References
Aires, F. (2014). Combining Datasets of Satellite-Retrieved Products. Part I: Methodology and Water Budget Closure. Journal of Hydrometeorology . https://doi.org/10.1175/jhm-d-13-0148.1
Alkama, R., Decharme, B., Douville, H., Becker, M., Cazenave, A., Sheffield, J., et al. (2010). Global evaluation of the ISBA-TRIP continental hydrological system. Part I: Comparison to GRACE terrestrial water storage estimates and in situ river discharges. Journal of Hydrometeorology . https://doi.org/10.1175/2010JHM1211.1
Asadzadeh Jarihani, A., Callow, J. N., Johansen, K., & Gouweleeuw, B. (2013). Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods. Journal of Hydrology . https://doi.org/10.1016/j.jhydrol.2013.09.010
Di Baldassarre, G., & Montanari, A. (2009). Uncertainty in river discharge observations: A quantitative analysis. Hydrology and Earth System Sciences . https://doi.org/10.5194/hess-13-913-2009
Baroni, G., Schalge, B., Rakovec, O., Kumar, R., Schüler, L., Samaniego, L., et al. (2019). A Comprehensive Distributed Hydrological Modeling Intercomparison to Support Process Representation and Data Collection Strategies. Water Resources Research . https://doi.org/10.1029/2018WR023941
Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology . https://doi.org/10.1016/j.jhydrol.2010.03.027
Beven, K. (2006). A manifesto for the equifinality thesis. InJournal of Hydrology . https://doi.org/10.1016/j.jhydrol.2005.07.007
Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes . https://doi.org/10.1002/hyp.3360060305
Blöschl, G., Bierkens, M. F. P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., et al. (2019). Twenty-three Unsolved Problems in Hydrology (UPH)—A community perspective. Hydrological Sciences Journal. https://doi.org/10.1080/02626667.2019.1620507
Brêda, J. P. L. F., Paiva, R. C. D., Bravo, J. M., Passaia, O. A., & Moreira, D. M. (2019). Assimilation of Satellite Altimetry Data for Effective River Bathymetry. Water Resources Research . https://doi.org/10.1029/2018wr024010
Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D. J., et al. (2015). Improving the representation of hydrologic processes in Earth System Models. Water Resources Research . https://doi.org/10.1002/2015WR017096
Collischonn, B., Collischonn, W., & Tucci, C. E. M. (2008). Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates.Journal of Hydrology . https://doi.org/10.1016/j.jhydrol.2008.07.032
Collischonn, W., Allasia, D., da Silva, B. C., & Tucci, C. E. M. (2007). The MGB-IPH model for large-scale rainfall-runoff modelling.Hydrological Sciences Journal . https://doi.org/10.1623/hysj.52.5.878
Croke, B. F. W. (2009). Representing uncertainty in objective functions: Extension to include the influence of serial correlation. In 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Proceedings .
Crow, W. T., Wood, E. F., & Pan, M. (2003). Multiobjective calibration of land surface model evapotranspiration predictions using streamflow observations and spaceborne surface radiometric temperature retrievals.Journal of Geophysical Research D: Atmospheres . https://doi.org/10.1029/2002JD003292
Demirel, M. C., Mai, J., Mendiguren, G., Koch, J., Samaniego, L., & Stisen, S. (2018). Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model. Hydrology and Earth System Sciences.https://doi.org/10.5194/hess-22-1299-2018
Demirel, M. C., Özen, A., Orta, S., Toker, E., Demir, H. K., Ekmekcioglu, Ö., Taysi, H., Eruçar, S., Sag, A. B., Sari, Ö., Tuncer, E., Hanci, H., Özcan, T. I., Erdem, H., Kosucu, M. M., Basakin, E. E., Ahmed, K., Anwar, A., Avcuoglu, M. B., Vanli, Ö., Stisen, S., & Booij, M. J. (2019). Additional value of using satellite-based soil moisture and two sources of groundwater data for hydrological model calibration.Water. https://doi.org/10.3390/w11102083
Duan, Q., Sorooshian, S., & Gupta, V. (1992). Effective and efficient global optimization for conceptual rainfall‐runoff models. Water Resources Research . https://doi.org/10.1029/91WR02985
Fan, F. M., Buarque, D. C., Pontes, P. R. M., & Collischonn, W. (2015). Um mapa de Unidades de Resposta Hidrológica para a América do Sul.XXI Simpósio Brasileiro de Recursos Hídricos .
