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Abstract 15 

Understanding past changes in precipitation extremes could help us predict their dynamics under 16 

future conditions. We present a novel approach for analyzing trends in extremes and attributing 17 

them to changes in the local precipitation regime. The approach relies on the separation between 18 

intensity distribution and occurrence frequency of storms. We examine the relevant case of the 19 

eastern Italian Alps, where significant trends in annual maximum precipitation over the past 20 

decades were observed. The model is able to reproduce observed trends at all durations between 21 

15 minutes and 24 hours, and allows to quantify trends in extreme return levels. Despite the 22 

significant increase in storms occurrence and typical intensity, the observed trends can be only 23 

explained considering changes in the tail heaviness of the intensity distribution, that is the 24 

proportion between heavy and mild events. Our results suggest these are caused by an increased 25 

proportion of summer convective storms. 26 

Plain Language Summary 27 

Quantifying past trends in extreme rainfall is important because it can help us understand future 28 

changes caused by global warming. Climate scientists and hydrologists use specific statistical 29 

models to to do so, but interpreting the results is complicated because extremes are rare and the 30 

structure of the models is not linked to the local meteorology. We use a new statistical model that 31 

allows to better understand the mechanisms behind the trends we detect. We find that extreme 32 

rainfall in the easter Italian Alps increased over the past decades and we associate this change to 33 

an increased proportion of summer thunderstorms. 34 

1 Introduction 35 

Understanding past and future changes in extreme subdaily precipitation intensities is of 36 

enormous interest because they are responsible for flash floods, urban floods, landslides and 37 

debris flows, and cause numerous casualties and huge damages every year (Borga et al., 2014; 38 

Cristiano et al., 2017; Paprotny et al., 2018). Physical laws translate increasing atmospheric 39 

temperature into increasing water vapor holding capacity. Together with changes in the 40 

atmospheric dynamics, this is expected to drive future precipitation changes (Trenberth et al., 41 

2003; Pendergrass et al., 2020; Fowler et al., 2021b). In general, larger reponses are expected for 42 

precipitation extremes because mean precipitation, on a global scale, is limited by energy 43 

constraints (Allan and Soden, 2008; Pendergrass & Hartmann, 2014). However, detecting 44 

changes in extreme precipitation is highly affected by the stochastic uncertainty characterizing 45 

the sampling of extremes. This uncertainty may mask the influence of climate forcing on the 46 

processes which locally control the extremes (Fatichi et al., 2016; Marra et al., 2019). 47 

Statistically significant changes in the frequency of extreme precipitation in the past 48 

decades were reported, often with stronger trends in subdaily extremes, as opposed to daily 49 

(Guerreiro et al., 2018; Markonis et al., 2019; Papalexiou & Montanari, 2019). In some cases, 50 

opposing trends between short and long durations emerged, with complex implications for flood 51 

risk (Zheng et al., 2015). Available observations show different temporal trends for precipitation 52 

intensities associated to different exceedance probabilities (Schär et al., 2016; Pendergrass, 53 

2018). In general, increasing trends are reported for rarer events (Myhre et al., 2019), but the 54 

specific differences depend on duration, season, and local conditions, such as the dominating 55 

meteorological features contributing extremes (Blanchet et al., 2021; Moustakis et al., 2021). 56 
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Extreme return levels characterized by different exceedance probabilities are thus changing at 57 

different rates (Myhre et al., 2019; Marra et al., 2021).  58 

Nonstationary extreme value models could aid the detection and quantification of trends 59 

in extreme precipitation of different exceedance probability (e.g., Min et al. 2009). However, the 60 

information these models can provide is impacted by stochastic uncertainties (Serinaldi and 61 

Kilsby, 2015; Fatichi et al., 2016), and their flexibility is limited by the assumptions concerning 62 

high order statistical moments. In fact, due to intrinsic limitations in parameter estimation 63 

accuracy, the shape (and sometimes also the scale) parameter of the extreme value distribution is 64 

usually assumed to be constant (Prosdocimi and Kjeldsen, 2021). Additionally, due to the 65 

structure of these statistical models, a link between the properties of the underlying process, such 66 

as precipitation occurrence frequency and intensity distribution, and extremes is difficult to 67 

establish (e.g. Marra et al., 2019). As such, the possibility to attribute the observed changes to 68 

specific physical and meteorological processes is hampered. 69 

This background suggests that there is a need to move beyond traditional trend detection 70 

techniques applied to extremes only and develop novel methodologies. These methods should be 71 

able to detect general changes in extreme precipitation at multiple durations, quantify changes at 72 

different exceedance probabilities, and attribute these to changes in the underlying physical 73 

processes.  74 

Miniussi and Marani (2020) proposed the so-called Metastatical Extreme Value approach 75 

