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Abstract12

Current theories to describe friction of glaciers over hard beds are formulated on the13

basis that ice is free of debris and slides perfectly over the glacier bed. However,14

it is common to find basal layers of debris-laden ice or frozen patches that could15

exert additional resistance to glacier flow. We provide an analytical solution that16

accounts for the effect of solid friction in the framework of Weertman (1957). The17

presence of solid friction slows glacier sliding, however not as much as expected due18

to a decrease in basal ice viscosity. This arises because of the mechanical feedback19

that tangential stress has on the ice viscosity. We further study this problem under20

the added complexity of cavity formation using a numerical finite element model of21

glacier sliding over a sinusoidal bed under steady-state conditions. The law with solid22

friction retains the overall shape of the pure-sliding friction law, including the rate-23

weakening regime, and most of the changes can be explained via the modification of the24

scaling parameters of the friction law with the previously derived solutions. Finally,25

we provide parameterizations of glacier sliding with friction to be used in large scale26

flow models.27

1 Introduction28

The dynamics of temperate glaciers or glaciers with a temperate base is strongly29

influenced by the conditions close to the bed, e.g. type of bed, geometry, water pressure30

(Cuffey & Paterson, 2010). In this type of glaciers, internal deformation may only31

explain a small part of the surface velocity (Hooke et al., 1992; Doyle et al., 2018;32

Maier et al., 2019), and the rest of the surface velocity is attributed to sliding at the33

bed. At the large-scale of a few ice-thicknesses (hundreds to thousands of meters),34

sliding speed can be predicted using a friction law (e.g., Weertman, 1957; Lliboutry,35

1968; Budd et al., 1979; Fowler, 1986a; Schoof, 2005; Gagliardini et al., 2007), which36

relates the sliding velocity to a surface friction acting on the bed, called basal drag.37

Such drag is generated by processes that occur around small scale bed irregularities38

(Weertman, 1957) at a meso-scale (of the order of few meter to tens of meters), where39

stress concentration reduces the viscosity of the ice and facilitates flow. The magnitude40

of stress concentration is given by the obstacles’ shape and size, which are described41

with the distance between obstacles and the roughness defined as the obstacles aspect42

ratio. The rougher a bed, the higher the resistance to flow and the lower the basal43

velocity. In the above mentioned friction laws the glacier is assumed to be clean of44

debris and ice to bed friction is neglected, such that pure sliding is assumed at the45

ice-bed interface. As a result, bed shear stresses described by these theories are only46

produced by forces normal to the bed against the meso-scale obstacles.47

There is evidence to consider the role of solid friction on glacier dynamics, origi-48

nated by the contact between ice or sediments with the bedrock. In first place, debris49

carried by basal ice provide rock to rock friction. This has been observed for long50

in many mountain glaciers, see for instance the discussion in Alean et al. (1985), the51

images recorded at a natural cavity under Argentière Glacier in France (Figure 1),52

or the different studies carried out under the temperate glacier Engabreen (Norway),53

where records showed local tangential stress with a magnitude similar to the driving54

stress (Iverson et al., 2003; Cohen et al., 2005). In second place, indirect evidence is55

provided through seismic observations of basal stick-slip events emanating from the56

ice-bed interface suggesting that solid friction can act across large regions of the bed57

(Wiens et al., 2008; Zoet et al., 2012; Helmstetter et al., 2015; Roeoesli et al., 2016;58

Lipovsky et al., 2019). In third place, areas of the bed at sub-freezing temperatures59

can be local spots of high solid friction (Fowler, 1986b), since the friction between60

ice on rock is strongly dependant on the temperature of the ice, increasing rapidly61

with sub-freezing temperatures (McCarthy et al., 2017). Given that the choice of one62

glacier friction law over another has a significant impact on long term prognosis of the63
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Figure 1. Cavity under Argentière Glacier, french Alps. The debris cover visible at the

base of the glacier varies in density during time. Photograph by Luc Moreau at http://

www.moreauluc.com/

evolution of ice-sheets and glaciers and the computation of sea level rise (Ritz et al.,64

2015; Brondex et al., 2017, 2019; Nias et al., 2018; Joughin et al., 2019), it is impor-65

tant to determine whether solid friction significantly impacts the currently prescribed66

friction laws used in ice sheet models, so as to improve projections of glacier evolution67

and sea level rise.68

Experimental investigations of the role of solid friction in glacier sliding have69

been mostly devoted to understand the micro-scale mechanisms that control solid70

friction (e.g. Cohen et al., 2005; Hansen & Zoet, 2019; Thompson et al., 2020). In71

comparison, several theoretical studies have tried to provide a meso-scale description,72

i.e. the friction law, for the case of ice flowing with solid friction. These have been73

done under the assumptions of ice as Newtonian fluid (Morland, 1976b; Hallet, 1979,74

