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Key points: 

● Current approaches to characterize flood hazards often sample only a relatively small 
subset of the known unknowns such as uncertainties about hydrologic model parameters. 

● We implement a sequential Monte Carlo particle-based approach to improve the 
characterization of uncertainties surrounding hydrologic model parameters. 

● Improving the characterization of model parametric uncertainty improves projections of 
flood hazards and risks. 

  
Abstract 

Floods drive dynamic and deeply uncertain risks for people and 

infrastructures.  Uncertainty characterization is a crucial step in improving the predictive 

understanding of multi-sector dynamics and the design of risk-management strategies.  Current 

approaches to estimate flood hazards often sample only a relatively small subset of the known 

unknowns, for example the uncertainties surrounding the model parameters. This approach 

neglects the impacts of key uncertainties on hazards and system dynamics. Here we mainstream a 

recently developed method for Bayesian data-model fusion to calibrate a computationally 

expensive distributed hydrologic model. We compare three different calibration approaches: (1) 

stepwise line search, (2) precalibration or screening, and (3) the new Fast Model Calibrations 

(FaMoS) approach. FaMoS deploys a particle-based approach that takes advantage of the massive 

parallelization afforded by modern high-performance computing systems. We quantify how 

neglecting known unknowns can drastically underestimate extreme flood events and risks. 

Accounting for parametric uncertainty improves model performance metrics over the best estimate 



 

parameters. Improving the characterization of model parametric uncertainty improves hindcasts 

and projections of flood risks.  

 

1. Motivation and Introduction 

Floods pose major risks to people and property (Alfieri et al., 2017; Wing et al., 2018; 

Winsemius et al., 2015). These risks are dynamic and deeply uncertain (Merz et al., 2010; Read & 

Vogel, 2015; Ruckert et al., 2019; Zarekarizi et al., 2020). It is important to characterize the 

uncertainties surrounding flood hazards in order to understand the multi-sector dynamics and to 

inform the design of risk-management strategies (Boulange et al., 2021; Chester et al., 2020; Liu 

& Merwade, 2018; Salas et al., 2018b; Wasko et al., 2021; Wong & Keller, 2017). 

Hydrologic models are commonly used to understand hydrological processes, predict the 

response of hydrological systems to changing stresses, and provide boundary conditions to 

estimate flood hazards and risks (Bates et al., 2021; Brunner et al., 2020; Judi et al., 2018; Koren 

et al., 2004; Rajib et al., 2020; Thorstensen et al., 2016). However, hydrologic projections are 

subject to deep uncertainties (Beven, 2014; Fisher & Koven, 2020; Hu et al., 2019; Mendoza et 

al., 2015). Deep uncertainty refers to a situation where the system model and the input parameters 

to the system model are not known or widely agreed on by the experts and/or decision makers 

(Lempert, 2002). Many studies are mostly silent on the deep uncertainty surrounding the model 

parameter (parametric uncertainty). Parametric uncertainty can arise from the epistemic 

uncertainties about model parameters (for example due to divergent expert priors) and different 

choices of calibration approaches. Hydrologic models need to resolve the complex response of 

multiple processes (e.g., land surface characteristics, soil properties and climate variability) with 

strong nonlinear interactions and often few observations. Characterizing parametric uncertainty 

can be critical to improve prediction credibility and inform decision-making, for example, in the 

context of water-resources planning and flood-risk management (Herman et al., 2013; Ruckert et 

al., 2019; Wong & Keller, 2017; Zarekarizi et al., 2020). 

Previous studies provide valuable new insights on flood hazard and risk estimates using model 

simulations (Bates et al., 2021; Judi et al., 2018; Rajib et al., 2020; Sanders et al., 2020; Sharma et 

al., 2021; Wing et al., 2018). For example, Judi et al. (2018) demonstrates an integrated multimodel 

multiscale simulation approach to evaluate social, economic, and infrastructure resilience to future 

flooding. Rajib et al. (2020) develops a coupled land surface hydrologic and river hydraulic 
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modeling framework to provide regional flood hazard and risk estimates. Bates et al. (2021) 

presents estimates of current and future flood risk for all properties in the conterminous United 

States using a combined modeling approach considering river, coastal, or rainfall flooding. These 

studies typically obtain an optimal parameter set that produces the best possible agreement 

between simulated and observed streamflow hydrographs at target locations. These previous 

studies break important new ground, but are mostly silent on the impacts of parametric 

uncertainties on hazards and dynamics. Neglecting parametric uncertainties can underestimate the 

tails of flood hazard probability distribution (Bates et al., 2021; Mendoza et al., 2015; Rojas et al., 

2020; Salas et al., 2018a), and can result in poor decisions and outcomes (Ruckert et al., 2019; 

Wong & Keller, 2017; Zarekarizi et al., 2020). 

Studies that calibrate hydrologic models often manually adjust a subset of model 

parameters (Bitew & Gebremichael, 2011; Siddique & Mejia, 2017). These manual calibrations 

typically rely on visual inspection of streamflow hydrograph and a trial and error-based procedure; 

hence, this method can be rather labor-intensive and time-consuming (Lahmers et al., 2021; 

Siddique & Mejia, 2017). A more complex approach adopted in this area is automatic parameter 

optimization (Kamali et al., 2013; Van Liew et al., 2005). Automatic calibration relies on 

systematic search approaches to find the best parameter values based on predefined single- and/or 

multi-objective functions (Kamali et al., 2013). Some studies use surrogate methods such as 

Gaussian process-based emulators to help identify best-fit parameters  (Gou et al., 2020; Pianosi 

et al., 2016; Razavi & Tolson, 2013). Gou et al. (2020) presents an automatic calibration 

framework that combines sensitivity analysis and surrogate-based optimization for calibrating 

catchment-specific hydrologic model parameters. Surrogate-based methods are typically limited 

to cases with relatively fewer model parameters because training a surrogate model can be 

computationally prohibitive with high-dimensional inputs due to the large number of training data 

required (Hwang & Martins, 2018; Lee et al., 2020; Liu & Guillas, 2017) or repeated evaluations 

of the gradient of the model output with respect to the input parameters (Constantine et al., 2014; 

Lataniotis et al., 2020).  

