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1. DEM-PFV formulations

The numerical sample consists of smooth spherical particles. The DEM module handles

the solid phase while the PFV module handles the fluid phase.1 The DEM is based on a

Lagrangian approach where each particle is identified by its own mass, size and moment

of inertia. The computation scheme consists in integrating Newton’s second law so as

to determine particles motion and interactions one with another. The DEM model is

a 3D implementation in the open source code YADE-DEM where interparticle contacts

are modeled by linear elastic relationships between forces and interparticle displacements,

associated with a slip Coulomb model. The contact laws governing the interactions are

defined from 3 parameters including the normal stiffness coefficient kn, the tangent stiffness

coefficient kt and the microscopic friction coefficient µp (Cundall & Strack, 1979). The

inter-particle contact behavior have two components: (1) the normal contact is governed

by an elastic force-displacement relation ∆Fn = kn∆δc ≥ 0 where δc is the overlapping

between two particles in contact; (2) the tangent force is incrementally computed at each

numerical time step as ∆Ft = kt∆ut and |Ft| ≤ Fn tanµp. The parameters for the contact

laws are given in Table S1. The numerical sample consists of 12,000 spherical particles

with a uniform size distribution whose diameters vary between 0.066mm and 0.133mm

with the density of 2600 kg/m3. The microscopic friction coefficient µp is 0.52.

For the fluid coupling, the PFV module is able to describe the compressible flow at

the particle scale in the viscous regime. A partition of the pore space is obtained by

constructing the regular triangulation of the packing. The elementary objects emerging

from this procedure are tetrahedrons whose vertices are defined by the centers of gravity
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of the particles. The space limited by this structure is known as the pore space. For

the sake of simplicity, the information in this document is a summary extracted from

(Scholtès et al., 2015). More details of the PFV formulation can be found in (Chareyre

et al., 2012).

Let us define Ωi the portion of the pore i occupied by the fluid (Figure S1). Integrating

the continuity equation in Ωi gives:

∫
Ωi

∂ρf

∂t
dV = −

∫
Ωi

∇ · (ρfv) dV (1)

where ρf is the fluid density and v is the fluid velocity. Applying the divergence theorem

leads Eq. (1) to

∫
Ωi

∂ρf

∂t
dV = −

∫
∂Ωi

ρfv · ndS (2)

with n the outward pointing unit vector normal to ∂Ωi. As the vertices of the elements

follow the motion of the particles, the element is deforming at a certain rate. Introducing

u as the velocity of the contour ∂Ωi, Eq. (2) can be written as:

∫
Ωi

∂ρf

∂t
dV = −

∫
∂Ωi

ρf(v− u) · ndS −
∫

∂Ωi

ρfu · ndS (3)

The bulk modulus Kf relates the time derivatives of ρf and Pi as

Kf = ρf
∂Pi

∂ρf
, (4)

for a compressible fluid.
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For saturated media (degree of saturation Sr = 1), Kf is equal to the fluid bulk modulus

(e.g. water Kw = 2.2 × 109 Pa). If air phase is available in the fluid (0.9 < Sr < 1), Kf

depends on the gaz content in the fluid mixture:

Kf = 1
Sr

Kw
+ 1− Sr

Ka

(5)

assuming the air distribution within fluid is uniform in all pores, withKa the bulk modulus

of air.

Considering Eq. (4) and neglecting the spatial fluctuation of ρf in the vicinity of the

domain (small Mach number), Eq. (3) thus becomes

∫
Ωi

1
Kf

∂Pi

∂t
dV = −

4∑
j=1

∫
Sf

ij

(v− u) · ndS − V̇p,i (6)

where V̇p,i is the time derivative of the pore volume and Sf
ij is the intersection of the

triangular surface with the fluid domain along each side of the tetrahedron.