1981) or low concentration of debris in the absence of cavities (Fowler, 1986b) or with75

bed-separation (Iverson et al., 2019). As a consequence of assuming low concentrations76

of debris, the flow field can be assumed undisturbed and the same framework used to77

study the flow of ice over a frictionless interface can be used to study the case with78

solid friction. Solid friction can be integrated into the friction law just as a reduction79

in velocity and the same law as for the pure-sliding case can be applied, which seems80

to validate the aforementioned experimental observations.81

In this paper, we study a friction law with and without cavities that includes82

solid friction, assuming non-linear ice and including for the first time the effect that83

the presence of solid friction has on the ice flow field (particularly the viscosity),84

explaining the changes this effect brings to the friction law. We start with a short85

background on friction laws and on the previous work which assesses solid friction.86

We then analytically and numerically derive friction laws that include solid friction.87

Finally, we discuss our findings in the context of ice dynamics and commonly described88

friction laws.89

2 Rationale and Methodology90

2.1 Glacier friction laws91

The oldest friction law, and probably the most widely applied (see for instance92

Morlighem et al. (2013); Shapero et al. (2016); Larour et al. (2019)), has been proposed93

by Weertman (1957),94
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τb = A−1/m
s u

1/m
b , (1)

where ub is the basal velocity, τb the basal shear stress, m a material exponent, and95

As the sliding parameter which is dependant on the ice viscosity and bed geometry.96

Basal velocity and basal shear stress ub and τb denote spatially averaged velocities97

and stresses in the flow direction close to the bed, respectively. If all basal drag is98

supported by the forces normal to the bed obstacles we have m = n, where n is the99

exponent of Glen flow law, the constitutive law commonly used for polycristaline ice.100

This exponent is typically considered equal to 3, but can vary between 2 - 4 (Cuffey101

& Paterson, 2010).102

Many studies have been performed to improve Weertman’s original expression103

for As for two-dimensional glaciers. Early mathematically sound works assumed ice as104

a linear (newtonian) fluid, (e.g. Kamb, 1970; Morland, 1976a), later extended to non-105

linear rheologies (Fowler, 1979). In general, in the hypothesis of very low roughness106

we have that As scales with r−(n+1) (Fowler, 1979), with r the bed roughness. Later107

studies, like Gudmundsson (1997a) or Gagliardini et al. (2007), have extended the108

analysis using numerical models that refine the expression of As.109

This law does not take into account the role of water pressure pw, which pushes110

against the ice pressure at the ice-bed interface, and reduces the contact pressure,111

called here effective pressure and denoted by N . If water pressure becomes higher than112

local ice pressure, the glacier separates from the bed and a cavity opens (Lliboutry,113

1959; Lliboutry, 1968). This reduces the contact area and the apparent bed roughness,114

facilitating faster sliding (Lliboutry, 1968; Fowler, 1986a; Schoof, 2005; Gagliardini et115

al., 2007). In our analysis we compare our solution with the phenomenological law116

proposed by Gagliardini et al. (2007) for sliding over sinusoidal beds, given as117

τb
N̄

= C

(
χ

1 + αχq

)1/n

, with χ =
ub

CN̄As
, α =

(q − 1)q−1

qq
. (2)

Note that this law incorporates the spatially averaged effective pressure, N̄ . The bar118

marks the difference between local and meso-scale averaged effective pressures, N and119

N̄ . Parameter C = max(τb/N̄) is bounded by the maximum bed slope (Iken, 1981)120

and q is function of the slope severity index, which measures how steep the obstacles121

are for a given roughness (Gagliardini et al., 2007). In the case q = 1, τb/N̄ increases122

monotonically (Fowler, 1987; Schoof, 2005), while if q > 1 the law materializes two123

distinct behaviours. At low ub the law follows equation (1), but as ub increases due124

to the opening of cavities Weertman law under-represents the sliding velocity, see the125

shape of the law for different q in Figure 8 of Gagliardini et al. (2007). After the peak126

τb = N̄C is reached, the law enters in the weakening range, as the bed cannot generate127

enough basal drag to balance driving stress for faster ub, so τb has to be non-locally128

accommodated. This law is built to match the numerical results, and is based on the129

equation 6.2 proposed by Schoof (2005) which is, in the words of Schoof, ”essentially130

the same as proposed by Fowler (1987)”, a heuristic generalisation to non-linear ice131

of an equation that is able to reproduce fairly well the features of the semi-analytical132

solution for linear ice derived in Schoof (2005). This type of laws can be applied to133

three dimensional beds, as supported by laboratory experiments (Zoet & Iverson, 2015)134

and numerical simulations (Helanow et al., 2020), although the weakening range does135

not seem to hold for realistic beds with well-spaced non-periodic obstacles (Helanow136

et al., 2021).137

2.2 Solid friction138

A simple approach to incorporate solid friction on a glacier is to use a Coulomb139

friction law. This law provides the solid friction drag τf = µN̄ where µ is a homoge-140
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neous bulk friction parameter. The advantage of this description relies in its simplicity,141

since it only depends on one frictional parameter and on the effective pressure. If we142

assume that frictional drag is given by debris at the base, µ could range from µ = 0143

if there is no solid friction to µ ≈ 0.6 in the end member case of the glacier bottom144

being completely underlined by rocks.145

Solid friction records of debris-laden ice on rock in natural settings (at Engabreen,146