(Marani and Ignaccolo, 2015) as a viable way  for addressing these issues. The idea relies on the 76 

concept of ordinary events, that is all the independent realizations of a process of interest, and 77 

proved highly effective in reducing stochasting uncertainties (Zorzetto et al., 2016; Marra et al., 78 

2018). As opposed to traditional methods, the distribution describing the ordinary events is 79 

assumed to be known, and the extreme value distribution is derived by explicitly considering the 80 

occurrence frequency of the ordinary events. Miniussi and Marani (2020) provided an example 81 

application in which extreme return levels where computed over moving time windows, 82 

highlighting temporal changes that could not be appreciated using traditional methods. The 83 

adopted ordinary events (daily precipitation amounts), however, were not directly connected 84 

with meteorological systems, so that direct relations between changes in extremes and changes in 85 

the underlying storm properties is still missing. 86 

Here, we combine a novel approach for ordinary-events-based precipitation frequency 87 

analyses across durations (Marra et al., 2020) with a regional trend detection technique to: (a) 88 

detect and quantify trends in sub-daily annual maxima and extreme return levels by 89 

independently considering the changes in properties and occurrence frequency of storms, and (b) 90 

attribute the observed trends in extremes to specific changes in the local precipitation regime. 91 

We examine the relevant case of the eastern Italian Alps, where consistent significant changes in 92 

annual maximum precipitation intensities at subdaily and daily duration were reported (Libertino 93 

et al., 2019). 94 

2 Data and methodology 95 

2.1 Study area and data 96 

We focus on Trentino, a 6000 km2-wide mountainous area in the Eastern Italian Alps 97 

(Figure 1a) which experienced significant increases in extreme short-duration rain intensities 98 

over the last decades (Libertino et al., 2019). Mean annual precipitation varies from ~1300 mm 99 
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yr-1 in the south-eastern portion of the area to lower amounts (~900 mm yr-1) typical of the “inner 100 

alpine province” in the north (Borga et al., 2005). A dense network of more than one hundred 101 

rain gauges is present. From these, 30 stations (density ~1/200 km-2) with at least 27 complete 102 

years (<10% missing data) of 5-minute resolution data in the period 1991-2020 are selected 103 

(Figure 1a; see Table S1 in the Supporting Information). 104 

 105 

Figure 1. a) Location and orography of the study area and location of the rain gauges used in 106 

this study; b) Decorrelation time of the highest 25% ordinary events organized by season. The 107 

red dots indicate the median values; bars indicates percentiles: 25-75th, 5-95th, 1-99th. The 108 

number of storms occurred across the stations in each season is reported.  109 

2.2 Definition of the ordinary events 110 

Ordinary events are all the independent realizations of a process of interest, in our case 111 

precipitation intensities at multiple durations. The here presented analysis is based on the storm-112 

based identification of ordinary events proposed by Marra et al. (2020), in which “storms” are 113 

defined as independent meteorological objects, and “ordinary events” of each duration are 114 

extracted from the storms. For each station, storms are defined as wet periods separated by dry 115 

hiatuses of predefined length. We define as wet all the 5 min time intervals reporting at least 0.1 116 

mm of precipitation, and separate storms using 24 hr dry hiatuses. A minimum duration of 30 117 

min for a single storm is set to avoid individual tips to be considered as storms. Ordinary events 118 

are then defined as the maximum intensities observed over the duration of interest in each storm 119 

(details in Marra et al., 2020). Durations between 15 min to 24 hr are explored: 15 min, 30 min, 120 

45 min, 1 h, 2 h, 3 h, 6 h, 12 h, 24h.   121 

2.3 Tail of the ordinary events distribution 122 

Previous studies show that subdaily precipitation intensities require three- (or more) 123 

parameters distributions (Papalexiou et al., 2018). However, their right tails can be well 124 

approximated using a two-parameter distribution which, in many cases, is found to be a Weibull 125 

distribution (e.g., Zorzetto et al. 2016; Marra et al., 2020). This means that a portion of their 126 

distribution including the extremes, which is here termed “tail”, can be approximated 127 
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as ���; �, �	 = 1 − 
���
��

�
, where λ is a scale parameter and κ is a shape parameter which 128 

determines the tail heaviness. Larger shape parameters are associated to lighter tails, and vice 129 

versa (see Figure S1). In particular, the tail is sub-exponential for κ > 1, exponential for κ=1, and 130 

heavier than exponential for κ < 1.  131 

The choice of the left-censoring threshold follows the test described in Marra et al. 132 

(2020): the distribution parameters are estimated for different thresholds by censoring the values 133 

below the left-censoring threshold as well as the observed annual maxima. The maxima are then 134 

compared to the sampling confidence interval from the estimated distribution to assess whether 135 

they could be likely samples. Following the method suggested in Marra et al. (2019), we select 136 

the 75th percentile of the ordinary events for the left-censoring. This is in line with previous 137 

findings in areas dominated by convective processes (Marra et al., 2019; Marra et al., 2020). It 138 

should be recalled that the selection method implies a low sensitivity of the results to this 139 

threshold.  140 

2.4 Extreme value model 141 

The cumulative distribution ���	 of extreme return levels � emerging from the 142 

underlying distribution of ordinary events with tail ���; �, �	 can be written as ���	 =143 

 ���; �, �	�, where � is the average number of ordinary events per year (Marra et al., 2019; 144 

Serinaldi et al., 2020). When one considers the j-th year of data, this formalism allows us to 145 

quantify return levels from individual years by inverting ����	 = ���; �� , �����
, where ��  and ��  146 

are the parameters describing the ordinary events tail at the j-th year and ��  is the number of 147 

ordinary events in the year.  148 

The parameters describing the ordinary events distribution tail are computed at each 149 

station, duration and year by left-censoring the lowest 75% of the ordinary events and using the 150 

least-squares method in Weibull-transformed coordinates (Marani and Ignaccolo, 2015). After 151 

left-censoring, an average of ~14 ordinary events per year (including annual maxima) are used 152 

for parameter estimation. Yearly return levels are obtained by inverting the equation for ����	. In 153 

this way, we obtain, for each station, yearly series of scale parameter, shape parameter, number 154 

of ordinary events, and return levels. Annual maxima (AM) series are also extracted. 155 

2.5 Temporal trends analysis 156 

We investigate the presence of monotonic trends in these quantities using the Regional 157 

Mann-Kendall test at the 0.05 significance level (Mann, 1945; Kendall, 1975; Helsel & Frans, 158 

2006), and we quantify the average rate of change using the nonparametric Sen’s slope estimator 159 

(Sen, 1968). Serial correlation in the series was tested and found negligible. In case trends within 160 

the region are heterogeneous, the slope and significance estimated by the Regional Mann-161 

Kendall test could be misleading (Gilbert, 1987). We verify the homogeneity of the trends at the 162 

different sites in the area by applying the Van Belle and Hughes test (1984). We find that 163 

homogeneity is verified for all the investigated variables. As spatial correlation among nearby 164 

stations could decrease the power of regional test, we include the correction proposed by Hirsch 165 

and Slack (1984). 166 

If the null hypothesis of the Mann-Kendall test is true (i.e., no trend) about half of the 167 

pair comparisons between ordered data points is concordant and half discordant. . Considering 168 
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that 2 yr return levels correspond to the theoretical median of the AM, we consider the estimated 169 

trend on the 2 yr return levels as our model quantification of the trend in the AM. 170 

2.6 Validation of the statistical model 171 

The ability of our statistical model to reproduce observed trends in AM is verified by 172 

accounting for stochastic uncertainty in a Monte Carlo framework. For each station i, year j and 173 

duration d, nijd Weibull-distributed ordinary events are generated according to the distribution 174 

parameters λijd and κijd, and the AM are extracted. The procedure is iterated 1000 times (which 175 

was found to provide coherent estimates of the 90% confidence interval), to obtain 1000 176 

synthetic regional sets of AM series for each duration. The Regional Mann-Kendall test is then 177 

performed on these sets to obtain 1000 slopes estimates for each duration, which provide a 178 

quantification of the stochastic uncertainty in the trends of the modelled AM. It is worth noting 179 

that this confidence interval is obtained by neglecting spatial correlation in the local exceedance 180 

probability of the events, and it is thus to be considered as a lower limit to the true confidence 181 

interval. In fact, such a correlation would cause a loss of information in the regional pooling of 182 

the trend test, inflating the stochastic uncertainty in the outcome. 183 

2.7 Differential impact of ordinary events change on annual maxima changes 184 

The relative impact of trends in the ordinary events characteristics and frequency on the 185 

emerging trend in the AM is evaluated. For each station and duration, the trends on modelled 186 