The fluxes integrals appearing on the right-hand side of Eq(6) can be linked to the

pressure jump between two pores i and j so that the equation becomes

Ṗi = −Kf

Vf,i

V̇p,i +
4∑

j=1
kij (Pi − Pj)

 (7)

with kij the conductivity of the thoat between i and j, kij being computed as a function

of the thoat geometry through a generalized Poiseuille’s law.

A finite difference discretization of Eq. (7) using a backward Euler scheme for the

evaluation of Ṗi gives
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4∑
j=1

kijP
t
j −

ζi +
4∑

j=1
kij

P t
i = V̇

t−1/2
p,i − ζiP

t−1
i , with ζi = Vf,i

Kf∆t
(8)

where the time-centered evaluation of V̇ t−1/2
p,i is obtained from mid-step velocities of the

particles. An implicit scheme is obtained by considering Eq. (8) for all pores at a given

time. The associated linear system has to be solved as each time-step of the simulation,

linking the pressure field P t to the deformation rate of the pore space.

In turn, the force exerted by the fluid on each particle p can be deduced using the same

expressions as for an incompressible fluid. It is the sum of three terms which are contour

integrals of the hydrostatic pressure ρfgz (buoyancy), of the piezometric pressure P and

the viscous shear stress τ , respectively:

Fp =
∫

Γp

ρfgzndS +
∫

Γp

PndS +
∫

Γp

τndS = FB,p + FP,p + FV,p, (9)

Γp is the solid surface of the particle p. These forces are determined for time t and

integrated into the conventional explicit time-stepping algorithm of the DEM by summing

them together with the contact forces. This sequence of equations (8) and (9) defines a

semi-implicit integration scheme.

2. Analysis methods

2.1. Extracting sub-sample

While the numerical sample is three dimensional and it has periodic boundaries on the

horizontal directions, a vertical slide with thickness of about 15 particles is sufficient for

the analysis. This sub-sampling method allows the efficiency of the analysis while maintain

the clearance of data visualization by projecting 3D data point on a 2D diagram.
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2.2. Particle rotation calculation

The accumulated rotation of the particle is calculated from the snapshots of the sample

between two stages: the current selected stage versus the initial stage where the fluid

injection starts (P = 0MPa).

2.3. Contact force network

The contact force network is a set of particle-particle interactions visualized based on

the position of the grains in contact and the intensity of their local contact force. At

a selected stage, normal contact forces of all interaction can be computed as mentioned

in Section 1. The line segments represent the vector branch connecting two particles in

contact. For the normalization, the max and min of normal contact forces from all three

stages are taken into account. Then, the normalization is based on these max and min

values, enabling a consistent comparison method.

2.4. Sliding contact detection

For a particle-particle interaction, when the computed tangent force Ft exceeds the

threshold Fn tanµp, the contact is defined as a ‘sliding contact’. The position of a sliding

contact is the midpoint of two involved particles. It worths noting that it is expected to

have high amount of sliding contacts at the boundaries (top and bottom plates) because

of the shear control is governed by the plate movement. Hence, in order to focus better on

what happens within the sample, especially around the shear band, the sliding contacts

near the boundaries are not displayed.
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Notes

1. DEM: discrete elements method, PFV: pore-scale finite volume
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Table S1. Model properties

Particles and contacts value Bulk (steady-state) value

Particle diameter Dp 0.1 ± 0.033mm Porosity n 0.438

Particle density ρp 2,600 kg/m3 Permeability kx = kz = 2ky 2.4 ·10−11 m2

Normal stiffness kn

Dp
1GPa Normal stiffness Kn 20.9MPa·m

Shear stiffness ks

Dp
0.25GPa Shear stiffness Ks 5MPa·m

Friction coefficient µp 0.52 Friction coefficient µ 0.38 ± 0.01

Figure S1. (a) Regular triangulation and its dual Voronoi’s graph in two dimensional

and in three dimensional. (b) Elementary fluid domain (tetrahedron) in triangulated

sphere assembly.
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