
manuscript submitted to Journal of Geophysical Research – Earth Surface 

 

 

Stochastic in Space and Time: Part 2, Effects of Simulating Orographic 1 

Gradients in Daily Runoff Variability on Bedrock River Incision 2 

A.M. Forte1 and M.W. Rossi2  3 

1 Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana, 4 

USA. 5 
2 Earth Lab, Cooperative Institute for Research in Environmental Sciences (CIRES), University 6 

of Colorado, Boulder, Colorado, USA. 7 

Corresponding author: Adam M. Forte (aforte8@lsu.edu)  8 

Key Points:  9 

• Relationships between runoff, runoff variability, and topography in mountainous terrain 10 

can explain pseudo-thresholds in channel steepness 11 

• Extent to which exceedance frequency of runoff generating events is spatially coherent is 12 

an unrecognized control on landscape evolution 13 

• Orographic patterns in variability, snowmelt, and characteristic size of runoff events 14 

crucial for progress on climate-tectonic coupling  15 



manuscript submitted to Journal of Geophysical Research – Earth Surface 

 

Abstract  16 

Understanding the extent to which climate and tectonics can be coupled requires knowing both 17 

the form of topography and erosion rate relationships, but also the underlying mechanistic 18 

controls on those forms. The stream power incision model (SPIM) is commonly used to interpret 19 

such topography erosion rate relationships, but is limited in terms of probing mechanisms. A 20 

promising modification is a stochastic-threshold incision model (STIM) which incorporates both 21 

variability in discharge and a threshold to erosion, and in which the form of the topography 22 

erosion rate relationship is largely controlled by the variability of runoff. However, as applied 23 

STIM assumes temporally variable, but spatially constant runoff generating events, an 24 

assumption that is likely broken in regions with complicated orography. In response, we develop 25 

a unique 1D STIM based profile model that allows for stochasticity in both time and space and is 26 

driven by empirical relations between topography and runoff statistics. Testing the development 27 

of steady-state topography using spatial-STIM over a range of uplift rates highlights that 28 

coupling between mean runoff, runoff variability, and topography suggest that the development 29 

of highly nonlinear topography erosion rates should be expected. Further, we find that whether 30 

the daily statistics of runoff generating events are spatially linked or unlinked is a primary 31 

control on landscape evolution and the final resulting topography. As many empirical 32 

topography – erosion rate datasets likely sample across ranges of linked vs unlinked behavior, it 33 

is questionable whether single SPIM relationships fit to those data, without considerations of the 34 

hydroclimatology, are meaningful.  35 

 36 

Plain Language Summary 37 

A long-standing question in tectonics is whether spatial patterns in precipitation resulting from  38 

growing mountains in turn influence internal deformation of those ranges. Critical to this is how 39 

topography, as the interface between surface and tectonic processes, responds to changes in rock 40 

uplift rate as this sets the “sensitivity” of the landscape and controls the strengths of feedbacks. 41 

Prior work suggests variability of daily runoff is an important control on this sensitivity, with 42 

low variability regions expected to have low sensitivity and thus a reduced capacity for climate-43 

tectonic coupling. Critically, much of this prior work considers runoff that is variable in time, but 44 

not space, which does not necessarily honor observations of complex precipitation patterns in 45 

mountains. Here we develop a simple numerical model, built using observed relationships 46 

between runoff, runoff variability, and topography, to test this and find that the degree to which 47 

runoff events are linked or unlinked in space is actually an important control on both the 48 

sensitivity of landscapes but also the total relief of those landscapes. Our results suggest that 49 

consideration of the size of runoff generating events within landscapes is an ignored control on 50 

topography, but fundamental for progress on questions of climate-tectonic coupling. 51 

1 Introduction 52 

1.1. Motivation 53 

The potential for two-way coupling between climate and tectonics is premised on how 54 

climate, erosion, and topography are related. Stream power provides an effective way to model 55 

the role of climate on erosion via a single parameter, the erodibility coefficient (Howard, 1994; 56 