Fleischmann, A.S., Paiva, R.C.D., Collischonn, W., Siqueira, V.A., Paris, A., Moreira, D.M., Papa, F., Bitar, A.A., Parrens, M., Aires, F. & Garambois, P.A. (2020). Trade‐offs between 1D and 2D regional river hydrodynamic models. Water Resources Research.https://doi.org/10.1029/2019WR026812
Foglia, L., Hill, M. C., Mehl, S. W., & Burlando, P. (2009). Sensitivity analysis, calibration, and testing of a distributed hydrological model using error-based weighting and one objective function. Water Resources Research . https://doi.org/10.1029/2008WR007255
Franks, S. W., Gineste, P., Beven, K. J., & Merot, P. (1998). On constraining the predictions of a distributed model: The incorporation of fuzzy estimates of saturated areas into the calibration process.Water Resources Research . https://doi.org/10.1029/97WR03041
Gharari, S., Shafiei, M., Hrachowitz, M., Kumar, R., Fenicia, F., Gupta, H. V., & Savenije, H. H. G. (2014). A constraint-based search algorithm for parameter identification of environmental models. Hydrology and Earth System Sciences . https://doi.org/10.5194/hess-18-4861-2014
Gomis-Cebolla, J., Jimenez, J. C., Sobrino, J. A., Corbari, C., & Mancini, M. (2019). Intercomparison of remote-sensing based evapotranspiration algorithms over amazonian forests.International Journal of Applied Earth Observation and Geoinformation . https://doi.org/10.1016/j.jag.2019.04.009
Grimaldi, S., Schumann, G. J. P., Shokri, A., Walker, J. P., & Pauwels, V. R. N. (2019). Challenges, Opportunities, and Pitfalls for Global Coupled Hydrologic-Hydraulic Modeling of Floods. Water Resources Research . https://doi.org/10.1029/2018WR024289
Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology . https://doi.org/10.1016/j.jhydrol.2009.08.003
Haddeland, I., Skaugen, T., & Lettenmaier, D. P. (2006). Anthropogenic impacts on continental surface water fluxes. Geophysical Research Letters . https://doi.org/10.1029/2006GL026047
Hasler, N., & Avissar, R. (2007). What controls evapotranspiration in the Amazon basin? Journal of Hydrometeorology . https://doi.org/10.1175/JHM587.1
Herman, M. R., Nejadhashemi, A. P., Abouali, M., Hernandez-suarez, S., Daneshvar, F., Zhang, Z., et al. (2017). Evaluating the Role of Evapotranspiration Remote Sensing Data in Improving Hydrological Modeling Predictability. Journal of Hydrology . https://doi.org/10.1016/j.jhydrol.2017.11.009
Hess, L. L., Melack, J. M., Novo, E. M. L. M., Barbosa, C. C. F., & Gastil, M. (2003). Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment . https://doi.org/10.1016/j.rse.2003.04.001
Hodges, B. R. (2013). Challenges in continental river dynamics.Environmental Modelling and Software . https://doi.org/10.1016/j.envsoft.2013.08.010
Holeman, J. N. (1968). The Sediment Yield of Major Rivers of the World.Water Resources Research . https://doi.org/10.1029/WR004i004p00737
Houser, P. R., Shuttleworth, W. J., Famiglietti, J. S., Gupta, H. V., Syed, K. H., & Goodrich, D. C. (1998). Integration of soil moisture remote sensing and hydrologic modeling using data assimilation.Water Resources Research . https://doi.org/10.1029/1998WR900001
Hrachowitz, M., Savenije, H. H. G., Blöschl, G., McDonnell, J. J., Sivapalan, M., Pomeroy, J. W., et al. (2013). A decade of Predictions in Ungauged Basins (PUB)-a review. Hydrological Sciences Journal . https://doi.org/10.1080/02626667.2013.803183
Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., et al. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology . https://doi.org/10.1175/JHM560.1Jiang, D., & Wang, K. (2019). The Role of Satellite-Based Remote Sensing in Improving Simulated Streamflow: A Review. Water . https://doi.org/10.3390/w11081615
Junk, W. J. (1997). General Aspects of Floodplain Ecology with Special Reference to Amazonian Floodplains. https://doi.org/10.1007/978-3-662-03416-3_1
Karthikeyan, L., Pan, M., Wanders, N., Kumar, D. N., & Wood, E. F. (2017). Four decades of microwave satellite soil moisture observations: Part 2. Product validation and inter-satellite comparisons.Advances in Water Resources . https://doi.org/10.1016/j.advwatres.2017.09.010
Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Martinuzzi, J. M., Font, J., & Berger, M. (2001). Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Transactions on Geoscience and Remote Sensing . https://doi.org/10.1109/36.942551
Kirchner, J. W. (2006). Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research . https://doi.org/10.1029/2005WR004362
Kittel, C., Nielsen, K., Tøttrup, C., & Bauer-Gottwein, P. (2018). Informing a hydrological model of the Ogooué with multi-mission remote sensing data. Hydrology and Earth System Sciences . https://doi.org/10.5194/hess-22-1453-2018
Koch, J., Demirel, M. C., & Stisen, S. (2018). The SPAtial EFficiency metric (SPAEF): Multiple-component evaluation of spatial patterns for optimization of hydrological models. Geoscientific Model Development . https://doi.org/10.5194/gmd-11-1873-2018
Koppa, A., Gebremichael, M., & Yeh, W. W. G. (2019). Multivariate calibration of large scale hydrologic models: The necessity and value of a Pareto optimal approach. Advances in Water Resources . https://doi.org/10.1016/j.advwatres.2019.06.005
Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated.Meteorologische Zeitschrift . https://doi.org/10.1127/0941-2948/2006/0130
Lambin, J., Morrow, R., Fu, L. L., Willis, J. K., Bonekamp, H., Lillibridge, J., et al. (2010). The OSTM/Jason-2 Mission. Marine Geodesy . https://doi.org/10.1080/01490419.2010.491030
Lee, H., Jung, H. C., Yuan, T., Beighley, R. E., & Duan, J. (2014). Controls of Terrestrial Water Storage Changes Over the Central Congo Basin Determined by Integrating PALSAR ScanSAR, Envisat Altimetry, and GRACE Data. In Remote Sensing of the Terrestrial Water Cycle . https://doi.org/10.1002/9781118872086.ch7
Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M., & Wood, E. F. (2015). Inroads of remote sensing into hydrologic science during the WRR era. Water Resources Research . https://doi.org/10.1002/2015WR017616
Li, Y., Grimaldi, S., Pauwels, V. R. N., & Walker, J. P. (2018). Hydrologic model calibration using remotely sensed soil moisture and discharge measurements: The impact on predictions at gauged and ungauged locations. Journal of Hydrology . https://doi.org/10.1016/j.jhydrol.2018.01.013
Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research . https://doi.org/10.1029/94jd00483
Lo, M. H., Famiglietti, J. S., Yeh, P. J. F., & Syed, T. H. (2010). Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data. Water Resources Research . https://doi.org/10.1029/2009WR007855
López, P. L., Sutanudjaja, E. H., Schellekens, J., Sterk, G., & Bierkens, M. F. P. (2017). Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products. Hydrology and Earth System Sciences . https://doi.org/10.5194/hess-21-3125-2017
Maeda, E. E., Ma, X., Wagner, F. H., Kim, H., Oki, T., Eamus, D., & Huete, A. (2017). Evapotranspiration seasonality across the Amazon Basin. Earth System Dynamics . https://doi.org/10.5194/esd-8-439-2017
Manfreda, S., Mita, L., Dal Sasso, S. F., Samela, C., & Mancusi, L. (2018). Exploiting the use of physical information for the calibration of a lumped hydrological model. Hydrological Processes . https://doi.org/10.1002/hyp.11501
Maurer, E. P., Adam, J. C., & Wood, A. W. (2009). Climate model based consensus on the hydrologic impacts of climate change to the Rio Lempa basin of Central America. Hydrology and Earth System Sciences . https://doi.org/10.5194/hess-13-183-2009
Milzow, C., Krogh, P. E., & Bauer-Gottwein, P. (2011). Combining satellite radar altimetry, SAR surface soil moisture and GRACE total storage changes for hydrological model calibration in a large poorly gauged catchment. Hydrology and Earth System Sciences . https://doi.org/10.5194/hess-15-1729-2011
Mitchell, K. E., Lohmann, D., Houser, P. R., Wood, E. F., Schaake, J. C., Robock, A., et al. (2004). The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system.Journal of Geophysical Research D: Atmospheres . https://doi.org/10.1029/2003JD003823
Montanari, A., & Koutsoyiannis, D. (2014). Modeling and mitigating natural hazards: Stationarity is immortal! Water Resources Research . https://doi.org/10.1002/2014WR016092