Bayesian calibration of hydrologic models have become increasingly popular (Hsu et al., 

2009; Jeremiah et al., 2011; Kavetski et al., 2018; Raje & Krishnan, 2012; Razavi & Tolson, 2013; 

Shafii et al., 2015; Su et al., 2018; Zhu et al., 2018). For example, Jeremiah et al. (2011) calibrates 

a conceptual water balance model by approximating the model parameters’ posterior distribution 
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using adaptive Metropolis Markov chain Monte Carlo (MCMC) samplers and sequential Monte 

Carlo methods. Su et al. (2018) uses a Bayesian hierarchical model to calibrate the Priestly–Taylor 

Jet Propulsion Laboratory model using observed evapotranspiration measurements. Given the 

relatively short model run times, the hierarchical model can be fit using the Differential Evolution 

Markov Chain (Braak, 2006; Storn & Price, 1997), a population MCMC algorithm. Zhu et al. 

(2018) calibrates eight parameters of a conceptual water balance model using a Particle Evolution 

Metropolis Sequential Monte Carlo (PEM-SMC). The PEM-SMC algorithm evaluates the water 

balance model 2, 000 times sequentially, which may be computationally prohibitive for distributed 

hydrologic models with longer run times. These studies break important new ground, but focus on 

calibrating (1) average response of process over the watershed using a lumped hydrological model; 

(2) limited number of model parameters; (3) low-to-moderate flow threshold; and (4) relatively 

small basins. However, the computational requirement can be drastically larger for fully 

distributed hydrological modeling over the large basin and with a large number of sensitive 

parameters.  

Here we expand on previous studies and demonstrate an implementation of a  Bayesian model 

calibration framework by: (1) considering a computationally expensive distributed hydrologic 

model; (2) taking advantage of the massive parallelization afforded by modern high-performance 

computing systems; (3) focusing on a  large number of extreme streamflow events; (4) 

characterizing model parametric uncertainty, and (5) assessing the impacts of uncertainty 

characterization on projected flood-hazards and -risks.  

 

2. Bayesian Model Calibration  

Bayesian computer model calibration (Bayarri et al., 2007a; Higdon et al., 2004; Kennedy & 

O’Hagan, 2001; Sacks et al., 1989) typically addresses two main  objectives: (1) to infer the input 

parameters (in other words: what is the best parameter estimates); and (2) to quantify the 

uncertainty underlying the parameters (in other words: what is the joint probability density 

function of the parameters). These parameter estimates are impacted by factors such as model-

observation discrepancy (Bayarri et al., 2007b; Brynjarsdóttir & OʼHagan, 2014; Kennedy & 

O’Hagan, 2001) and measurement errors. The Bayesian model calibration framework (see the 

discussion in Kennedy and O’Hagan, 2001) facilitates both parameter estimation and uncertainty 

quantification while also accounting for external sources of uncertainty (e.g., discrepancy and 
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measurement errors). For each model parameter, we specify prior distributions based on expert 

knowledge and then update the priors by comparing the model runs to the observed data. The 

update proceeds by placing more weight on the parameter sets whose corresponding model runs 

align better with the observations. The resulting posterior (updated) distribution naturally provides 

both point and interval estimates of the model parameters in light of the newly acquired data. Let 

𝜃 be the vector of the model parameters, 𝜎2  the variance of the (assumed) independent and 

identically distributed observational error, and 𝛿 the discrepancy term. The posterior distribution 

𝜋(𝜃, 𝜎2, 𝛿| 𝑍) is defined as: 

𝜋(𝜃, 𝜎2, 𝛿| 𝑍) ∝ 𝑝(𝑍|𝜃, 𝜎2, 𝛿) × 𝑝(𝜃) × 𝑝(𝜎2) × 𝑝(𝛿), 

where 𝜋(⋅)and 𝑝(⋅) denotes the probability density function of the posterior and prior distributions, 

respectively. 

For complex deterministic models, the posterior distribution may not be available in closed 

form (Higdon, 2003; Oakley, 2009).  In this case, a common approach is to approximate the 

posterior via sampling approaches such as Markov chain Monte Carlo (MCMC) or Sequential 

Monte Carlo.  The choice of sampling approaches in influenced by several factors including: (1) 

the computational time requirements for a single model evaluation; (2) the number of model 

parameters to be calibrated, (3) the degree to which the algorithm can be parallelized, (4) the 

available computation environment, and (5) the available time for the computations. Markov chain 

Monte Carlo methods with the true model can be an excellent choice for models with short single 

model run times (Asher et al., 2015; Gramacy, 2020; Lee et al., 2020). Emulation-calibration 

approaches replace the hydrologic model with a faster surrogate model, or emulator, and then 

sample from the posterior distribution via MCMC. However, it may be computationally expensive 

to construct a high-fidelity surrogate model with many input parameters due to the large amount 

of training data needed to fully explore the input space (Gramacy, 2020; Liu & Guillas, 2017). In 

hydrological applications, emulation-calibration methods are often used to calibrate broader 

summaries of water resources (e.g., long-term water balance and hydroclimatology of a region) as 

the observed data; as opposed to the fine-scale spatiotemporal hydrodynamic processes (Liu et al., 

2018) inherent to flood-modeling applications. Sequential Monte Carlo methods (SMC) 

(Kalyanaraman et al., 2016; Kantas et al., 2014; Lee et al., 2020; Morzfeld et al., 2018; 

Papaioannou et al., 2016) methods are a practical alternative approach for calibrating high 

dimensional models with a larger number of input parameters.  
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2.1. The Fast Model Calibrations (FaMoS) approach 

The Fast Model Calibrations (FaMoS) approach (Lee et al., 2020) approximates the posterior 

distribution of the model parameters using a series of sampling, reweighting, and re-sampling 

steps. The basic premise of sampling-importance resampling (Gordon et al., 1993) is to draw 

independent samples from the model parameters’ prior distribution and retain the parameter sets 

whose corresponding outputs closely resemble the actual observations. We choose the appropriate 

parameter sets using weights, typically based on a goodness-of-fit metric such as the log likelihood 

function. The parameter sets whose model outputs fit the observed data well are given larger 

weights and those that do not are assigned smaller weights. The (importance) weights 𝑤(𝜃) are 

defined as: 

                     𝑤(𝜃) = 𝑓(𝜃)
𝑞(𝜃)

= 𝜋(𝜃|𝑍)
𝑝(𝜃)

,                                                   (1) 

where 𝑓(𝜃) is the target function and 𝑞(𝜃)is the importance function. In this context, we specify 

the target function as the posterior distribution of the model parameters 𝜋(𝜃|𝑍) and importance 

function as the prior distribution of the parameters 𝑝(𝜃). We approximate the posterior distribution 

using the weighted empirical distribution 𝜋̃(𝜃|𝑍) defined as: 

                   𝜋(𝜃|𝑍) ≈ 𝜋̃(𝜃|𝑍) = ∑ 𝑤𝑁
𝑖=1 (𝜃𝑖)𝛿(𝜃𝑖) ,                           (2) 

where 𝑤(𝜃𝑖)is the importance weight and 𝛿(𝜃𝑖)is a Dirac measure at 𝜃𝑖for the i-th sample.  