Whipple & Tucker, 1999). When stream power is used as the principal erosion law, landscape 57 

evolution studies predict that climate should strongly influence the pattern and style of 58 
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deformation in mountain belts (Beaumont et al., 1992; Whipple & Meade, 2006; Willett, 1999). 59 

These numerical models show how prevailing wind direction, along with an orographic 60 

enhancement of precipitation, leads to across-strike asymmetry in the efficiency of erosion of the 61 

landscape. However, field verification of such dynamics has been elusive, with ambiguous 62 

evidence both for and against coupling between mean precipitation and tectonics (see discussion 63 

in Whipple, 2009). One barrier to field verification is uncertainty in how well suited stream 64 

power predictions are for isolating relationships among climate, erosion, and bedrock river 65 

morphology. Given the proliferation of carefully curated datasets attempting to constrain how 66 

climate is embedded in the erodibility coefficient (e.g., Adams et al., 2020; Ferrier et al., 2013; 67 

Forte et al., 2022; Leonard et al., 2023), the time is ripe to re-visit assumptions implied by 68 

conventional applications of stream power to landscape evolution studies, especially in the 69 

context of the complexities that result from orographic precipitation (e.g., Anders et al., 2006, 70 

2007; Bookhagen & Burbank, 2006; Bookhagen & Strecker, 2008; Roe, 2005; Roe et al., 2003). 71 

Since development of these early landscape evolution models, a large body of work has 72 

refined our understanding of the strengths and limitations of stream power (see summary in 73 

Lague, 2014). We highlight three sets of insights: (1) Probabilistic assessment of floods are 74 

needed when erosional thresholds matter (Lague et al., 2005; Snyder et al., 2003; Tucker, 2004); 75 

(2) Orographic gradients in mean precipitation lead to spatially non-uniform patterns in runoff 76 

generation (Bookhagen & Strecker, 2008; Roe et al., 2002, 2003); and (3) Precipitation phase 77 

(i.e., rain versus snow) mediates spatio-temporal patterns in runoff generation (Anders et al., 78 

2008; Bookhagen & Burbank, 2010; Rossi et al., 2020). While there are a number of important 79 

limitations to using stream power (e.g., channel width scaling, tools-cover effects), we focus here 80 

on those related to the ‘characteristic discharge’ assumption typically used in stream power. Our 81 

work builds on recent studies that show how daily runoff variability sets the nonlinearity 82 

between equilibrium channel steepness with long term erosion rates (Campforts et al., 2020; 83 

Desormeaux et al., 2022; Forte et al., 2022; Marder & Gallen, 2023). In stream power 84 

predictions that use the characteristic discharge assumption, nonlinear relationships are 85 

interpreted to reflect differences in the incision process setting the slope exponent, n. However, if 86 

erosional thresholds matter, nonlinearity is instead linked to the variability of streamflow (see 87 

discussion in Lague, 2014). Given the wide range of empirical estimates for n reported in the 88 

literature (Harel et al., 2016), we argue that river incision models likely require more hydrologic 89 

realism to explain observed nonlinearities between channel steepness and erosion rate (e.g., Deal 90 

et al., 2018). 91 

1.2. Approach and Scope 92 

The basis for our work is the stochastic-threshold incision model (STIM) proposed by 93 

Lague et al. (2005), albeit a modified version whereby daily discharge distributions are treated as 94 

Weibull distributions instead of inverse gamma distributions (following Forte et al., 2022). As 95 

originally conceived, this 1D river incision model uses the shear stress formulation of stream 96 

power as the instantaneous incision law. The equilibrium longitudinal profile for a given rate of 97 

base level fall is then derived by integrating the product of the instantaneous incision law and the 98 

probability distribution of flows, with a lower bound of integration set by the erosion threshold. 99 