Norway, Cohen et al. (2005)) report values about µ ≈ 0.05. Debris-free ice on rock147

can also have non negligible solid friction, even in temperate glaciers and under real-148

istic sliding velocities, e.g. µ = 0.035 for 15 ma-1 (McCarthy et al., 2017), although149

the literature is sometimes contradictory and recent experiments of temperate ice on150

rock show negligible friction values (Thompson et al., 2020). More complex models of151

friction between debris and the glacier bed are velocity dependant (e.g. Hallet, 1981;152

Cohen et al., 2005; Iverson et al., 2019), but for simplicity of deriving an analytical153

solution, we will consider a Coulomb friction law which can model solid friction regard-154

less of how its generated. Since we expect the basal drag to depend on viscous drag155

(velocity dependant) and on solid friction (friction and effective pressure dependant),156

we can expect that the new friction law will be of the form τb/N̄ = f
(
ub, N̄ , µ

)
. The157

next step is determining f
(
ub, N̄ , µ

)
.158

2.3 Preliminary considerations159

We consider a two-dimensional glacier of average thickness H + hi and surface160

slope θ contained in the x− z plane and flowing over a periodic bed of height z = b(x)161

and period L (see Figure 2 and Table 1 for the notation definition). Normal and162

tangential unit vectors at the domain boundary are denoted by n and t, respectively.163

The bottom boundary of the ice is given by the periodic function h(x) ≥ b(x). We164

study a subdomain of the glacier, limited in width to L and in height to H, see Figure165

2. Above H we assume that the flow field is undisturbed by the irregularities of the166

bed, such that at z = H the stress and velocity fields are uniform. In this domain the167

Stokes flow equations are solved for the ice velocity u(x, z) and pressure p(x, z) using168

Glen’s law (Cuffey & Paterson, 2010) as constitutive law. The Cauchy stress tensor169

is denoted by σ, normal stress at a surface is expressed as σnn = n · σn and shear170

stress as σnt = t ·σn. Periodic boundary conditions are applied on left and right sides,171

far field conditions are applied on the top boundary and correspond to overburden ice172

pressure σnn = p̄i = −ρighicos(θ) and uniform horizontal velocity ui. The subglacial173

hydrological system is assumed perfectly spread along the bottom boundary at uniform174

pressure pw. At the ice-bed interface the conditions are impenetrability, u ·n = 0 and175

shear stresses modeled with Coulomb friction law σnt = −µ(σnn − pw). At the ice-176

cavity interface we impose that normal stress is equal to the cavity water pressure177

σnn = −pw, and tangential stress is zero.178

We can perform the balance of vertical and horizontal forces over the subdomain179

of study to gain some insights about the friction law with solid friction. We use the180

same procedure as that developed by Schoof (2005), considering the convention of181

negative stresses for compression, and normal and tangential vectors n and t with182

respect to the interface oriented as drawn in Figure 2.183

Basal drag and overburden pressure are given by reaction forces at the bottom184

boundary185

(−τb, p̄i) = − 1

L

∫
δΩ3

σnn + σntds. (3)

Projecting into x and z, and separating between horizontal and vertical directions186

gives187
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Figure 2. An example of a two-dimensional infinite glacier and the sub-domain of interest Ω

(in gray). The example shows a vaguely sinusoidal bed in brown with water-filled cavities in blue.


τb =

1

L

∫
L

h′(N + pw) + µN dx

p̄i =
1

L

∫
L

N + pw − h′(µN) dx,

(4)

with h′(x) the local slope of the bed. Notice that the integral of h′pw over the bed188

vanishes due to the periodicity of the bed. Using the expressions for the two different189

sources of drag averaged at the meso-scale, the viscous drag τu, caused by normal190

reactions σnn to the flow at the bed, and the solid friction drag τf , caused by local191

shear stresses σnt along the bed, which are192

τu =
1

L

∫
L

h′N dx; τf = µ
1

L

∫
L

N dx︸ ︷︷ ︸
N̄

, (5)

we can rewrite equation (4) as193

{
τb = τu + τf

p̄i − pw = N̄ − µτu
(6)