Motovilov, Y. G., Gottschalk, L., Engeland, K., & Rodhe, A. (1999). Validation of a distributed hydrological model against spatial observations. Agricultural and Forest Meteorology . https://doi.org/10.1016/S0168-1923(99)00102-1
Mu, Q., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment . https://doi.org/10.1016/j.rse.2011.02.019
Naz, B. S., Frans, C. D., Clarke, G. K. C., Burns, P., & Lettenmaier, D. P. (2014). Modeling the effect of glacier recession on streamflow response using a coupled glacio-hydrological model. Hydrology and Earth System Sciences . https://doi.org/10.5194/hess-18-787-2014
Neal, J.C., Odoni, N. A., Trigg, M.A., Freer, J. E., Garcia-Pintado, J., & Mason, D. C. (2015). Efficient incorporation of channel cross-section geometry uncertainty into regional and global scale flood inundation models. Journal of Hydrology . https://doi.org/10.1016/j.jhydrol.2015.07.026
Neal, J., Schumann, G., & Bates, P. (2012). A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas. Water Resources Research . https://doi.org/10.1029/2012WR012514
Nearing, G. S., Tian, Y., Gupta, H. V., Clark, M. P., Harrison, K. W., & Weijs, S. V. (2016). A philosophical basis for hydrological uncertainty. Hydrological Sciences Journal . https://doi.org/10.1080/02626667.2016.1183009
Nepstad, D. C., De Carvalho, C. R., Davidson, E. A., Jipp, P. H., Lefebvre, P. A., Negreiros, G. H., et al. (1994). The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures.Nature . https://doi.org/10.1038/372666a0
New, M., Hulme, M., & Jones, P. (2000). Representing twentieth-century space-time climate variability. Part II: Development of 1901-96 monthly grids of terrestrial surface climate. Journal of Climate . https://doi.org/10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2
Nijzink, R. C., Almeida, S., Pechlivanidis, I. G., Capell, R., Gustafssons, D., Arheimer, B., et al. (2018). Constraining Conceptual Hydrological Models With Multiple Information Sources. Water Resources Research . https://doi.org/10.1029/2017WR021895
O’Loughlin, F. E., Paiva, R. C. D., Durand, M., Alsdorf, D. E., & Bates, P. D. (2016). A multi-sensor approach towards a global vegetation corrected SRTM DEM product. Remote Sensing of Environment . https://doi.org/10.1016/j.rse.2016.04.018
Paiva, R. C.D., Collischonn, W., Bonnet, M. P., De Gonçalves, L. G. G., Calmant, S., Getirana, A., & Santos Da Silva, J. (2013). Assimilating in situ and radar altimetry data into a large-scale hydrologic-hydrodynamic model for streamflow forecast in the Amazon.Hydrology and Earth System Sciences . https://doi.org/10.5194/hess-17-2929-2013
Paiva, R. C.D., Collischonn, W., & Tucci, C. E. M. (2011). Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. Journal of Hydrology . https://doi.org/10.1016/j.jhydrol.2011.06.007
Paiva, R. C. D., Buarque, D. C., Collischonn, W., Bonnet, M. P., Frappart, F., Calmant, S., & Bulhões Mendes, C. A. (2013). Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin.Water Resources Research . https://doi.org/10.1002/wrcr.20067
Pan, M., & Wood, E. F. (2006). Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman filter.Journal of Hydrometeorology . https://doi.org/10.1175/JHM495.1
Pan, S., Liu, L., Bai, Z., & Xu, Y. P. (2018). Integration of remote sensing evapotranspiration into multi-objective calibration of distributed hydrology-soil-vegetation model (DHSVM) in a humid region of China. Water (Switzerland) . https://doi.org/10.3390/w10121841
Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora, V.K., Haverd, V., Jain, A.K., Kato, E., Lienert, S., Lombardozzi, D., Nabel, J.E.M.S., Ottlé, C., Poulter, B., Zaehle, S., Running, S.W. (2020). Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrol. Earth Syst. Sci.https://doi.org/10.5194/hess-24-1485-2020
Pathiraja, S., Marshall, L., Sharma, A., & Moradkhani, H. (2016). Hydrologic modeling in dynamic catchments: A data assimilation approach.Water Resources Research . https://doi.org/10.1002/2015WR017192
Pellet, V., Aires, F., Munier, S., Fernández Prieto, D., Jordá, G., Arnoud Dorigo, W., et al. (2019). Integrating multiple satellite observations into a coherent dataset to monitor the full water cycle - Application to the Mediterranean region. Hydrology and Earth System Sciences . https://doi.org/10.5194/hess-23-465-2019