While there are many hard-to-constrain parameters in STIM, this model improves on the stream 100 

power incision model (SPIM) by explicitly showing how two hydroclimatic parameters, the 101 

mean runoff and a shape parameter describing the distribution of runoff events, alter the form of 102 

the relationship between long-term denudation rates and channel steepness (DiBiase & Whipple, 103 
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2011; Lague et al., 2005). A key assumption in STIM is that runoff generating events are 104 

stochastic in time but not in space. For small catchments with relatively uniform surface 105 

properties, this is a reasonable assumption. However, as the size of watersheds increases and as 106 

surface properties become more heterogeneous, the potential importance of partial source areas 107 

for runoff generation during events are expected to become more important (Dunne & Black, 108 

1970). This is likely exacerbated in high-relief landscapes where complicated orography leads to 109 

significant spatial and temporal variation in precipitation (e.g., Anders et al., 2006, 2007; Barros 110 

et al., 2000; Campbell & Steenburgh, 2014; Frei & Schär, 1998; Minder et al., 2008) and thus 111 

potentially runoff. It is however not our intention to embed a full hydrological model of event-112 

scale runoff generation into a 1-D model of river incision. Instead, we seek to add flexibility to 113 

STIM such that we can explore how runoff statistics that vary in both space and time alter model 114 

predictions. 115 

There are four key novelties to our new1D stochastic-threshold model of bedrock 116 

incision, which we refer to as spatial-STIM. First, the longitudinal profile is subdivided into 117 

uniform bins that allow us to evolve orographic gradients in hydroclimate. Second, both mean 118 

runoff and daily runoff variability are dictated by their relationship to topography, i.e., local 119 

relief, elevation. Third, these topography-hydrology relationships are based on relationships 120 

observed in modern mountain landscapes developed in our companion manuscript to this one 121 

(Forte & Rossi, In Review) and explicitly consider the role of snowmelt in modulating runoff 122 

variability. Fourth, the temporal stochasticity of each bin can either be ‘linked’ or ‘unlinked’ 123 

spatially. This allows for examination into how the characteristic spatial scale of runoff events 124 

will impact model predictions. We focus our analysis of model sensitivity to the new elements 125 

introduced in spatial-STIM, the orographic rules used to set streamflow parameters, and changes 126 

in rock uplift rates. As such, our results are not intended to provide formal model calibration and 127 

validation using erosion rate data. Instead, our goal is to show how spatial-STIM might alter 128 

interpretations of the numerous channel steepness-erosion rate relationships reported in the 129 

literature and to probe general expectations of how such relationships might evolve as a 130 

mountain range grows (Figure 1). 131 

Our conceptual framework builds on the findings from the companion manuscript to this 132 

one (Forte & Rossi, In Review). The central hypothesis underlying our modeling derives from 133 

observations that both mean runoff and snowmelt fraction are functionally related to topography 134 

(Figure 1A). Increases in both are tied to decreasing variability in daily streamflow (Figure 1B), 135 

which itself causes increasingly nonlinear relationships between channel steepness and erosion 136 

rates (Figure 1C). As suggested by Forte et al., (2022), this set of expected relationships predicts 137 

a somewhat neglected negative orographic feedback in which the continued topographic growth 138 

of a mountain range may be fundamentally limited by the decreasing variability of streamflow 139 

and increasing nonlinearity in topography and channel steepness relationships (Figure 1). A 140 

fundamental question then is whether such relationships will develop when runoff, runoff 141 

variability, and snowmelt are all coupled to topography. We address this question by developing 142 

spatial-STIM and conducting a suite of numerical experiments presented below.   143 
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 144 

Figure 1. Conceptual model of how covariation of topography, mean runoff, snowmelt fraction 145 

of runoff, and runoff variability influences the ksn-E relationships as topography grows. A) 146 

Relationships between local relief and mean runoff (solid line) and maximum elevation and the 147 

fraction of runoff derived from snowmelt (dashed line). Horizontal dotted line indicates 148 

snowmelt fraction where runoff-variability relationships transition from a power law to a linear 149 

form. Colored dots represent hypothetical states as topography grows. B) Relationship between 150 

mean runoff and variability. Solid line is a power law relationship that characterizes conditions 151 

when snowmelt contribution is limited. Dashed line is a linear relationship that characterizes 152 

conditions when snowmelt contribution is significant. C) Implied ksn-E relationships for the 153 

different mean runoff - variability relationship from B. D) Schematic envisioning how the 154 

relationships in A-C might evolve through time and space as a mountain range grows. The 155 

colored dots are meant to suggest that portions of streams above those dots would be dictated by 156 

the relationships of the respective color in A-C. 157 

 158 

2. Background 159 

2.1. Channel Steepness and Erosion Rate Relationships 160 

For river analysis, it is useful to define a channel steepness index (ks) that accounts for the 161 

expected covariation of slope and drainage area within river systems (Flint, 1974):  162 