To further study the basal drag we introduce the reduced friction variable T ,194

T =
τf
τb
, 0 ≤ T ≤ 1. (7)

Substituting equations (5) into τb in (6) allows us to identify the basal drag upper195

bound. Viscous drag is bounded by the slope and the effective pressure (Iken, 1981),196

so that for the first terms of the force balance we have τu < sup(h′)N̄ . The upper197

bound of the basal drag with solid friction τb ≤ Cf N̄ can be found by just adding τf198

to both sides of the inequality, giving199

Cf ≤ sup(h′(x)) + µ, (8)

which is the expression suggested in Schoof (2005). If µ is distributed heterogeneously200

along the glacier bed we just replace µ by max(µ(x)).201

We can see that the presence of solid friction strengthens the bed, which now can202

support higher basal stress than a bed with a frictionless interface. We expect solid203
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Figure 3. Continuous version of the tombstone model with the considered stresses.

friction to take up some of the drag that would otherwise be supported by normal204

reaction forces. For a given driving stress this would result in slower sliding speeds205

compared to the pure-sliding scenario, since now normal stress concentration is lower.206

In the following two sections we solve the flow of a glacier with solid friction and207

provide an analytical friction law for the case without cavities and a numerical friction208

law over sinusoidal beds which accounts for cavity opening.209

3 Friction laws with solid friction210

3.1 Analytical friction law in the absence of cavities211

We study an idealized version of a glacier bed geometry that is similar to the212

’tombstone model’ considered in Weertman (1957) (see Figure 3 for a scheme of the bed213

with the stresses considered). The bed b(x) is a rectangular function, of protuberances214

of side 2a separated between each other by a distance L, with roughness r = a/L.215

For this analytical solution we assume that i) the ice stays in contact with the bed216

everywhere (no open cavities), ii) viscous drag operates on the vertical sides of the217

bumps, and friction drag on the horizontal sides, and iii) the stress and strain fields218

are uniform over the domain of study. We use ub(T = 0) and As as notation for sliding219

speed and sliding parameter in a pure-sliding scenario. Likewise, ub(T ) and Af refer220

to the sliding speed and sliding parameter when there is solid friction.221

Deviatoric stresses τxx, τxz and effective deviatoric stress τE are (Cuffey & Pa-222

terson, 2010)223

τxx =
1

2
τu
L

2a
, τzz = −τxx, τyy = 0,

τxy = 0, τxz = τf , τyz = 0,

τE = (
1

16
τ2
u

L2

a2
+ τ2

f )
1
2 .

(9)

As formulated in section 2, the constitutive law for ice is given by Glen’s law, such224

that225

ε̇ij = Aτn−1
E τij , (10)

where ice creep parameter A is considered as constant since the ice is assumed temper-226

ate. We see in equation (10) that ice deformation increases non-linearly with deviatoric227

stresses, meaning that a small increase in deviatoric stress induces a larger increment228

in strain rates. This will become relevant when we analyze the effect of solid friction229

on the sliding velocity.230

Using equation (10) we obtain the following strain rates,231
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ε̇xx = A

(
1

16
τ2
u

L2

a2
+ τ2

f

)n−1
2 1

4
τu
L

a
, and ε̇xz = A

(
1

16
τ2
u

L2

a2
+ τ2

f

)n−1
2

τf , (11)

corresponding to the pure-shear strain rates and the simple shear strain rates, respec-232

tively.233

The sliding speed is evaluated as the integral of the strains along a distance L,234

at a thickness l within which most of the deformation caused by the presence of the235

bump is concentrated. This gives ub = ε̇xxL+ 2ε̇xzl.236

As a first approximation, we consider that l ∝ L (Gudmundsson, 1997a). In237

particular, if we take l = L/4 (Lliboutry, 1968) and we rewrite to include the roughness238

r = a/L we get239

ub = A

(
1

16
τ2
u

1

r2
+ τ2

f

)n−1
2 1

4
τu

1

r
L+A

(
1

16
τ2
u

1

r2
+ τ2

f

)n−1
2 1

2
Lτf . (12)

Substituting for the fraction of solid friction T = τf/τb into equation (12) and factoring240

out common terms gives the sliding speed241

ub = A

(
1

16
(1− T )2 1

r2
+ T 2

)n−1
2
(

1

4
(1− T )

1

r
+

1

2
T

)
Lτnb . (13)

For T = 0 we obtain, in agreement with Weertman (1957)242

ub(T = 0) =
1

4n
A

(
1

r

)n
Lτnb . (14)