AM are computed using different combinations in which inter-annual variability in the 187 

parameters is either considered or ignored. In the latter case, the median parameter is used. We 188 

thus obtain the following cases: one case with 3 time-varying parameters (real case), 3 189 

combinations of 2 varying and 1 constant parameter, 3 combinations of 1 varying and 2 constant 190 

parameters, and one case of 3 constant parameters (no-change). Then the Regional Mann-191 

Kendall test is applied to the resulting series.  192 

2.8 Changes in the proportion of convective-like and other types of storms 193 

Changes in the seasonal proportions between convective-like and other event types in 194 

different seasons are explored to investigate the seasonal and physical mechanisms underlying 195 

the observed trends. Events exceeding the left-censoring threshold at any of the durations are 196 

organized by seasons. The temporal decorrelation of the rain intensity timeseries is used as a 197 

proxy for broadly distinguishing between convective-like and other types of storms. The 198 

decorrelation time (Figure 1b) is taken equal to  the scale parameter of the exponential fitting of 199 

the temporal autocorrelation. This is thus the time lag at which the temporal autocorrelation 200 

drops to e-1. For each station and season, the yearly number of storms belonging to the two 201 

groups is calculated, and the significance and slope of the regional trend is estimated using the 202 

Regional Mann-Kendall test (p=0.05) and the Sen’s slope estimator. This shows if temporal 203 

changes in the proportion of different event types in the seasons emerged. A 2 hr threshold is 204 

found to optimally describe (that is, optimize the statistical significance) the temporal changes in 205 

our data and is therefore used as a proxy for distinguishing between convective-like 206 

(decorrelation time ≤ 2 hr) and other event types (> 2 hr). Qualitatively analogous outcomes are 207 

obtained with thresholds between 1 and 3 hr. 208 
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3 Results and discussion 209 

3.1 Regional trends on multi-duration extremes  210 

Slopes for the regional trends for the nine investigated durations are reported in Figure 211 

2a. Hereinafter, slopes are normalized over the median value of each variable and expressed as 212 

percent change per year. As expected (Libertino et al., 2019), observed AM show positive trends 213 

at all durations. Statistically significant trends are observed for durations up to 6 hours and 214 

stronger increases for hourly and sub-hourly durations. The slopes estimated using the model 215 

(“modelled AM” in Figure 2) lie within the 90% confidence interval due to stochastic 216 

uncertainty (grey area), with the exception of the longest durations (12 and 24 h). Since at longer 217 

durations, the confidence interval is likely underestimated due to a larger correlation in the 218 

severity of the storms, this indicates that they are likely samples from our model. This means that 219 

the model well reproduces the trends in the observed AM.  220 

The annual number of storms, uniquely defined for all durations (Marra et al., 2020), 221 

shows an increase (0.4% yr-1) (Figure 2b). Trends in the scale parameter of the intensity 222 

distributions are always positive, indicating a general increase in the intensity of the largest 25% 223 

of the ordinary events, with larger and significant increases (up to 1.0% yr-1) for multi-hour 224 

durations (Figure 2b). The shape parameter shows negative trends for sub-hourly durations and 225 

positive trends for longer durations (Figure 2b), indicating that the proportion between heavy 226 

and mild events changed in different ways for short and long durations: increased tail heaviness 227 

is reported for sub-hourly durations and decreased tail heaviness for multi-hour durations (see 228 

Figure S1 for a visual interpretation of the effect of the shape parameter on tail-heaviness). At 229 

short durations the changes in the two parameters have a synergistic impact on extremes. 230 