𝑘𝑠 = 𝐴𝜃𝑆      (1) 163 

where A is drainage area [L2], S is local river slope [L/L], and 𝜃 is a dimensionless constant that 164 

describes the concavity of the river profile. In order to compare channel steepnesses for rivers 165 

with different concavities, the steepness index ks can be normalized by setting 𝜃 to a reference 166 

value, 𝜃𝑟𝑒𝑓, thereby defining a normalized channel steepness index, ksn (Wobus et al., 2006). 167 

Normalized channel steepness can be determined via regression of the log-transformed, slope-168 
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area data along river profiles (Kirby & Whipple, 2012). However, it is now more common to use 169 

the so-called 𝜒-transform to calculate ksn because of the noise inherent in slope-area data 170 

(Whipple et al., 2022). As defined by Perron & Royden (2013), 𝜒 is an integral transform of 171 

distance such that: 172 

𝜒 =  ∫ (𝐴0 𝐴(𝑥)⁄ )𝜃𝑟𝑒𝑓𝑑𝑥
𝑥

𝑥𝑏
     (2) 173 

where A0 is a reference drainage area, x is distance from the catchment outlet, and xb is the 174 

position of the outlet. On a plot of 𝜒-elevation, an equilibrium channel with a uniform ksn appears 175 

as a straight line, assuming an appropriate 𝜃𝑟𝑒𝑓 is used in the calculation of 𝜒. When A0 is set to 176 

one, the slope of the 𝜒-elevation line equals ksn. 177 

Relationships between catchment averaged normalized channel steepness and long-term 178 

erosion rates, E, show that: (1) ksn tends to be positively correlated with average erosion rate, but 179 

that (2) the exact form of ksn-E relationships varies substantially among landscapes (see 180 

compilations in Harel et al., 2016; Kirby & Whipple, 2012; Lague, 2014; Marder & Gallen, 181 

2023). The general form of these relationships follow: 182 

𝑘𝑠𝑛 = 𝐶𝐸Φ      (3) 183 

where C and Φ are constants that vary between locations. To interpret these empirical 184 

relationships, it is common to recast Equation 3 in terms of a widely used model for fluvial 185 

incision into bedrock, the stream power incision model (SPIM, Howard, 1994; Whipple & 186 

Tucker, 1999). SPIM considers erosion in terms of an erosional efficiency parameter (K) that 187 

encapsulates aspects of both climate and lithology, along with A and S: 188 

𝐸 = 𝐾𝐴𝑚𝑆𝑛      (4) 189 

where m and n are both constants thought to represent details of the hydrology and erosional 190 

process, respectively. In Equation 4, A is a proxy for mean discharge 𝑄̅ [L3/t] and implicitly 191 

assumes a simple relationship between mean discharge, mean runoff 𝑅̅ [L/t], and drainage area 192 

such that 𝑄̅ = 𝑅̅𝐴. The erosional efficiency parameter, K, embeds 𝑅̅𝑚 thereby directly relating K 193 

to the hydroclimatology. By combining Equations 1, 3, and 4 in SPIM, it can be readily shown 194 

that:  195 

𝜃 =
𝑚

𝑛
 ,      (5) 196 

𝐶 =  𝐾−1 𝑛⁄ ,      (6) 197 

Φ =  
1

𝑛
 ,      (7) 198 

and thus, 199 

𝑘𝑠𝑛 =  𝐾−1 𝑛⁄ 𝐸1 𝑛⁄  or 𝐸 = 𝐾𝑘𝑠𝑛
𝑛      (8) 200 

Equation 8 predicts that the form of the ksn-E relationship can be cast in terms of variations in 201 