We can investigate the effect of solid friction on the flow speed. We do so through243

evaluating the ratio (ub(T )/τnb )/(ub(T = 0)/τnb ) = Af/As, equivalent to the ratio244

ub(T )/ub(T = 0),245

Af
As

= (1− T )
2n

n−1︸ ︷︷ ︸
pure shear

+ 16r2(1− T )
2

n−1T 2 + 2r(1− T )2T
2

n−1︸ ︷︷ ︸
feedback terms

+ 32r3T
2n

n−1︸ ︷︷ ︸
simple shear

. (15)

This is a decreasing function with T where the pure shear term is the leading term,246

while the rest partially mitigate the decrease in sliding speed that results from solid247

friction. If the roughness is very low this expression simplifies to limr→0Af/As = (1−248

T )2n/(n−1), as proposed by Fowler (1986b). In this case the decrease in sliding velocity249

is maximized and there is no compensation provided by the presence of tangential250

stress. The full expression is plotted for several values of n and for r = 0.08 in solid lines251

of the left panel of Figure 4, while the simplified expression Af/As = (1−T )2n/(n−1) is252

in dotted lines. The difference between them is the combined effect of the simple shear253

deformation (almost negligible) and the feedback effect that solid friction has on basal254

sliding. We see in the left panel that for any n and except for T ≈ 1, as solid friction255

increases so does the difference between the complete expression and the low roughness256

simplification. We show a particular case (n = 3 and r = 0.08) in the right hand panel257

to illustrate the individual contribution of each of the terms of equation (15) (notice258

that for any T , the cumulative sum of the terms is 100%). The pure-shear contribution,259

given by the black line, represents the change in velocity if we only consider the pure-260

shear (compression-extension) type of deformation. It decreases with increasing T ,261

because more solid friction means less viscous drag and this is only possible if the262

sliding speed is lower. The two terms in the middle of equation (15) (represented by263

the dark green line) are called the feedback terms because they appear if we consider at264
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Figure 4. Left panel: Change in the sliding parameter for a Weertman tombstone model, for

r = 0.08 and several values of n. The continuous lines ’with feedback’ are the Af/As curves in-

cluding the feedback effect on viscosity given by τf , the last 3 terms of equation (15). The dotted

line is for Af/As = (1 − T )2n/(n−1). Right panel: relative contribution to Af/As of each term of

equation (15), for r = 0.08 and n = 3.

the same time the effect of τu (normal stress) and τf (tangential stress) in ice viscosity.265

In particular, 16r2(1−T )2/(n−1)T 2 shows how the pure-shear deformation is modified266

by the presence of tangential stress, and 2r(1 − T )2T 2/(n−1) shows how the simple-267

shear deformation is modified by normal stress. These terms are zero if n = 1, and for268

n > 1, and they are the second most important term of the reduction of sliding speed.269

The last term of Af/As, represented by the light green line, is the contribution to the270

sliding velocity that comes from the simple shear type of deformation. It is very low271

since it grows with the third power of r, and therefore is the principal contributor to272

Af/As only when T ≈ 1 and the sliding velocity approaches zero. In this example we273

can see that if T = 0.5 (half the basal drag supported by solid friction), ignoring the274

feedback of solid friction introduces an error of about 20% in the sliding speed, with275

(1− T )3 representing about 80% of the expected sliding speed.276

We can rewrite equation (13) to obtain the final expression of the friction law277

with solid friction in the absence of cavities, expressed as278

τb = A
−1
n
s

[
(1− T )

2n
n−1 + 16r2(1− T )

2
n−1T 2 + 2r(1− T )2T

2
n−1 + 32r3T

2n
n−1

]n−1
2n

u
1
n

b . (16)

For n = 3, a typical value in glacier models, the friction law with solid friction in the279

absence of cavities is280

τb =
[
A−1
s

(
(1− T )3 + 16r2(1− T )T 2 + 2r(1− T )2T + 32r3T 3

)
ub
] 1

3 . (17)
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3.2 Numerical friction law in the presence of cavities281

To obtain the solution for the friction law including the effect of solid friction282

and the opening of cavities, we use the finite element method software Elmer/Ice283

(Gagliardini et al., 2013), with the same geometry but different boundary conditions284

to the sinusoidal bed studied in Gagliardini et al. (2007). The bed height function is285

a single wave function with amplitude a,286

b(x) = asin

(
2πx

L

)
. (18)

We consider the same range of roughness as Gagliardini et al. (2007), between r = 0.005287

and r = 0.080. The numerical domain is a regular mesh of bi-linear quadrilateral288

elements, vertically refined towards the bottom boundary. Most of the simulations289

The imposed boundary conditions at the top are horizontal velocity ui = 150 ma-1
290

and ice pressure pi ≈ 1.77 MPa (the pressure caused by 200 meters of ice). At the291

bottom we explore different values of solid friction τf through varying the friction292

parameter, from µ = 0 to µ = 0.15 as well as by using 81 different values of pw,293

with N̄ ranging between N̄ = 0.2pi and N̄ = pi, with increments every 1%. This294

combination of different roughness, friction parameter and effective pressure allows us295

to better constrain the friction law, since the changes introduced depend on r, µ and296