In the fast particle-based approach (Lee et al. 2020), we draw an initial ensemble of model 

parameters (particles) from the prior distribution (i.e., importance function) and approximate the 

posterior distribution (target function) using the initial ensemble. When there is very little overlap 

in the high-probability regions of the prior and posterior distribution, the initial ensemble may not 

adequately approximate the posterior distribution due to: (1) weight degeneracy, where the vast 

majority of particles have near-zero weights; and (2) sample impoverishment, where we 

“resample” the existing particles based on the weights, and we are left with multiple copies of a 

few unique particles.  

The FaMoS (Lee et al, 2020) mitigates these issues by gradually building up to the posterior 

distribution, a technique from iterated batch importance sampling  (Chopin, 2002) and Sequential 

Monte Carlo. Here, we consider a series of intermediate posterior distributions where those earlier 

in the series closely resemble the prior distribution and those at the latter part better resemble the 

full posterior distribution. In the first cycle, we use particles from the prior distribution to 
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approximate an earlier intermediate posterior distribution. In the subsequent cycles, we use 

samples from an intermediate posterior distribution to approximate a later intermediate posterior 

distribution. We end the algorithm when the target distribution is the final posterior distribution.  

For cycles t=1,...,T, the t-th intermediate posterior distribution is: 

𝜋𝑡(𝜃| 𝑍)  ∝  𝑝(𝑍|𝜃)𝛾𝑡  ×  𝑝(𝜃),                          (3) 

where 𝛾𝑡denotes the incorporation factor such that 0 = 𝛾0 ≤ 𝛾1 ≤. . . ≤ 𝛾𝑇−1 ≤ 𝛾𝑇 = 1. Note that 

the 0-th intermediate posterior distribution (𝜋0(𝜃| 𝑍)) is simply the prior distribution  𝑝(𝜃)with 

incorporation factor 𝛾0 = 0. Likewise, the T-th intermediate posterior distribution (𝜋𝑇(𝜃| 𝑍)) is 

the full posterior distribution since 𝛾𝑇 =1. 

At the end of each cycle, there still may be many replicates of a few unique particles, or 

sample impoverishment. To increase the number of unique particles, we “jitter” or “mutate” the 

particles through a carefully constructed kernel function (Gilks & Berzuini, 2001; Li et al., 2014; 

Liu & West, 2001). Upon completion of the fast particle-based calibration algorithm, we are left 

with an ensemble of updated parameter settings (particles) which sensibly approximate the 

posterior distribution.  Lee et. al. (2020) also provides guidelines for choosing the number of 

cycles, how to mutate the particles, and how to construct these intermediate posterior distributions. 

We approximate the posterior distribution using “mutated” samples from the final (T-th) 

intermediate posterior distribution: 

                            𝜋(𝜃|𝑍) = 𝜋𝑇(𝜃|𝑍)  ≈ ∑ 𝑤𝑇
𝑁
𝑖=1 (𝜃̂𝑖)𝛿(𝜃̂𝑖)                          (4) 

where 𝜃̂𝑖 is the i-th mutated particle, 𝑤𝑇(𝜃̂𝑖) are the corresponding weights from the T-th cycle, 

and 𝛿(𝜃̂𝑖)is a Dirac measure at 𝜃̂𝑖. We provide technical details about FaMoS in the Appendix. 

 

3. Experimental Design 

We demonstrate the approach for a case study in the Susquehanna River basin, Pennsylvania, 

United States. Pennsylvania provides a relevant study area as it ranked second, tenth, and 

fourteenth in the United States in terms of the frequency of flash flood-related fatalities, injuries, 

and casualties in 1959-2005 (Ashley & Ashley, 2008). This region has experienced several 

devastating flooding events over the recent decades, including floods associated with the remnants 

of Hurricane Ivan (September 2004), late winter–early spring extratropical systems (April 2005), 

warm-season convective systems (June 2006), and tropical storm Lee (September 2011) (Gitro et 

al., 2014; Grumm, 2011). In Pennsylvania, the Federal Emergency Management Agency (FEMA) 
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paid $953 million in property damages to National Flood Insurance Program participants between 

1975 and 2019 (FEMA, 2019).   

 
 

Figure 1: Diagrammatic representation of distributed hydrological model calibration framework. The 

framework also demonstrates flood hazards and risk components. 

 

We use the National Oceanic and Atmospheric Administration's (NOAA) Hydrology 

Laboratory-Research Distributed Hydrologic Model (HL-RDHM) (Koren et al., 2004). We run 

HL-RDHM in a fully distributed mode at a spatial resolution of 2 km. The 2 × 2 km2 resolution 

mainly allows for a more realistic representation of the stream network. Within HL-RDHM, we 

use the Sacramento Soil Moisture Accounting model with Heat Transfer (SAC-HT) (Koren et al., 

2004) to represent hillslope rainfall-runoff processes, and the SNOW-17 module (Anderson et al., 

2006) to represent snow accumulation and melt. SAC-HT is a physics-based, conceptual model 

where the basin system is divided into regularly spaced, square grid cells to account for spatial 
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heterogeneity and variability. Each grid cell, in turn, is composed of storage components that store 

and transmit water. The cells are ultimately connected to each other through the stream network 

system, that is, each cell acts as a hillslope capable of generating surface and subsurface runoff 

that discharges directly into the streams. The hillslope runoff, generated at each grid cell by the 

SAC-HT and SNOW-17, is routed to the stream network using a nonlinear kinematic wave 

algorithm (Koren et al., 2004). Further information about the HL-RDHM model can be found for 

example in Koren et al. (2004), Reed et al. (2004), and Anderson et al. (2006). 