climate and lithology (represented by K) and erosional process (represented by n). Implicit in this 202 

relationship is also the assumption that the basin-averaged value of  ksn and E are steady state 203 

values, i.e., erosion rate approximately equals long-term rock uplift rate and that the ksn within 204 

the watershed in question is spatially uniform and free of transients, e.g., knickpoints. 205 
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 Recently, it has been shown that relationships between channel steepness and erosion 206 

rates can be further interrogated by disentangling the climate and lithologic components of the 207 

erosional efficiency parameter, K, by defining an alternate form of ksn that includes a proxy for 208 

discharge. This new index, ksnQ, was defined by Adams et al., (2020): 209 

𝑘𝑠𝑛𝑄 = 𝑄̅𝜃𝑟𝑒𝑓𝑆.      (9) 210 

Calculations of ksnQ typically use mean precipitation as a proxy for mean runoff to calculate 211 

discharge, embedding a simplifying assumption that mean runoff will linearly scale with mean 212 

precipitation. Using the same assumption in Equation 3 that 𝑄̅ = 𝑅̅𝐴, it is possible to recast K as:  213 

𝐾 =  𝐾𝑙𝑝𝑅̅𝑚      (10) 214 

where Klp is the component of the erosional efficiency related to lithology and associated details 215 

such as sediment flux dynamics and erosion thresholds. The relationship between ksn-E in 216 

Equation 8 can then be reformulated as:  217 

𝑘𝑠𝑛𝑄 =  𝐾𝑙𝑝
−1 𝑛⁄

𝐸1 𝑛⁄  or 𝐸 =  𝐾𝑙𝑝𝑘𝑠𝑛𝑄
𝑛      (11) 218 

This alternative formulation of channel steepness acknowledges spatially varying precipitation 219 

and runoff and thus should reduce the role of climate in the topography – erosion rate 220 

relationship, allowing both more accurate use of topography to estimate erosion rates (Adams et 221 

al., 2020) and isolation of lithologic controls on erosion rate (Leonard et al., 2023).  222 

Importantly, interpretation of either ksn-E and ksnQ-E relationships within a SPIM 223 

framework relies on a similar set of simplifying assumptions that have been articulated in more 224 

detail elsewhere (e.g., Harel et al., 2016; Kirby & Whipple, 2012; Lague, 2014). However, we 225 

highlight here one important implication of SPIM to how the slope exponent in stream power, n, 226 

and the empirical exponent, Φ, are interpreted. Considering a steady state system where erosion 227 

rates balance uplift rates, the value of n controls the degree of nonlinearity, Φ (Eq. 7). When 𝑛 ≈228 

1, this defines a linear relationship between topography and erosion rate and implies that rivers 229 

maintain a uniform sensitivity to changes in rock uplift rate as they steepen. In contrast, when 230 

𝑛 ≫ 1, and when E is plotted on the abscissa, the strongly sublinear relationship between 231 

topography and erosion rate implies that channel steepness reaches a pseudo-threshold as uplift 232 

rates continue to increase. Higher values of n lead to a reduced potential for two-way coupling 233 

between climate and tectonics as topography is no longer able to adjust to increases in rock uplift 234 

rates (Whipple & Meade, 2004). Global compilations of ksn-E suggest that 𝑛 ≈ 2 (e.g., Harel et 235 

al., 2016; Lague, 2014), implying a sublinear response, but not one where significant pseudo-236 

thresholds in ksn limits the relief of mountain landscapes (Hilley et al., 2019). However, at the 237 

individual landscape scale, substantial difference in values of n are observed, with some 238 

locations suggesting more linear relationships (e.g., Ferrier et al., 2013; Safran et al., 2005; 239 