N̄ . For details on how ub, τb and N̄ are computed refer to Gagliardini et al. (2007)297

or Helanow et al. (2020). With prescribed N̄ and µ, computing τf and therefore τu is298

straightforward, although in any case we can recover them from the stress tensor. The299

friction laws are shown in Figure 5. In all panels we add for comparison purposes the300

semi-analytical solution over a sinusoidal bed presented in Schoof (2005) (green line)301

and the phenomenological solution given by Equation (2) for q = 1.8 (blue line). Panel302

(a) evaluates friction laws through normalising by the pure-sliding friction parameters303

only, as done in Gagliardini et al. (2007). We observe that the shape of the law is304

conserved, but as we consider higher µ they are stretched in the vertical direction,305

showing that the maximum stress supported by the bed has increased due to the306

inclusion of τf . We can account for the change in maximum stress by combining307

equation (8) and the one proposed by Gagliardini et al. (2007) for C, which gives308

Cf = µ + kπr, with k a constant. Performing a least squares regression on the309

Cf = max(τb/N̄) gives k = 0.81, which is not far from k = 0.84± 0.02 as proposed in310

Gagliardini et al. (2007). We therefore conclude that for the maximum drag we have311

Cf = C + µ as expected from the theoretical considerations used to derive (8). In the312

following we use the maximum of each numerical simulation in order to ensure that313

all friction laws are capped at τ3
b /(Cf N̄)3 as in Gagliardini et al. (2007).314

To calculate the new sliding parameter Af , we use the solution for the friction315

laws without cavities, equation (15), giving us the fitting function Af/As = (1−T )3 +316

βr2(1− T )T 2 + γr(1− T )2T . The last term of the analytical solution is neglected to317

avoid over fitting, since it is expected to be very low except for T ≈ 1. The factors that318

multiply the feedback terms are kept free in the fit, because their values will depend319

on the shape of the bed and on the strain field, much simplified in the analytical320

model. A quick check showed that the analytical expression (equation (15)) tended to321

underestimate the feedback in the numerical simulations. To obtain the data points322

Af/As in the no-cavity regime, we compute Af (T ) as the ratio between τnb /ub for323

those points of the tests with µ > 0 that have a cavity extension lower than 1% of324

the bed wavelength. The pure sliding parameter As for each roughness is taken as the325

mean of the ratio τ3
b /ub for pw ∈ [0.03, 0.06] pi for the µ = 0 simulations. We avoid326

computing As with the solution for pw < 0.03pi to avoid numerical artifacts observed327

in some of the pure-sliding tests with very low r. Some tests with roughness r = 0.07328

and r = 0.08, and µ = 0.15 had no basal sliding for high values of N̄ and are not329

considered for the analysis. The results of the fit are β = 65.9 and γ = 9.59, which330
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Figure 5. Numerical friction laws scaled using different criteria. Panel (a) shows the results

if we use the same pure sliding parameters C and As as in the case µ = 0. Panel (b) uses the

stress bound Cf and Af as if there was no feedback on viscosity (β = γ = 0) Panel (c) shows the

friction law with the full corrected expression, in particular with β = 65.9 and γ = 9.59. Panel

(d) shows a zoom into the rate-strengthening part of the friction law to show that we manage to

generalize the friction law and approach all curves towards a shape similar to the the pure-sliding

semi-analytical solution for a sinus bed of Schoof (2005, Figure 3 with α = ∞) and the phe-

nomenological law shown in equation (2) with q = 1.8 (Gagliardini et al., 2007). For panels (b) to

(d), the scaling parameters for Gagliardini and Schoof curves are the same as in the pure-sliding

case (µ = 0), as that is the process they describe.
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Figure 6. Numerical Af/As and the fit obtained after performing a least-squares regression

on the numerical data, using a modification of the analytical solution. For every test with the

same r and µ we only show one of every 20 data points for clarity. The blue continuous curve,

corresponds to the low roughness approximation (Af/As = (1− T )3).

is approximately four times greater than the corresponding values obtained with the331

tombstone analytical solution. The fit can be seen in Figure 6 alongside with some332

of the data used to obtain it. Once both Cf and Af for the numerical tests are333

found, we proceed to compare the friction laws with and without the solid friction334

feedback. In panel (b) of Figure 5 we see the laws normalised by Cf = max(τb/N̄)335

and Af = As(1 − T )3, and in panel (c) and the zoom in (d) the laws normalised by336