Peña-Arancibia, J. L., Zhang, Y., Pagendam, D. E., Viney, N. R., Lerat, J., van Dijk, A. I. J. M., et al. (2015). Streamflow rating uncertainty: Characterisation and impacts on model calibration and performance.Environmental Modelling and Software . https://doi.org/10.1016/j.envsoft.2014.09.011
Poméon, T., Diekkrüger, B., & Kumar, R. (2018). Computationally efficient multivariate calibration and validation of a grid-based hydrologic model in sparsely gauged West African river basins.Water (Switzerland) . https://doi.org/10.3390/w10101418
Pontes, P. R. M., Fan, F. M., Fleischmann, A. S., de Paiva, R. C. D., Buarque, D. C., Siqueira, V. A., et al. (2017). MGB-IPH model for hydrological and hydraulic simulation of large floodplain river systems coupled with open source GIS. Environmental Modelling and Software . https://doi.org/10.1016/j.envsoft.2017.03.029
Rajib, M. A., Merwade, V., & Yu, Z. (2016). Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture. Journal of Hydrology . https://doi.org/10.1016/j.jhydrol.2016.02.037
Rakovec, O., Kumar, R., Attinger, S., & Samaniego, L. (2016). Improving the realism of hydrologic model functioning through multivariate parameter estimation. Water Resources Research . https://doi.org/10.1002/2016WR019430
Reichle, R. H., McLaughlin, D. B., & Entekhabi, D. (2002). Hydrologic data assimilation with the ensemble Kalman filter. Monthly Weather Review . https://doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2
Rosenqvist, A., Shimada, M., Ito, N., & Watanabe, M. (2007). ALOS PALSAR: A pathfinder mission for global-scale monitoring of the environment. In IEEE Transactions on Geoscience and Remote Sensing . https://doi.org/10.1109/TGRS.2007.901027
Samaniego, L., Kumar, R., & Attinger, S. (2010). Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale.Water Resources Research . https://doi.org/10.1029/2008WR007327
Schattan, P., Schwaizer, G., Schöber, J., & Achleitner, S. (2020). The complementary value of cosmic-ray neutron sensing and snow covered area products for snow hydrological modelling. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2019.111603
Schneider, R., Nygaard Godiksen, P., Villadsen, H., Madsen, H., & Bauer-Gottwein, P. (2017). Application of CryoSat-2 altimetry data for river analysis and modelling. Hydrology and Earth System Sciences . https://doi.org/10.5194/hess-21-751-2017
Schumacher, M., Forootan, E., van Dijk, A. I. J. M., Müller Schmied, H., Crosbie, R. S., Kusche, J., & Döll, P. (2018). Improving drought simulations within the Murray-Darling Basin by combined calibration/assimilation of GRACE data into the WaterGAP Global Hydrology Model. Remote Sensing of Environment . https://doi.org/10.1016/j.rse.2017.10.029
Semenova, O., & Beven, K. (2015). Barriers to progress in distributed hydrological modelling. Hydrological Processes . https://doi.org/10.1002/hyp.10434
Shafii, M., & Tolson, B. A. (2015). Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives. Water Resources Research . https://doi.org/10.1002/2014WR016520
Silvestro, F., Gabellani, S., Rudari, R., Delogu, F., Laiolo, P., & Boni, G. (2015). Uncertainty reduction and parameter estimation of a distributed hydrological model with ground and remote-sensing data.Hydrology and Earth System Sciences . https://doi.org/10.5194/hess-19-1727-2015
Siqueira, V., Fleischmann, A., Jardim, P., Fan, F., & Collischonn, W. (2016). IPH-Hydro Tools: a GIS coupled tool for watershed topology acquisition in an open-source environment. Revista Brasileira de Recursos Hídricos . https://doi.org/10.21168/rbrh.v21n1.p274-287
Siqueira, V. A., Paiva, R. C. D., Fleischmann, A. S., Fan, F. M., Ruhoff, A. L., Pontes, P. R. M., et al. (2018). Toward continental hydrologic-hydrodynamic modeling in South America. Hydrology and Earth System Sciences . https://doi.org/10.5194/hess-22-4815-2018
Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H., Lakshmi, V., et al. (2003). IAHS Decade on Predictions in Ungauged Basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences. Hydrological Sciences Journal . https://doi.org/10.1623/hysj.48.6.857.51421