Wobus et al., 2006), while others exhibit highly sublinear relationships that imply pseudo-240 

thresholds in ksn (e.g., Cyr et al., 2010; Forte et al., 2022; Hilley et al., 2019). However, 241 

diagnosing the underlying mechanisms for these large differences is limited by relying on stream 242 

power alone.   243 

2.2. Stochastic-Threshold Incision Model (STIM) 244 

To probe controls on the nonlinear ksn-E relationships described above, we show that it 245 

can be  useful to consider an alternative fluvial incision model, specifically the stochastic-246 
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threshold incision model (STIM). STIM shares some similarities with SPIM, but adds two 247 

important details, (1) discharge varies in time and (2) not all discharges are able to erode. 248 

Different formulations of stochastic-threshold incision models have been presented (e.g., Snyder 249 

et al., 2003; Tucker, 2004), but here we primarily focus on the version presented by Lague et al., 250 

(2005). The details of this model have been discussed in depth previously (e.g., Campforts et al., 251 

2020; DiBiase & Whipple, 2011; Lague et al., 2005; Scherler et al., 2017) to which we refer 252 

interested readers. Here we briefly present the governing equations, focusing on differences from 253 

the original formulation of Lague et al., (2005).  254 

STIM uses an equation for instantaneous (e.g., daily) incision rates and then integrates 255 

this over a probability distribution of daily discharges to calculate the average, long-term erosion 256 

rate. In the original formulation by Lague et al., (2005), both the instantaneous incision and 257 

average erosion rates were cast in terms of dimensionless discharge. Because we are breaking the 258 

assumption of  𝑄̅ = 𝑅̅𝐴, it is more useful to define the instantaneous law in terms of dimensional 259 

runoff (R): 260 

𝐼 = 𝐾𝑘𝑠𝑛
𝑛 𝑅̅𝑚−𝛾𝑅𝛾 − Ψ𝑐     (12)  261 

where 𝛾 is an exponent describing local discharge and Ψ𝑐 is the threshold parameter. 262 

Functionally, K, m, and n are similar to their counterparts in Equation 3, but have more formal 263 

definitions such that 264 

𝐾 =  𝑘𝑒𝑘𝑡
𝑎𝑘𝑤

−𝑎𝛼      (13) 265 

𝑚 = 𝑎𝛼(1 − 𝜔𝑎)      (14) 266 

𝑛 = 𝑎𝛽     (15) 267 

where ke is a rock erodibility coefficient, kt, 𝛼, and 𝛽 are hydraulic and frictional constants, kw 268 

and 𝜔𝑎 are constants related to channel width scaling with discharge, and a is an constant related 269 

to incisional process. The threshold parameter Ψ𝑐 is related to both the rock erodibility and 270 

incisional process such that 271 

Ψ𝑐 =  𝑘𝑒𝜏𝑐
𝑎     (16) 272 

where 𝜏𝑐 is the critical shear stress for initiatining incision. To calculate an average, steady state 273 

erosion rate E, Equation 12 must be integrated across a range of runoffs 274 

𝐸 =  ∫ 𝐼(𝑅, 𝑘𝑠𝑛)𝑝𝑑𝑓(𝑅)𝑑𝑅
𝑅𝑚

𝑅𝑐(𝑘𝑠𝑛)
     (17) 275 

where Rc is the critical runoff for overcoming the incision threshold, Rm is an arbitrarily high 276 

upper bound on runoff assuming that the integral is convergent, and pdf(R) is the probability 277 

distribution of daily runoff. In the original formulation of Lague et al., (2005), the probability 278 

distribution function used was the inverse gamma distribution of normalized discharge, thus 279 

fixing the scale parameter to 1. Here, we follow recent work (Forte et al., 2022; Rossi et al., 280 

2016) by using a two component Weibull distribution on non-normalized runoff  281 

𝑝𝑑𝑓(𝑅; 𝑅0, 𝑐𝑅) =  
𝑐𝑅

𝑅0
(

𝑅

𝑅0
)

