises up to 35%. The percentage overlap of wildfire perimeters and indirect WUI might vary 295 

depending on how we choose the wildland vegetation perimeters when mapping the indirect WUI. 296 

        We calculated that the total pixel length of direct WUI in California is 119,640,741 m. It has 672,435 297 

counts with a maximum count length of 5,958 m. In contrast, indirect WUI has a total pixel length of 298 

164,706,030 m, which comprises a total number of 3,009,978 counts, with the highest length of a count being 299 

5,022 m. When we examined these two linear WUI features, we discovered that the direct WUI has a lower 300 

total pixel length than the indirect WUI. However, a higher percentage of fires ignited in close proximity 301 

to direct WUI as compared to those in the vicinity of indirect WUI (Please refer to Table S1 in the 302 

supplementary materials). As a result, even though direct WUI has a lower total pixel length in California, 303 

it has a larger potential of fire ignitions in its vicinity based on prior fire incidence data. In addition, the 304 

maximum length of a count, the statistical parameters like mean, median, and mode are higher for the 305 

direct WUI. However, the total number of counts is lower for direct WUI as compared to indirect WUI. As 306 

a result, this difference in counts reveals that the direct WUI is less fragmented than the indirect WUI 307 

(Figure 3). A greater length of linear WUI in a region corresponds to a higher likelihood of wildfire risk 308 

due to the presence of flammable vegetation nearby. Moreover, a greater length of linear WUI also indicates 309 

a larger number of interfaces between flammable vegetation and human settlements which would mean a 310 

higher risk of damage to the lives, properties, and health of a larger number of communities nearby that 311 

region. As mentioned earlier, the direct WUI indicates direct physical contact between houses and 312 

flammable vegetation. Hence, the likelihood of fire ignition increases as one gets closer to these linear WUI 313 



features. Interestingly, from 2010 to 2018, 36.58 % of wildfires in California were ignited within 1 km of 314 

direct WUI, according to our assessment. In the case of indirect WUI, it represents an indirect contact 315 

between the housing boundary and flammable vegetation, with a 100-meter buffer surrounding it (Pereira 316 

et al., 2018). As a result, we analyzed those house boundaries that do not cross directly with flammable 317 

vegetation, and we expected that there would be a lower likelihood of wildland fires in the presence of 318 

such linear WUI characteristics as compared to direct WUI. Indeed, we revealed in our analysis that only 319 

17.37 % of fires ignited within 1 km of indirect WUI. As a result, we can see that there are lower risks of 320 

wildfire ignitions closer to indirect WUI than to direct WUI. 321 

 322 

Figure 4. The figure shows the countywide percentage overlap of total direct WUI (left panel) and total 323 

indirect WUI (left panel) of California with wildfire perimeters from 2010 to 2018. Colorbar shows the 324 

increase from yellow (low) to red (high) for the respective counties in California. 325 

 326 



3.4. Distance of fire ignition points from linear WUI features 327 

 328 

Figure 5. The figure shows two histograms for the distribution of distance of wildfire ignition points on the 329 

either side from linear WUI features. Histogram for the direct WUI (green) shows a continuous decreasing 330 

percentage of wildfires; while it is neither continuously increasing nor continuously decreasing and has 331 

two peaks for the indirect WUI (red). 332 

        In Figure 5, we show the histogram plots for the distribution of distance of wildfire ignition points in 333 

six different classes from the direct, and indirect WUI respectively. Additionally, the percentages, total 334 

number of fires that occurred between these classes are also shown. In our analysis, we observe that in case 335 

of the direct WUI, 139 fires ignited out of a total of 380 fires i.e., 36.58% of fires ignited within 1 km range 336 

on either side from direct WUI (Please also refer to Table S1 in supplementary materials). It has decreased 337 

continuously as we increase the distance farther away from the direct WUI. And it dropped to only 3.42 % 338 

of total fires that were ignited above 5 km distance from the direct WUI in California (Figure 5). In case of 339 

indirect WUI, we found a different trend of the fire ignitions in different classes of the distance ranges on 340 

either side of the indirect WUI. Only 90 fires ignited within 1 km distance on either side of the indirect 341 
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WUI, making it 17.37% fires within this range (Please also refer to Table S1 in supplementary materials). 342 

However, it has increased from 17.37% to 23.68% in the range of 0-1 km to 1-2 km distance from indirect 343 

WUI features respectively (Figure 5). Additionally, a significant portion of the fires i.e., 21.05% ignited 344 

above 5 km on either side from the indirect WUI. And this accounts for 80 fires out of a total 380 fires that 345 

ignited above 5 km in California from 2010 to 2018. We can indeed conclude that the direct WUI is more 346 

prone to fire activity based on the past nine years of wildfire history in California. And, thus, there is a 347 

higher risk of damage due to wildland fires within the closer proximity of direct WUI. On the other hand, 348 

almost 83% of fires ignited above 1 km distance from the indirect WUI. Therefore, there is lower probability 349 

of burning within 1 km distance from the indirect WUI as compared to the direct WUI. Additionally, a 350 

significant percentage of fires ignited above 5 km distance from the indirect WUI as compared to the direct 351 