We use three main datasets: multisensor precipitation estimates, gridded near-surface air 

temperature, and streamflow. We use NOAA’s multisensor precipitation estimates and gridded 

near-surface air temperature products to run the hydrological model for parameter calibration 

purposes and to initialize the model. Multisensor precipitation estimates represent a continuous 

time series of hourly, gridded precipitation observations at 4 × 4 km2 cells, which are produced by 

combining multiple radar estimates and in situ rain-gauge measurements (Prat & Nelson, 2015; 

Rafieeinasab et al., 2015). The gridded near-surface air temperature data are derived by combining 

multiple temperature observation networks, including the meteorological terminal aviation routine 

weather report (METAR), USGS stations, and National Weather Service Cooperative Observer 

Program (Siddique & Mejia, 2017). We use streamflow observations from the United States 

Geological Survey gage 01554000 located at Susquehanna River at Sunbury, Pennsylvania. The 

selected gage station represents the drainage area of 47, 396 km2.  

We calibrate the model for the period of 2004-2008 and use 2009-2012 observations to 

evaluate the calibration performance. We use the year 2003 to spin up the model. As part of the 

calibration process, we select 12 out of the 17 model parameters associated with each model grid 

cell (Table S1). We only consider the model parameters that have a strong influence on the model 

output (see Figure S1). Exploring a higher-dimensional parameter space demands additional 

processors (particles) (Bain & Crisan, 2008; Jeremiah et al., 2011; Kantas et al., 2014) to sensibly 

calibrate the hydrological model. Selecting only the strongly influential model parameters can help 

reduce the computational costs considerably. This is, of course, an approximation and points to 

future research needs. The sensitive parameters are associated with different hydrodynamic 

processes related to baseflow, percolation, evaporation, snowfall, storm runoff, and channel 

routing (Table S1). These parameters are also suggested by several other studies (Gomez et al., 
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2019; Sharma et al., 2021; Siddique & Mejia, 2017; Zarzar et al., 2018) as the most sensitive 

parameters in the Susquehanna river basin.   

We compare Bayesian calibration with relatively simple and low-cost model calibration 

approaches: i) stepwise line search (Kuzmin et al., 2008) and ii) precalibration (Edwards et al., 

2011). Stepwise line search typically adjusts a subset of model parameters to minimize an objective 

function (e.g., root mean square error) and returns a single estimate of the model parameters (for 

details of the implementation please see Text S2)(Bowman et al., 2017; Carlberg et al., 2020; Fares 

et al., 2014; Mejia & Reed, 2011; Siddique & Mejia, 2017). Precalibration applies a screening 

criterion to a large ensemble of hydrologic model runs and rules out any implausible model runs 

that deviate substantially from the observations (refer Text S3 for the details) (Craig et al., 1997; 

Edwards et al., 2011; Holden et al., 2010; Tarawneh et al., 2016).  

We evaluate the calibrated model performance using several decision-relevant metrics. We 

use traditional deterministic metrics such as the Kling-Gupta Efficiency (KGE) (Mizukami et al., 

2019), which provides a direct assessment of streamflow time series (e.g., shape, timing, water 

balance and variability) using the ensemble mean estimate. We also evaluate the probabilistic 

prediction skill using the Brier Skill Score (BSS) (Murphy, 1973) and the Continuous Ranked 

Probability Skill Score (CRPSS) (Murphy, 1970). The Brier score is essentially the mean squared 

error of the probability predictions, considering that the observation is one if the event occurs, and 

that the observation is zero if the event does not occur. The Continuous Ranked Probability Score 

measures the integral square difference between the cumulative distribution functions of the 

observation and predictions, averaged over all pairs of predictions and observations. The selection 

of these decision-relevant metrics is motivated by the balance between model output goodness-of-

fit, calibration approaches, and data availability. The description of evaluation metrics is provided 

in Text S4 in the supporting information. The evaluation is focused on high flows by choosing the 

river flow that exceeds NOAA’s Action Stage (McEnery et al., 2005). Action Stage refers to the 

stage which, when reached by a rising river, represents the level where the National Weather 

Service or a partner/user needs to take some mitigation action in preparation for possible 

significant hydrologic activity. 

We assess the impact of model calibration on flood damage estimates. Flood damage 

represents interactions among hazard, exposure and vulnerability (Tellman et al., 2021; Wing et 

al., 2018). Hazard in this case refers to the magnitude of the flood event. Exposure characterizes 
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property value in the floodplain. Vulnerability characterizes how sensitive the impacts are for a 

given hazard and exposure. We consider 2,000 hypothetical houses to quantify the damage from 

flood hazards (Figure S4; TextS6). We assess damage for a certain depth of water in a house by 

using a relatively simple Bathtub-based flood inundation model (Didier et al., 2019; Fereshtehpour 

& Karamouz, 2018; Neumann & Ahrendt, 2013; Yunus et al., 2016) and a vulnerability model 

(Scawthorn et al., 2006). The Bathtub model relies on a digital elevation model to provide flood 

depth in a house for a particular corresponding water level in the river (refer TextS5 and TextS6 

for the details). We use a common vulnerability model (depth-damage function) provided by the 

Federal Emergency Management Agency (FEMA) (Scawthorn et al., 2006).  

 

4. Results and Discussion 

We first generate streamflow simulations using the "best” parameter estimates obtained via 

the stepwise line search (Figure 2). In the considered example, stepwise line search substantially 

underestimates the high streamflow (Figure 2). Stepwise line is designed to sample high-

probability outcomes and excludes comprehensive sampling of the parametric distribution 

(Kuzmin et al., 2008; Sharma et al., 2019). 

 
Figure 2: Historical time series of water level observation and model simulations obtained using best parameter 

estimates (stepwise line search). We obtain the observation from the United States Geological Survey (USGS) 
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gauge records for ID 01554000 located upstream of Selinsgrove, Pennsylvania, USA. The most destructive 

floods in the Susquehanna river basin that occurred in recent years, each associated with different flood-

generating mechanisms, includes Hurricane Ivan (September 2004), late winter–early spring extratropical 

systems (April 2005), warm-season convective systems (June 2006), and tropical storm Lee (September 2011).  

 

We account for parametric uncertainty using precalibration and FaMoS (Figure S1). 