𝑐𝑅−1
𝑒𝑥𝑝−1(𝑅 𝑅0⁄ )𝑐𝑅    (18) 282 

where R0 is a scale parameter, related to the mean of the distribution, and cR is a shape parameter, 283 

describing the variability of daily flows. Higher values of cR imply lower variability.  284 
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 With respect to ksn-E patterns, Lague et al., (2005) highlight that the degree of linearity of 285 

such relationships in the context of STIM is largely controlled by daily runoff variability, or the 286 

shape parameter of the runoff distribution in the domain where the erosion thresholds are large 287 

with respect to the erosion rates (Regime III in Lague et al., 2005). While Lague et al., (2005) 288 

used an inverse gamma distribution to make this case, Rossi et al., (2016) showed empirically 289 

that the shape parameters of distributions fit with inverse gamma and a Weibull distribution are 290 

linearly related. The Weibull distribution can thus be confidently substituted into Equation 17, 291 

with the basic effect of moderating the impact of heavy tailed distributions produced using the 292 

inverse gamma distribution for some values of the shape parameter. Regardless of distribution 293 

choice, STIM predicts that low variability systems should exhibit sublinear ksn-E relationships, 294 

whereas highly variable systems will be characterized by more linear ksn-E relationhips. Thus, 295 

one explanation of the wide range of empirical values for Φ might be due to landscape-scale 296 

differences in daily runoff variability (Marder & Gallen, 2023).  297 

3 Orographic Relationships Between Hydroclimatology and Topography 298 

In the companion manuscript to this one (Forte & Rossi, In Review), we use a 20 year 299 

global, daily time series of hydroclimate from the Water Global Assessment and Prognosis 300 

(WaterGAP3 - Alcamo et al., 2003; Döll et al., 2003) along with the HydroSheds v1, 15 301 

arcsecond digital elevation model (Lehner et al., 2008) and SRTM-90 data (Farr et al., 2007) to 302 

develop a variety of empirical relationships between hydroclimatological and topographic 303 

variables. We refer interested readers to Forte & Rossi (In Review) for more detailed 304 

discussions, but review the primary results of this analysis here that form the basis for the 305 

empirical relationships we implement in our 1D spatial-STIM model as summarized in Figure 2. 306 

 307 

 308 

Figure 2. Summary of empirical results from Forte & Rossi (In Review) used relate topography 309 

and hydroclimatological variables of interest. A) Relationship between mean daily runoff (𝑅̅) 310 

and daily runoff variability as parameterized by the Weibull shape parameter (𝑐𝑅). Colored lines 311 

indicate individual fits to 𝑅̅ and 𝑐𝑅 values within bins defined by snowmelt fraction (SF). Red 312 

solid lines are power law fit for bins with SF < 0.35 and blue dashed lines are linear fits for bins 313 
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with SF > 0.35. B) Power law fits between mean local relief and 𝑅̅ for the three exemplar 314 

regions. C) Power law fits between maximum elevation and SF for the three exemplar regions. 315 

 316 

Specifically, Forte & Rossi (In Review) find a similar inverse correlation between 𝑅̅ and 317 

variability (Figure 2A) as has been identified in smaller datasets from gauged watersheds (e.g., 318 

Molnar et al., 2006; Rossi et al., 2016). Similar to Rossi et al., (2016), they note that the form of 319 

this relationship between 𝑅̅ and variability, as parameterized by 𝑐𝑅 (Eq. 18) is controlled by the 320 

relative contribution of snowmelt to total runoff, which they characterize with the parameter SF 321 

where SF is equal to the total amount of runoff from snowmelt divided by the total runoff. When 322 

SF is low and snowmelt is not dominant, the relationship between 𝑅̅ and 𝑐𝑅 takes the form of a 323 

power law, but when SF is high, this relationship instead is linear (Figure 2A). In the 324 

WaterGAP3 data, this change from power law to linear behavior occurs at a SF of ~0.35.  325 

 In the context of parameterizing our 1D STIM model, where we wish to evolve these 326 

parameters as a function of topographic growth, it follows that to uniquely prescribe the 327 

distribution of flows (e.g., Equation 18) within a part of a river profile, we need to know both 𝑅̅ 328 

and SF to then uniquely identify an appropriate 𝑐𝑅. As described in Forte & Rossi (In Review), 329 

identifying singular relationships between either 𝑅̅ or SF and topographic metrics proves 330 

challenging due to a variety of regional variations. Instead, we use the three representative 331 

example regional relationships Forte & Rossi (In Review) develop between mean local relief and  332 