Cf = max(τb/N̄) and Af = As
[
(1− T )3 + 65.9r2(1− T )T 2 + 9.59r(1− T )2T

]
.337

We show the friction laws with different scalings alongside the semi-analytical338

solution for linear ice given in Schoof (2005), and equation (2) for q = 1.8. The339

numerical friction laws with solid friction, once properly scaled, show a good collapse340

onto the same general shape, similar to the semi-analytical solution for linear ice of341

Schoof (2005) and the formulation proposed by Gagliardini et al. (2007) with q = 1.8.342

The basal velocity in the weakening regime is consistently underestimated in both343

friction laws. The feedback terms improve the collapse (compare the rate-strengthening344

part of the friction laws in panels (b) and (c) of Figure 5). Ignoring the feedback of345

solid friction in the viscosity introduces some error in the shape of the friction laws,346

and the expected velocity is lower than the observed velocity. The sliding parameter347

associated with the lowest roughness r = 0.005 is very sensitive to small absolute348

errors in Af , therefore we are not able to describe it as successfully as for the other349

roughness.350

We propose the following update to the phenomenological friction law proposed351

in Gagliardini et al. (2007) for sinusoidal beds and n = 3, with the two new scaling352

variables Cf and Af that take into account solid friction,353
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τb = Cf N̄

(
χ

1 + αχ2

)1/3

, χ =
ub

Cf N̄Af
, Cf = Cs + µ,

Af = As
[
(1− T ) + 65.9r2(1− T )T 2 + 9.59r(1− T )2T

]
, T =

µN̄

τb

(19)

4 Discussion354

We demonstrate the friction law including solid friction can be generalized for355

any roughness r, basal slip ub, and solid friction drag τf that is considered. The new356

element introduced in the friction law is the feedback on viscosity, ignored in previous357

models that assumed low concentration of debris. The main effect of having solid358

friction is that the glacier slows down, but this decrease in velocity is partially com-359

pensated by the stress tensor becoming more deviatoric as a result of the additional360

shear stress, so that including solid friction without its feedback on viscosity will un-361

derestimate the sliding velocity. The analytical study shows the law can be updated362

by simply changing the scaling parameters C and As formulated in previous studies363

that neglected solid friction into Cf and Af which are now functions of the bed rough-364

ness r and a variable T , which corresponds to the ratio between solid friction drag365

and basal drag. The numerical simulations show that the analytical correction of the366

sliding parameter found here for the case without cavities is applicable to sliding with367

cavities. The corrected friction law behaves similarly to the pure-sliding case, such368

that the weakening regime is not suppressed by adding solid friction, building upon369

the conclusions drawn by Iverson et al. (2019) in a model that ignored the feedback.370

Given that the analytical model is formulated for different values of the flow exponent371

n, we expect that our conclusions drawn from the numerical simulations with n = 3372

can be extended to other values of n, as it was already shown for the pure-sliding case373

in Gagliardini et al. (2007), so that the update to the friction law with solid friction374

proposed in equation (19) can be used as a reference.375

The feedback effect in the numerical simulations is stronger than in the analytical376

model, as evidenced by the feedback factors β and γ in equation (15), which are377

approximately four times higher than in the tombstone model. This means that the378

analytical model overestimates the sliding velocity for a sinusoidal bed, specially in the379

pure-sliding case, but the form of the law is the same and the same method could be380

applied to derive Af for other types of bed, i.e. more realistic 3-D bed for example. We381

expect that this discrepancy between the analytical and the numerical model lies in382

the assumption that the stress and strain-rates fields are uniform along a height L/4,383

as well as in the simplified treatment of the geometry. The stress was assumed uniform384

along a thickness l = L/4 and equal to the stress at the bed, when in reality we expect385

it to become closer to a simple-shear stress state as we move far from the ice-bed386

interface, so that the actual effective deviatoric stress and the strain rates are lower387

than assumed. This also highlights the difference between our analytical model where388

the basal slip is taken at a certain distance from the bed, and the numerical model389

where it is computed at the actual ice-bed interface as done in Gudmundsson (1997b);390

Gagliardini et al. (2007); Helanow et al. (2020, 2021), which provides a lower value391

for ub than if done at a higher distance from the bed. The influence of the geometry392

(tombstone vs sinusoidal) can be partially understood with the same argument as the393

one used by Lliboutry (1968) to find two different estimates for the basal drag generated394

at a sinusoidal bed for a fixed basal speed. The first assumes a bed of constant slope395