Characterizing parametric uncertainty requires knowledge of model behavior throughout the (often 

high-dimensional) parameter space. Precalibration provides a relatively simple method to explore 

the high-dimensional parameter space. Precalibration is a low-cost way of ruling out implausible 

model runs. We begin with an initial ensemble of 5,000 model runs with input parameters settings 

selected from a 12-dimensional Latin hypercube design (Helton & Davis, 2003). We select an 

ensemble of 165 runs that fall within the +/- 75% window surrounding each observation. Note that 

specifying bounds for precalibration is a subjective choice (Craig et al., 1997; Edwards et al., 2011; 

Holden et al., 2010; Tarawneh et al., 2016). This choice impacts the “surviving” parameter 

samples. For instance, imposing tight bounds on the observed streamflow could lead to high-

resolution sampling of the plausible parameter space and wider bounds may include more 

implausible runs into the final ensemble. We choose the considered acceptable range to sample 

into the upper tails of projected flood hazards, which are often associated with high-cost events.  

FaMoS adopts a more complex (but also more powerful) calibration approach compared to 

precalibration. We incorporate domain-area expertise (prior distribution) of the unknown 

parameters and also account for additional sources of uncertainty such as model-observation 

discrepancies and observational error (see the Appendix for the details). As a result, we obtain a 

distribution of viable parameter values (posterior distribution) along with interval estimates, as 

opposed to a single best fit estimate (Figure S1). Unlike precalibration, FaMoS does not fix an 

arbitrary screening criterion, but rather uses a flexible statistical model to assess model-fit. 

Moreover, FaMoS sequentially explores the entire parameter space and systematically attempts to 

move to a “target” region that contains the most plausible sets of model parameters. In contrast, 

precalibration attempts to locate this “target” region using a single initial ensemble of model runs.  
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Figure 3: Performance metrics for hydrological model calibration and out-of-sample prediction.  We compute 

Kling-Gupta Efficiency (KGE), and Brier skill score (BSS), and Continuous ranked probability skill score 

(CRPSS). All the metrics are computed with reference to the default parameter set available from several 

previous studies (Anderson et al. 2006, Reed et al. 2004). Any positive values of the skill score, from 0 to 1, 

indicate that the calibration approach performs better than the reference system. Thus, a skill score of zero 

indicates no skill, and a skill of one indicates perfect skill. 

 

Accounting for parametric uncertainty improves model performance metrics for the 

calibration data and out-of-sample predictions (Figure 3). We compute the skill score (KGE, BSS, 

and CRPSS) with reference to raw (uncalibrated) model runs using default parameter estimates 

obtained from several previous studies (Anderson et al., 2006; Reed et al., 2007). In terms of the 

performance metrics, model predictions remain skillful for all the calibration approaches (Figure 

3). Precalibration outperforms the stepwise line search (best estimate predictions). FaMoS 

demonstrate a higher skill score than both the stepwise line search and precalibration for both 

calibration and out-of-sample evaluations.  

https://paperpile.com/c/yqURQs/XgAW+SgcH


 

 
Figure 4: (a) - (c) Calibration and (d) - (f) and out-of-sample prediction for different flood events. 

 

Accounting for parametric uncertainty improves flood hazard estimates (Figure 4). The 

resulting predictive distribution of flood events demonstrates the impacts of model calibration. The 

stepwise line search underestimates the flood peaks by as much as 35% (Figure 4b) during 

calibration and 40% during out-of-sample prediction (Figure 4e). Precalibration captures the 

specific flood events, but exhibits very high prediction uncertainty as evidenced by the wider 

prediction intervals. Overall, FaMoS improves flood peak estimates and provides narrower 

prediction intervals. Consider, as an example, the case of Tropical Storm Lee with streamflow 



 

observation of 11, 292 m3/sec. Precalibration provides a flood peak prediction of 10, 539 m3/sec 

and prediction intervals (5%-95% credible interval) range from 6, 359 m3/sec to 14, 222 m3/sec 

(width = 7, 863 m3/sec). FaMoS has a corresponding flood peak prediction of 11, 467 m3/sec with 

a credible interval ranging from 9, 925 m3/sec to 13, 121 m3/sec (width = 3, 196 m3/sec). 

 
 

Figure 5: Relative operating characteristics (ROC) curve for different calibration approaches. ROC curve plots the 

probability of detection against the probability of false detection for a range of forecast probability levels. A larger 

area under the ROC curve represents a more skillful prediction, with more ability to discriminate between flood 

thresholds. The area under the ROC curve can range between 0 and 1, where a score of 1 implies perfect discrimination 

and a score of 0.5 or less implies predictive discrimination that is no better than a random guess. We also compute the 

ROC score. The ROC score measures the average gain over climatology for all probability levels. The ROC score for 

stepwise line search, precalibration and FAMOS is 0.55, 0.85 and 0.96 respectively. 

 

We assess each calibration approach’s classification ability or how well each method 

discriminates between occurrences (water level crossing the action stage) versus non-occurrences 

(regular water level) of an event (Figure 5). Managing flood risks can require decision makers to 

choose between two options (e.g., to evacuate or not or to elevate a house or not) based on a 

prediction of an event (e.g., water rising to a certain level) with one decision preferred if the event 



 

doesn't occur, and the other if it does. A perfect prediction system for a binary outcome correctly 

predicts the occurrence of an event (unity probability of detection) and never issues incorrect 

predictions when it does not occur (zero probability of false detection). How well a prediction 

system approaches this ideal case can be quantified by the relative operating characteristics (ROC) 

curve (see Text S4) (Mason & Graham, 2002). Technically, the ROC curve assesses the quality of 

probability predictions by relating the probability of detection (true alarm) to the corresponding 

probability of false detection (false-alarm rate), as a decision threshold is varied across the full 

range of a continuous prediction quantity (Figure 5). Streamflow predictions obtained using the 

FaMoS parameter distribution exhibit better discriminatory ability (higher ROC score) than the 

stepwise line search and precalibration. Stepwise line search shows a relatively poor ability to 

discriminate between different events. This poor ability to discriminate between the events can 

lead to poor decisions and outcomes.  

 
Figure 6: Survival function (one minus the cumulative frequency) for damage estimates using streamflow obtained 

using the best parameter set (stepwise line search) and parameter distribution (FaMoS). We shoe damage estimates 

for a) calibration and b) out-of-sample prediction. cdf= cumulative distribution function.  
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Neglecting parametric uncertainty also underestimates potential flood damage (Figure 6). We 

find that the stepwise line search tends to underestimate the flood damage. The underestimation 

bias increases as flood magnitude increases. Accounting for parametric uncertainty improves the 

damage estimates for the calibration data and out-of-sample predictions. The damage credible 

interval obtained using FaMoS parameter distribution generally captures the observed damage for 

different flood events. As expected, at the upper tails of the damage, the predictive uncertainty 

tends to be higher for the out-of-sample prediction as compared to the calibration.  