WUI. 352 

Distance (m) from direct WUI 

Distance (m) from indirect WUI 



Figure 6. The figure shows the distribution of the best fit plot for distance (m) of wildfire ignition points 353 

from direct WUI (top panel) and indirect WUI (bottom panel). 354 

        It is crucial to observe how far fires ignited from the linear WUI features and which statistical curve 355 

will best fit the distribution of the distance between fires and WUI. Therefore, we performed the statistical 356 

analysis and used different curve fittings to choose the best fit curve for both direct and indirect WUI. We 357 

chose 13 different distributions to test the best fit as shown in Table S2 in the supplementary information. 358 

Our analysis reveals that the ‘lognormal with three parameters’ distribution is the best fit curve for the 359 

direct WUI as can be seen in the top panel of Figure 6. It has a p-value of 0.15 that is highest of all, as 360 

compared to the p values of the other 12 distributions (Please refer to Table S2 in supplementary materials). 361 

In this approach the null hypothesis is that the dataset is sampled from the chosen distribution and a p-362 

value larger than the significance level 0.05 indicates that the null hypothesis cannot be rejected in favor of 363 

the alternate hypothesis. Apart from p-value, there are other parameters to check whether or not the result 364 

of a statistical analysis is adequate.  For example, the location and scale of a distribution also tells us about 365 

the data structure. The scale parameter describes how spread out the data values are, while the location 366 

parameter describes how large the data values are. However, some of the distributions like ‘weibull’ and 367 

‘gamma’ do not have these parameters (Please refer to Table S2 in supplementary materials). And therefore, 368 

we must check for the ‘shape’ parameter, which is an outcome of these distributions. The shape parameter 369 

describes how the data is spread. In general, a larger scale results in a more spread-out distribution. In this 370 

study, we used a suitable number of datasets (380) to perform the statistical analysis in both direct and 371 

indirect WUI (Please refer to Table S2 in supplementary materials). Therefore, the conclusion of our results 372 

based on p value is adequate and acceptable. As we can see in the bottom panel of Figure 6, lognormal with 373 

three parameters is also the best fit curve in the case of indirect WUI. 374 

4. Conclusions 375 

        Past studies showed that different WUI maps were developed for the CONUS using a variety of 376 

datasets and different mapping methodologies. However, neither of these focused on WUI mapping based 377 

on the linear intersection of vegetation and housing boundary, using building footprint and NLCD land 378 

cover data respectively. In this study, we mapped linear WUI at 30 m resolution. We defined two types of 379 

linear WUI i.e., direct, and indirect WUI for California. Direct WUI has direct physical contact between 380 

flammable vegetation and housing boundary and thus, has a higher risk of fires. While indirect WUI is 381 

mapped by the intersection of housing, and 100 m buffer boundary surrounding flammable vegetation and 382 

therefore it has a lower probability of fires. Results revealed that the direct WUI had a lower total pixel 383 



length and is less scattered than the indirect WUI in California. However, a higher percentage of fires 384 

ignited in the vicinity of direct WUI because of a higher extent of human activities as compared to indirect 385 

WUI. Hence, even though direct WUI has a lower total pixel length in California, it has a larger potential 386 

of fire ignitions in its vicinity based on the historical wildfires. Furthermore, the majority of wildfires did 387 

not burn along WUI lines, and we found that the overlap between wildfire burned areas and WUI hardly 388 

goes up to 30% for some of the counties. The reason for this is simply because some of the recent fires 389 

occurred over these linear WUIs. Furthermore, the percentages are lower in most of the counties in 390 

California as wildfires did not burn directly over it, but in the vicinity of linear WUI features. As revealed 391 

in this study, 69.47% fires ignited within 2 km range from direct WUI and 41.05% ignited within the same 392 

range from indirect WUI in California. Therefore, in this study, we show that the direct WUI are more 393 

prone to wildfires as compared to the indirect WUI. Not only this but also, the fires ignited from the linear 394 

WUI features follow a ‘lognormal with three parameters’ distribution in both direct and indirect WUI. 395 

Results from this study show that most of the wildfire events in CA have occurred within 2 km linear 396 

distance from these linear WUI features and this study also proposes that fires are not happening at the 397 

intersecting lines, but they ignite farther away from the linear WUI features as highlighted in Kumar et al., 398 

2020. These linear WUI maps will help in creating and sustaining a fire-adapted community within a WUI. 399 

This would also help policymakers to develop a community wildfire protection plan in the era of climate 400 

change that will bring an increase in wildfire events in the future. In addition, it will enhance community 401 

awareness regarding the prevention of fires within the WUI. Overall, this research will help in creating a 402 

more effective response to the wildfire events that will occur in the WUI. 403 
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Supplementary Information 495 

Table S1. Statistical summary table showing distance of fire ignition points with respect to direct and 496 

indirect WUI in California. 497 

 498 

Distance from Indirect WUI 

(km) 

No. of wildfires 

(2010-2018) 

Percentage of total fires (%) 

Indirect Direct Indirect Direct 

0-1 66 139 17.37 36.58 

1-2 90 125 23.68 32.89 

2-3 63 62 16.58 16.05 

3-4 39 26 10.26 6.84 

4-5 42 16 11.05 4.21 

>5 80 13 21.05 3.42 

 499 

 500 

 501 

 502 

 503 

 504 



Table S2. Statistical analysis using 13 different curve fittings to choose the best fit curve for the distribution 505 

of the distance between wildfire ignition points and WUI line segments (direct & indirect WUI). 506 

 507 

 508 Curve fitting summary table for direct WUI 

Curve fitting summary table for indirect WUI 