(essentially our solution), while the other is an end-member that takes into account396

the zone of maximum stresses in a sinusoidal bed. The ratio between the estimated397

drags is 1.35, which means that at equal basal drag, the speed computed with our398

model can be up to 1.353 = 2.46 times higher than in a model that accounts for the399

slope variability. The detailed solution of Lliboutry (1968) differs from ours in some400
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details (he assumed plane strain rather than plane stress, for instance), but it shows401

that an analytical solution like the one we used has the tendency to overestimate the402

sliding velocity. We note as well that our simulations converge on a solution indicating403

that a force balance under steady condition is reached, so that the difference between404

solutions cannot be due to numerical artefacts.405

We have seen that the forms of a pure-sliding friction law and a friction law with406

solid friction are very similar, complicating the identification of the presence or not407

of solid friction. A way to determine the contribution of solid friction based on field408

observations would be to identify the change in the sliding parameter, although such a409

task would likely be challenging given that it would require i) our model to reproduce410

with good accuracy the dynamics of a real glacier and ii) the data (velocities, basal411

drag and water pressure) to be representative enough of the glacier dynamics for the412

changes in the slope of the friction law to be attributed to the presence of solid friction413

and the associated change in viscosity.414

The fundamental difference between a friction law with a velocity dependant415

model or an effective pressure dependant model of solid friction should be in how T416

evolves with the friction law. In our pressure dependant model, we observe that solid417

friction decreases with increasing velocity and/or water pressure while there are no418

cavities and then stabilizes as cavities open. Interestingly, a velocity dependant model419

of solid friction such as the one studied in Iverson et al. (2019), and considered in420

Thompson et al. (2020), is not very sensitive to basal slip, because as cavities grow,421

the increase in drag with increasing velocity balances out with the decrease in contact422

area. A simple solution could be to impose a constant solid friction τf , such that T423

stays constant until the peak is reached. This would simplify the influence that the424

viscosity feedback has on the shape of the friction law, since Af would be constant,425

and the new friction law would be equal to a pure-sliding law. We remark that the426

numerical model already considers a heterogeneous distribution of tangential stresses,427

which is advantageous over uniform descriptions of solid friction (Hallet, 1979, 1981;428

Cohen et al., 2005; Iverson et al., 2019).429

Our friction law has been formulated under steady-state conditions and may differ430

drastically under non-steady conditions, since the two sources of basal drag presently431

consider behave at very different timescales. On one hand, viscous drag is linked to432

the basal velocity, and therefore to the inertia of the ice, so that it will need some time433

to adapt to fast changes in water pressure or bed shear stress. On the other hand,434

we can expect that solid friction drag reacts instantaneously due to its dependence435

on the contact force between ice and bed. This difference in time scales can therefore436

be key when studying the behaviour of a glacier under unsteady conditions, while the437

glacier transitions from one steady state to another. Similarly, we don’t expect that438

the presently established law applies to the case of highly concentrated debris at the439

glacier base that would make the material behave differently than a viscous fluid.440

With regards to the bed geometry we await that our results are valid for other441

geometries, both 2-D and 3-D. For 3-D beds, the slope severity is restricted to a smaller442

area of the bed (Helanow et al., 2020) and therefore forces are more concentrated. As443

such, for the same basal drag, local normal stresses (and tangential if solid friction is444

assumed) are higher than for 2-D beds. This would make the stress state more devia-445

toric, and the viscosity feedback more important. Studying this type of settings where446

the basal drag is concentrated in small areas of the bed could also help understanding447

local tangential stresses higher than average drag, as was observed in Cohen et al.448

(2005). This possible stronger feedback in a more realistic 3-D bed could be balanced449

out by an ice with higher Glen flow law exponent n, as evidenced in some parts of450

Greenland (Gillet-Chaulet et al., 2011). A fast assessment of this is given in the left451

panel of Figure 4, where we showed that as n increases, the feedback effect tends to452

dissipate.453
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5 Conclusions454

In this study, we developed a new analytical model of glacier sliding with solid455

friction that includes the effects on viscosity. We demonstrate that the analytical model456

can be used as basis to describe sliding with solid friction and cavities, as shown by457

our numerical simulations over sinusoidal beds. The analytical model shows that the458

pure-sliding derived friction laws can be easily adapted to accurately describe sliding459

with solid friction in the absence of cavities, while the numerical models shows that our460

proposed friction law can be extended to model the flow with cavities. Our findings on461

the form of the friction law are coherent to the models proposed in the literature that462

assumed low quantities of solid friction. Under this assumption, ice creep dominates463

sliding and solid friction can be understood as a reduction in basal drag. We extend464

these results by showing that if solid friction represents a significant portion of the465

total basal drag, the sliding velocity will not be as low as expected due to a mechanical466

feedback that reduces the ice viscosity. Ice creep around obstacles and cavities will still467

be representative of the sliding process even under high amounts of solid friction. As a468

result, the friction law with solid friction over a sinusoidal bed retains the overall shape469

when compared to the pure-sliding case, including the weakening behaviour. Further470

work has to be carried out to confirm up to what extent the results can be generalised471

to more realistic models of solid friction, how the interplay between solid friction and472

water pressure modifies the flow dynamics, and how important the feedback can be473

when sliding over realistic 3-D beds.474
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