 

5. Caveats 

We use a relatively simple model and small region with hypothetical exposure to demonstrate 

our points. This parsimony helps with transparency, but it comes with several caveats. For 

example, our analysis focuses on high flows. Future work might consider calibrating other flow 

thresholds, including low flows and moderate flows. Due to a large number of low and moderate 

flow observations, dimension-reduction techniques like principal components (Chang et al., 2014; 

Higdon et al., 2008) or eigenfunctions (Mak et al., 2018) may be appropriate to summarize the 

large datasets. There are, of course, other deep uncertainties affecting flood hazards and risks that 

could be taken into account in future work. These include model structural uncertainty as well as 

different spatial resolutions and land surface characteristics. Increasing the spatio-temporal 

resolutions may drastically raise the hydrologic model’s complexity as well as the associated single 

model run times. To reduce the number of sequential hydrologic model evaluations, we can embed 

parallel Markov Chain Monte Carlo approaches such as Multiple-Try Metropolis (Liu et al., 2000) 

or “emcee” samplers (Goodman & Weare, 2010)or genetic algorithms (Park et al., 2009) into the 

FaMoS calibration framework. We note that our damage estimates are based on a simple Bathtub-

based flood inundation model. Future work could use process-informed models to characterize the 

impacts of hydrodynamic processes in damage estimates (Brunner, 1995; Coulthard et al., 2013; 

Judi et al., 2018). In addition, future work could sample the uncertainty surrounding the flood 

vulnerability of the building (Wing et al., 2020).  

 

6. Conclusions 

 We use a Bayesian data-model fusion framework to calibrate a distributed hydrologic 

model and to demonstrate practical implications of neglecting key uncertainties on hazard- and 
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risk-estimates. We compare the results of the Bayesian approach to two simpler methods: stepwise 

line search and precalibration. We show that these simpler methods can considerably 

underestimate flood hazards and risks. Precalibration improves flood hazards estimates over the 

best fit estimates, but provides a wider predictive interval (i.e., highly uncertain estimates). The 

predictive skill of the Bayesian approach dominates the stepwise line search and precalibration 

approaches. We show how neglecting model parametric uncertainty can substantially 

underestimate flood hazards and risk estimates and demonstrate how applying state-of-the-art 

statistical methods can help to refine flood-risk projections. 
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Appendix A: Fast Model Calibrations (FaMoS) Details

1 Bayesian Calibration Framework

Suppose we have an observed time series Z = (Z(t1), ..., Z(tn))0 times ti 2 T where T is
the temporal domain of the process. We also have a deterministic computer model that
generates a temporal process, or time series, at times ti 2 T . Let Y (t,✓) be the computer
model output at the time t 2 T and the parameter (input) setting ✓ 2 ⇥ ✓ Rd. ⇥ is the
parameter space of the computer model with integer d being the number of input parameters.
In this study, we use a discretized temporal domain at T distinct time points T = (t1, ..., tT )0.
The vector Y(✓i) = (Y (t1,✓i), ..., Y (tT ,✓i))0 is the computer model output corresponding to
parameter setting ✓i. For input parameter setting ✓, we model the observations Z as:

Z = Y(✓) + � + ✏✏✏, (A1)

where ✏✏✏ ⇠ N(0, �2
✏ I) are the independently and identically distributed observational error,

and � 2 Rn is a systemic data-model discrepancy term, which can be modeled as a zero-mean
Gaussian process (Bhat et al., 2010; Bayarri et al., 2007) or other flexible functional forms
(Brynjarsdottir and O’Hagan, 2014).

In the Bayesian calibration framework, we obtain samples (via a Markov chain Monte
Carlo (MCMC) algorithm) from the posterior distribution:

⇡(✓, �2
✏ , �|Z) / p(Z|✓, �2

✏ , �)p(✓)p(�
2
✏ )p(�), (A2)

where p(Z|✓, �2
✏ , �) denotes the likelihood function and p(·) represents the prior distribu-

tion for the respective parameters and discrepancy term. Note that each evaluation of
p(Z|✓, �2

✏ , �) requires running the computer model using specific input parameters ✓. Hence,
MCMC-based calibration approaches are sensible for computer models with shorter single
model run walltimes, typically under 5 seconds per model run (Lee et al., 2020). For our
study, we estimate that a standard MCMC-based calibration approach would on the order
of years to approximate the posterior distribution ⇡(✓, �2

✏ , �|Z).
Surrogate methods such as Gaussian process-based emulators are well suited to computer

models with long run times and few model parameters. Here, we replace the more expensive
computer model with a cheaper emulator. Since an emulator must be trained using a pre-
specified set of inputs and model output, a carefully designed set of traning data is important
for building accurate surrogate models. Dense sampling schemes, such as full factorial or
fractional factorial designs, capture higher order interactions; however, running the computer
model at each of the design points is costly. Space-filling designs such as the Latin Hypercube
Design (McKay et al., 2000; Steinberg and Lin, 2006; Stein, 1987) or adaptive experimental
designs (Chang et al., 2016; Gramacy and Apley, 2015; Urban and Fricker, 2010; Queipo
et al., 2005) use fewer design points, but these may generate lower-fidelity surrogate models
by ignoring higher order interactions among inputs (Liu and Guillas, 2017).



2 Particle-based Calibration Framework

We calibrate the HL-RDHM distributed hydrological model using the fast particle-based
approach from Lee et al. (2020), which is built upon traditional Sequential Monte Carlo
algorithms (Del Moral et al., 2006; Doucet et al., 2000; Liu and West, 2001), notably the It-
erated Batch Importance Sampling (IBIS) (Chopin, 2002; Crisan and Doucet, 2000) method.
This method approximates a the posterior distribution ⇡(✓, �2

✏ , �|Z) using an evolving en-
semble of particles.

We simplify the notation for an arbitrary target distribution as ⇡(✓) with random variable
✓ 2 Rd. In the calibration framework, the target distribution ⇡(✓) would be the posterior
distribution ⇡(✓, �2

✏ , �|Z) with random variables ✓, �2
✏ , and � and observations Z. Suppose

we want to estimate µ = E⇡

⇥
g(✓)

⇤
. Given q(✓) > 0 whenever g(✓)⇡(✓) > 0, 8✓ 2 ⇥. Then

E⇡

⇥
g(✓)

⇤
= Eq

h
g(✓)w(✓)

i
, where w(✓) = ⇡(✓)

q(✓)
is the importance weight and

PN
i=1 w(✓i) = 1.