Although the trend in individual parameters is not significant, observed and modelled AM 231 

experience stronger and significant changes. In contrast, at longer durations the changes in the 232 

parameters have opposing impact on extremes, and AM exhibit weaker increases, despite the 233 

increase of both scale parameter (significant) and yearly number of storms. In particular, where 234 

tail-heaviness has its strongest decrease (increase in the shape parameter), trends in extremes are 235 

at a minimum and are not significant. 236 

These findings indicate that in the examined period (1991-2020) and area, AM exhibit 237 

significant changes, in particular for short-duration intensities, in agreement with previous 238 

studies (Libertino et al., 2019). Overall, our statistical model reproduces these trends accurately, 239 

and allows us to investigate the underlying statistical mechanisms. Changes in AM seem to be 240 

mostly influenced by changes in the tail-heaviness of the ordinary events, although trends in the 241 

shape parameter itself are not statistically significant. 242 

3.2 Differential impact of ordinary events change on annual maxima changes 243 

We investigate the impact of the trends in the individual model parameters on the trends 244 

in AM (Figure 2c). The ‘real’ case in which all parameters change with time reproduces the 245 

trends in the modelled AM (line 1 in Figure 2c). The other lines are a combination of varying 246 

and constant (median) parameters. Notably, the increase (+0.4% yr-1) in the number of yearly 247 

storms only has a marginal impact on the overall trends in extremes (same-color pairs of lines). 248 

Synergistic and opposing impacts of the other parameters are mostly evident by comparing the 249 

constant scale-parameter case (line 2) with the constant tail-heaviness case (line 3). When no 250 

changes in tail-heaviness are considered, AM show increasing trends whose magnitude can even 251 
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increase with duration, instead of decrease (lines 3, 7). This analysis shows that little changes in 252 

the tail-heaviness (shape parameter) turn into large changes in extreme intensities, suggesting 253 

this is an important parameter explaining the observed AM trends in the region. Crucially, 254 

without considering changes in tail heaviness it is not possible to explain the large observed 255 

increase in short-duration AM, as well as the different response of short and long duration 256 

extremes. This has profound implications for change-permitting extreme value models in which 257 

tail heaviness is often assumed to remain constant. 258 

3.3 Regional trends of extreme return levels 259 

Our statistical model allows to directly quantify changes on specific rare return levels. In 260 

general, slopes are always significantly positive for sub-hourly durations and decrease with 261 

increasing duration until they lose significance for durations above 2-3 hr (Figure 2d). For 262 

higher return levels, this behavior is enhanced: higher positive slopes are estimated for sub-263 

hourly durations and lower not significant slopes for multi-hour durations. There is a duration 264 

interval between 1 and 2 hr where the trends don’t depend on return period, closely following the 265 

change in regime in which the trend in the shape parameter crosses zero, that is no change in tail 266 

heaviness.  267 

The here adopted statistical framework gives the opportunity to quantify and evaluate the 268 

statistical significance of trends in rare return levels of interest for hydrological design and risk 269 

management. It could be argued that estimating rare return levels on a yearly basis should lead to 270 

unberable uncertainties. We showed here that the statistical significance of trends in yearly-271 

modelled return levels as high as the 50 yr events is comparable to the statistical significance of 272 

trends in AM, suggesting a similar signal to noise ratio. Trends on extreme return levels 273 

estimated on yearly basis from our model are thus characterized by stochastic uncertainties 274 

comparable to the ones of AM.  275 
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 276 

Figure 2. a)  Slopes of the regional trends at different durations for observed and modelled AM; 277 

significant trends (-level=0.05) are marked; stochastic uncertainty associated with the modelled 278 

AM (90% C.I. of the MonteCarlo simulation) is also reported. b)  Slopes of the regional trends 279 

for the model parameters: scale parameter (λ), shape parameter (κ), and yearly number of storms 280 

(n); significant trends (-level=0.05) are marked.  c) Differential impact on the modelled trends 281 
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of combinations of changes and no-changes in the model parameters; series labels report the 282 

parameters which are allowed to change. d) Slopes of the regional trends for some estimated 283 

return levels (2, 10, 25, 50 yr); significant trends (-level=0.05) are marked; note that the 2 yr 284 

return levels correspond to the modelled AM. 285 

3.4 Changes in the proportion of convective-like events 286 

The parametrization of our model allows us to formulate hypotheses about the physical 287 

processes underlying the detected changes. In particular, the observed changes could be 288 

explained by an increased number of intense convective events, which would mainly contribute 289 

to the short duration annual maxima. We analyze possible changes in the number of storms 290 

occurring in different seasons, and in the seasonal number of convective-like and other types of 291 

storms (Figure 3). The positive trend in the yearly number of storms reported above is fully 292 

explained by the increases in the number of storms in autumn (SON, Figure 3a) and in winter 293 