Sun, W., Ishidaira, H., & Bastola, S. (2012). Calibration of hydrological models in ungauged basins based on satellite radar altimetry observations of river water level. Hydrological Processes . https://doi.org/10.1002/hyp.8429
Sun, W., Fan, J., Wang, G., Ishidaira, H., Bastola, S., Yu, J., et al. (2018). Calibrating a hydrological model in a regional river of the Qinghai–Tibet plateau using river water width determined from high spatial resolution satellite images. Remote Sensing of Environment . https://doi.org/10.1016/j.rse.2018.05.020
Sun, W. C., Ishidaira, H., & Bastola, S. (2010). Towards improving river discharge estimation in ungauged basins: Calibration of rainfall-runoff models based on satellite observations of river flow width at basin outlet. Hydrology and Earth System Sciences . https://doi.org/10.5194/hess-14-2011-2010
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., & Watkins, M. M. (2004). GRACE measurements of mass variability in the Earth system. Science . https://doi.org/10.1126/science.1099192
Tarpanelli, A., Brocca, L., Melone, F., & Moramarco, T. (2013). Hydraulic modelling calibration in small rivers by using coarse resolution synthetic aperture radar imagery. Hydrological Processes . https://doi.org/10.1002/hyp.9550
Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology . https://doi.org/10.1016/j.jhydrol.2012.05.052
Vrugt, J. A., Diks, C. G. H., Gupta, H. V., Bouten, W., & Verstraten, J. M. (2005). Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation.Water Resources Research . https://doi.org/10.1029/2004WR003059
Wagener, T., McIntyre, N., Lees, M. J., Wheater, H. S., & Gupta, H. V. (2003). Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis. Hydrological Processes . https://doi.org/10.1002/hyp.1135
Wambura, F. J., Dietrich, O., & Lischeid, G. (2018). Improving a distributed hydrological model using evapotranspiration-related boundary conditions as additional constraints in a data-scarce river basin.Hydrological Processes . https://doi.org/10.1002/hyp.11453
Werth, S., & Güntner, A. (2010). Calibration analysis for water storage variability of the global hydrological model WGHM. Hydrology and Earth System Sciences . https://doi.org/10.5194/hess-14-59-2010
Werth, S., Güntner, A., Petrovic, S., & Schmidt, R. (2009). Integration of GRACE mass variations into a global hydrological model. Earth and Planetary Science Letters . https://doi.org/10.1016/j.epsl.2008.10.021
Willem Vervoort, R., Miechels, S. F., van Ogtrop, F. F., & Guillaume, J. H. A. (2014). Remotely sensed evapotranspiration to calibrate a lumped conceptual model: Pitfalls and opportunities. Journal of Hydrology . https://doi.org/10.1016/j.jhydrol.2014.10.034
Winsemius, H. C., G. Savenije, H. H., & M. Bastiaanssen, W. G. (2008). Constraining model parameters on remotely sensed evaporation: Justification for distribution in ungauged basins? Hydrology and Earth System Sciences . https://doi.org/10.5194/hess-12-1403-2008
Xu, C. Y., Widén, E., & Halldin, S. (2005). Modelling hydrological consequences of climate change - Progress and challenges. Advances in Atmospheric Sciences . https://doi.org/10.1007/BF02918679
Xu, X., Li, J., & Tolson, B. A. (2014). Progress in integrating remote sensing data and hydrologic modeling. Progress in Physical Geography . https://doi.org/10.1177/0309133314536583
Yamazaki, D., Kanae, S., Kim, H., & Oki, T. (2011). A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research . https://doi.org/10.1029/2010WR009726
Yapo, P. O., Gupta, H. V., & Sorooshian, S. (1998). Multi-objective global optimization for hydrologic models. Journal of Hydrology . https://doi.org/10.1016/S0022-1694(97)00107-8
Zajac, Z., Revilla-Romero, B., Salamon, P., Burek, P., Hirpa, F., & Beck, H. (2017). The impact of lake and reservoir parameterization on global streamflow simulation. Journal of Hydrology . https://doi.org/10.1016/j.jhydrol.2017.03.022
Zink, M., Mai, J., Cuntz, M., & Samaniego, L. (2018). Conditioning a Hydrologic Model Using Patterns of Remotely Sensed Land Surface Temperature. Water Resources Research . https://doi.org/10.1002/2017WR021346