The importance sampling estimator is µ̂n = 1
n

PN
i=1 g(✓i)w(✓i) and µ̂n ! µ with probability

1 by the strong law of large numbers. For target distributions with an unknown normalizing
constant, the weights can be normalized as follows:

w̃(✓i) =
w(✓i)Pn
j=1 w(✓j)

=
⇡(✓i)/q(✓i)Pn

j=1 w(✓j)
(A3)

where
PN

i=1 w̃(✓i) = 1.
Sampling-Importance-Resampling (Gordon et al., 1993; Doucet et al., 2001) approxi-

mates a target distribution ⇡(✓) with an empirical distribution of the particles ⇡̂(✓) from an
importance function q(✓). The empirical distribution is defined as:

⇡(✓) ⇡ ⇡̂(✓) =
NX

i=1

w̃(✓i)�(✓i), (A4)

where w̃(✓i) are the normalized importance weights, �(✓i) is a Dirac measure that places
unit mass at ✓i and

PN
i=1 w̃(✓i) = 1.

Poor choices of importance functions can lead to inaccurate approximations of the target
distribution (Doucet et al., 2000) where the bulk of the particles ✓i’s do not reside in the
high-probability regions of the target distribution ⇡(✓). Weight degeneracy occurs when the
vast majority of the particles have near-zero importance weights. Multinomial resampling
methods can combat weight degeneracy by eliminating the particles with very small impor-
tant weights and replicating those with higher weights (Gordon et al., 1993; Doucet et al.,
2000). After resampling, we reset all importance weights such that w(✓i) = 1/N and use
the unweighted empirical distribution ⇡̈(✓):

⇡̈(✓) =
1

N

NX

i=1

Ni�(✓i), (A5)

where Ni is the number of replicates corresponding to particle ✓i and
PN

i=1 Ni = N . Extreme
weight degeneracy, where very few particles have any significant weight, can lead to sample
impoverishment where a few unique particles ✓i’s are heavily replicated in the re-sampling



step; hence, the empirical distribution ⇡̈(✓) may poorly approximate the target distribution
⇡(✓).

An alternative method mutates the replicated particles with samples from K(✓(t�1)
i ), the

Metropolis-Hastings transition kernel (Gilks and Berzuini, 2001), whose stationary distribu-
tion is also the target distribution ⇡(✓). Here we run J Metropolis-Hastings updates for each
particle ✓i, for i = 1, ..., N . Alternative mutation schemes use genetic algorithms (Zhu et al.,
2018) or di↵erent families of transition kernels, K(·) (Papaioannou et al., 2016; Murray et al.,
2016). We set the jth sample drawn via MCMC as the mutated particle ✓̃i. Since ✓̃i ⇠ ⇡(✓),
the resulting empirical distribution ⇡̃(✓) approximates the target distribution ⇡(✓):

⇡(✓) ⇡ ⇡̃(✓) =
NX

i=1

✓̃i�(✓̃i). (A6)

Unfortunately, poor importance functions can result in severe sample impoverishment,
which may require very long (and costly) mutation stages to provide an accurate represen-
tation of the target distribution (Li et al., 2014). Mixture approximations (Gordon et al.,
1993) or kernel smoothing methods (Liu and West, 2001) can mutate or rejuvenate the
replicated particles. However, these methods may not scale well to high-dimensional target
distributions (Doucet et al., 2000).

2.1 Fast Particle-based Approach For Computer Model Calibra-

tion

In this study, we aim to approximate the posterior ⇡(✓, �, �2
✏ |Z) from a computationally e�-

cient approach. The fast particle-based approach (Lee et al., 2020) utilizes a set of tempered,
or intermediate, posterior distributions ⇡t(✓, �, �2

✏ |Z) for t = 1, ..., T , which will act as both
the importance functions and target distributions. Intermediate posterior distributions can
be generated using likelihood tempering (Chopin, 2002; Neal, 2001; Liang and Wong, 2001)
where the tth intermediate posterior distribution is defined as:

⇡t(✓, �, �2
✏ |Z) / p(Z|✓, �, �2

✏ )
�tp(✓)p(�)p(�2

✏ ), (A7)

where �t’s are determined according to a schedule where �0 = 0 < �1 < · · · < �T = 1. For
each ⇡t(✓, �, �2

✏ |Z), the likelihood component is a fractional power of the original likelihood
p(Z|✓, �, �2

✏ ). Using an adaptive incorporation schedule (Lee et al., 2020), we can select the
appropriate ��� = {�0, �1, ..., �T} within the calibration algorithm.

For cycle t = 1, we set the importance distribution to be the prior distribution p(✓, �, �2
✏ ) =

p(✓)p(�)p(�2
✏ ), and the target distribution to be the first intermediate posterior distribution,

⇡1(✓, �, �2
✏ |Z). For subsequent cycles t, the importance distribution is ⇡t�1(✓, �, �2

✏ |Z) and
the target distribution is ⇡t(✓, �, �2

✏ |Z).
Next, we mutate the particles via short runs of the Metropolis-Hastings algorithm, where

the stationary distribution is ⇡t(✓, �, �2
✏ |Z), the t-th intermediate posterior distribution. Note

that the importance and target distributions are consecutive (t-th and (t+1)-th) intermediate
posterior distributions, so there is considerable overlap between the high-probability regions
of the two distributions. In the mutation stage, we employ the stopping rule from Lee et al.



(2020) to control the number of Metropolis-Hastings updates; thereby preventing any unnec-
essary computer model runs. The mutation stages ends when the Bhattacharyya distance
(Bhattacharyya, 1946) between two sets of particles from the mutation stage stablizes.

2.2 Adaptive incorporation schedule

To reduce computational costs and potentially reduce unnecessary computer model evalu-
ations, we adopt the adaptive incorporation schedule from Lee et al. (2020). Upon initial-
ization, we set the first incorporation increment �0 = 0. We draw the initial set of particles
✓0 from ⇡0(✓|Z) / L(✓|Z)0p(✓) = p(✓), the prior distribution of model parameters. For the

subsequent cycles t = 1, 2, 3, ..., we calculate the full likelihood L(✓(i)
t�1|Z) for i = 1, ..., N

where ✓(i)
t�1 denotes the parameter samples from the previous cycle t� 1. For computational

e�ciency, we reuse the likelihood evaluations from the previous cycle. Next, we compute
the optimal �t that returns an e↵ective sample size (ESS) of ESSthresh or a sample size
closest to ESSthresh: �t = argmin�{(ESS� � ESSthresh)2} , where � 2 (�min, 1 � �t�1),

�min is a previously set minimum incorporation value, ESS�t =
PN

i=1 1/wt(✓
(i)
t )2, and

wt(✓
(i)
t ) / L(✓(i)

t |Z)�. Note that we can lower computational costs by evaluating the full

likelihood L(✓(i)
0 |Z) only once before the optimization.