(DJF). However, examining changes in the types composition shows no distinct increase in 294 

convective-like storms during these seasons (Figure 3b, c). 295 

Conversely, although no trend emerges in the number of storms in summer (JJA), the 296 

number of summer convective-like storms in this season increased significantly, while the 297 

number of other storms shows no trend (Figure 3b, c). This implies a significant increase in the 298 

proportion of summer convective-like events. Since convective-like storms are generally 299 

associated with heavy intensities at short durations, this change in composition could explain the 300 

observed increase in tail heaviness at short durations, and thus the observed trends on short-301 

duration AM. This is confirmed when the parameters of the ordinary events distribution are 302 

examined considering spring-summer (MAMJJA) and autumn-winter (SONDJF) separately 303 

(Figure S2). These results suggest that the significant positive trends found for short-duration 304 

extremes are mostly related to changes in summer storms, and that these can be related to 305 

changes in the intensity distributions (increasing tail-heaviness) induced by an increasing 306 

proportion of heavy convective-like storms in the summer. 307 
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 308 

Figure 3. a) Slope of the regional trends for the number of seasonal storms; significant trends 309 

(-level=0.05) are marked. b) Median (across stations) seasonal number of convective-like 310 

(decorrelation time ≤ 2 hr) and c) other (decorrelation time > 2 hr) storms in the 25% tail; the 311 

Sen’s slope (S) and the p-value (pv) of the Regional Mann-Kendall test are reported in case of 312 

significant trends (-level=0.05).  313 

5 Conclusions 314 

We examine changes in extreme sub-daily precipitation intensities for the relevant case of 315 

the eastern Italian Alps, where consistent significant changes in annual maximum (AM) 316 

intensities were reported (Libertino et al., 2019). Specifically, we aim at detecting and 317 

quantifying trends in sub-daily AM and extreme return levels, and linking the observed trends in 318 

extremes to specific changes in the local precipitation regime. To do so, we adopt a novel unified 319 

framework for extreme value analyses based on ordinary events, and we quantify trends by 320 

means of the regional Mann-Kendall test. With respect to traditional change-permitting extreme 321 

value models, the here presented method provides a statistical tool for better quantifying changes 322 

in extremes in spite of the large stochastic uncertainties, and for better understanding the 323 

observed changes by separately considering multi-duration storm intensity distributions and 324 

storm occurrence frequency. 325 

Results confirm the presence of significant positive trends in the AM. Trends in the 2 yr 326 

return levels estimated yearly using our model are consistent with the observed trends in AM. 327 

These trends are more marked for 15 min to 1 hr durations and less marked for 3 hr to 24 hr 328 
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durations. The model parametrization allows to conclude that these trends are likely due to a 329 

combination of (i) increasing number of storm events per year and increasing intensity of the 330 

storms, and (ii) changes in the tail properties of the storms. In particular, an increasing, albeit 331 

not-significant, trend in tail heaviness at short durations seems to mostly explain the changes in 332 

AM and return levels. A significant increase in the proportion of convective-like storms is 333 

detected during the summer (JJA). This could explain the observed trends in AM and return 334 

levels emerged at the short durations in this study. This agrees with results reported by Fowler et 335 

al. (2021a), who highlight that the stronger increases in short-duration extremes are related to 336 

feedbacks in convective clouds dynamics at the local scale. The approach can be expanded to 337 

directly consider different types of storm events (Marra et al., 2019), following previous works 338 

regarding mixed distributions like the Two-component Extreme value distribution (Rossi et al., 339 

1984) or the mixed Gumbel (Kjeldsen et al., 2018). 340 

The trends in this study are derived from a relatively short data series and should be 341 

considered as representative of the examined period only (1991-2020). Due to decadal climate 342 

variability, they should not be considered as representative of climate change in general, nor 343 

extrapolated to predict future conditions (Iliopoulou and Koutsoyiannis, 2020). Nevertheless,  344 

our approach could provide insights for better describing local climatologies under change, and 345 

for enhancing our understanding of the linkages with changes in the underlying physical 346 

processes. This information can be valuable for improving our ability to create and use process-347 

based change-permitting statistical models for hydrometeorological extremes. 348 
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