We stop the scheduling algorithm when
Pt

i=1 �t = 1, or when the entire likelihood
has been incorporated and the target distribution evolves to the full posterior distribution
⇡(✓, �2

✏ |Z). Note at each cycle t, we set the incorporation increment (�t) to be between �min

and 1�
Pt

i=1 �t. The user will typically set the minimum incorporation increment �min and
the threshold e↵ective sample size, ESSthresh. We provide our choice of �min and ESSthresh

in the next section (Implementation Details).
Adaptive likelihood incorporation schedule

1. Initialization: At t = 0, set �0 = 0.

2. When t > 0 and
Pt�1

i=1 �i < 1

• Compute L(✓(i)
t�1|Z) for i = 1, ..., N

• Set �t = argmin�{(ESS� � ESSthresh)2}, where ESS� =
PN

i=1
1

w
(i)2
t

, w(i)
t /

L(✓(i)
t |Z)�, and � 2 (�min, 1� �t�1).

• �min is a predetermined minimum incorporation value

3. When
Pt�1

i=1 �i = 1: Stop Calibration

2.3 HL-RDHM Calibration: Implementation Details

In this study, the target distribution is the full posterior distribution ⇡(✓, �2
� , �

2
✏ |Z) and the

Bayesian hierarchical framework for the HL-RDHM distributed hydrological model calibra-



Algorithm 1: Fast Particle-based Calibration
Data: Z
Initialization:

Draw ✓(i)
0 ⇠ p(✓) for particles i = 1, ..., N .

Set w(i)
0 = 1/N , �0 = 0, and K;

for cycles t = 1, ...., T do

1. Compute full likelihood:

Calculate L(✓(i)
t�1|Z) for i = 1, ..., N ;

2. Select optimal likelihood incorporation increment �t:
Set �t = argmin�{(ESS�t � ESSthresh)2}, where � 2 (0.1, 1�

Pt�1
i=1 �t�1)

Note: ESS�t =
PN

i=1
1

w
(i)2
t

and w(i)
t / L(✓(i)

t |Z)�t ;
3. Compute importance weights:

w(i)
t / w(i)

t�1 ⇥ L(✓(i)
t |Z)�t ;

4. Re-sample particles:

Draw ✓(i)
t from {✓(1)

t�1, ...,✓
(N)
t�1} with probabilities / {w(1)

t , ..., w(N)
t };

5. Set intermediate posterior distribution:

Set ⇡t(✓|Z) / L(✓i|Z)�̃⇡(✓), where �̃ =
Pt

j=1 �j;
6. Mutation:

Using each particle (✓(1)
t , ...,✓(N)

t ) as the initial value, run N chains of an MCMC
algorithm with target distribution ⇡t(✓|Z) for 2K iterations
7. Check stopping criterion:

Compute �B = DB(h(✓
K
t ), h(✓

2K
t ));

if �B < ✏B then

Set ✓(i)
t = ✓(i),2K

t ;
else

Run K additional updates and re-evaluate stopping criterion
Continue until stopping criterion is met

8. Stop when full likelihood is incorporated;

if
PN

i=1 �t = 1 then

End Algorithm;
else

Reset weights: w(i)
t = 1/N for particles i = 1, ..., N ;

Set t=t+1 and return to Step 1;



tion is as follows:

Data Model: Z|Y(·),✓, �, �2
✏ ⇠ N (Y(✓) + �, �2

✏I) (A8)

Process Model: �|�2
� ⇠ N (0, �2

�I) (A9)

Parameter Model: ✓ ⇠ p(✓), �2
� ⇠ p(�2

� ), �2
✏ ⇠ p(�2

✏ ) (A10)

where p(✓), p(�2
� ), and p(�2

✏ ) denote the prior distributions of ✓, �2
� , and �2

✏ , respectively.
For p(✓), we place a priori independent uniform priors on each of the model parameters with
ranges (lower and upper bounds) based on domain-area expertise.

Instead of estimating the nuisance parameters �2
� and �2

✏ separately, we chose to combine
these as �2 = �2

� + �2
✏ . We place a standard non-informative inverse gamma prior on the

combined error variance �2
✏ ⇠ IG(0.2, 0.2). The updated Bayesian hierarchical framework

is:

Data Model: Z|Y(·),✓, �2 ⇠ N (Y(✓), �2I) (A11)

Parameter Model: ✓ ⇠ p(✓), �2 ⇠ p(�2) (A12)

While much of the fast particle-based approach is automated, the user must select the:
(1) total number of particles, N ; (2) baseline number of Metropolis-Hastings updates run
before checking the stopping criterion, K; (3) minimum incorporation �min at each cycle;
and (4) the e↵ective sample size threshold ESSthresh. We chose N = 2015 particles based
on the available resources. On the Cheyenne HPC, this requires 56 nodes with 36 processors
per node. For the stopping criterion, we use k = 7 as the baseline length. The floor
for the incorporation increment is fixed at �min = 0.1 such that we incoporate at least
L(✓|Z)0.1 into the intermediate posterior at each cycle. Finally, the ESSthresh = N/2, which
is the typical threshold that activates resampling in many sequential Monte Carlo methods
(Del Moral et al., 2006).We calibrate the HL-RDHM distributed hydrological model using
Cheyenne (Computational and Information Systems Laboratory, 2017), a 5.34-petaflops high
performance computer operated by the National Center for Atmospheric Research (NCAR).
We employ message passing interface (MPI) and the R package Rmpi for any parallelized
operations such as computing importance weights and particle mutation.

The prior distribution p(✓j) for the j-th HL-RDHM model parameters follow a univari-
ate uniform distribution with lower and upper bounds specified by our hydrological model
experts. ✓j ⇠ Unif(lj, uj) with hyperparameters lj(lower bound) and uj (upper bound)
specified in Table S1. We place a standard non-informative inverse gamma prior on the
combined error variance �2 ⇠ IG(↵�2 , ��2) where ↵�2 = 0.2 and ��2 = 0.2.
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