𝑅̅ and maximum elevation and SF in the Greater Caucasus, European Alps, and northern British 333 

Columbia (Figure 2B-C). For all three locations and both relationships, a power law provided the 334 

best fit relationship between the variables.  335 

  Local relief and local maximum elevation (e.g., within a WaterGAP3 pixel) are not 336 

typically explicit to models of river profile development because they represent the interaction 337 

between fluvial and hillslope processes. While these topographic metrics are thought to be linked 338 

to river morphology at certain spatial scales, how to best use these scale-dependent metrics to 339 

drive rules in a 1D river incision model is not entirely obvious. Given our discretization of river 340 

profiles into bins, we argue there is a sensible way to honor the empirical relationships we show 341 

in Figure 2 into a 1D river incision model. For example, it has been shown that local relief at the 342 

2 to 2.5 km radius scale is linearly correlated with channel steepness (e.g., DiBiase et al., 2010). 343 

Channel steepness is a property of the river profile that can be calculated (Equation 1) and 344 

updated as the river profile evolves through time. Based on this, we constrain how local relief is 345 

related to channel steepness in our three selected regions by building on the methods described in 346 

Forte et al., (2016), using a combination of TopoToolbox (Schwanghart & Scherler, 2014) and 347 

the Topographic Analysis Kit (Forte & Whipple, 2019). First, we extract all watersheds with a 348 

drainage area >50 km2 and an outlet above 300 m elevation. Any watershed from this initial 349 

extraction with a drainage area >250 km2 was then subdivided into tributary watersheds that 350 

connect to the trunk channel using drainage areas >50 km2 as a threshold. For each catchment at 351 

a site, mean channel steepness and local relief (2500 m radius) was calculated along with the R2 352 

value for a linear fit between 𝜒 (Equation 2) and elevation. Values of R2 close to 1 imply a river 353 

reach that is largely free of major knickpoints. The R2 values were thus used to screen for 354 

reaches in quasi-equilibrium such that only reaches above a high threshold (>0.95; Figure S1) 355 

were used to develop regionally based relationships between channel steepness and local relief. 356 

By establishing the channel steepness to local relief relationship for each site, we can then apply 357 
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empirically based, hydroclimatological rules based on local relief into our river incision model. 358 

As channel steepness evolves in our model, it is directly tied to local relief and indirectly tied to 359 

maximum elevation by adding the appropriate local relief to the minimum elevation of the 360 

profile for a given bin. 361 

4 River Incision Model 362 

While there are now many studies testing the utility of the 1D Stochastic-Threshold 363 

Incision Model (STIM) developed by Lague et al. (2005) (e.g., Campforts et al., 2020; 364 

Desormeaux et al., 2022; DiBiase & Whipple, 2011; Forte et al., 2022; Marder & Gallen, 2023; 365 

Scherler et al., 2017), we believe this paper is the first attempt to modify a 1D version of STIM 366 

to allow for stochastic events in space as well as time, which we refer to as spatial-STIM. Our 367 

modelling strategy shares some similarity with recent 2D efforts to consider the role of spatial 368 

variability in precipitation events (e.g., Coulthard & Skinner, 2016; Peleg et al., 2021), but these 369 

efforts considered landscape evolution at timescales orders of magnitude shorter than we do here.  370 

By subdividing the long profile into bins we can coevolve the hydrology with the local channel 371 

morphology. However, binning alone only entails flexibility to vary the magnitude of stochastic 372 

runoff for a given bin. A decision needs to be made for whether spatial bins should depend on 373 

each other (i.e., runoff events are synchronous across the profile) or be treated independently 374 

(e.g., bins experience different storms or snowmelt events). We refer to the former as the ‘linked’ 375 

case and the latter as the ‘unlinked’ one. Once we chose the model scenarios, we test the 376 

sensitivity of model outputs to the model setup and hydroclimatic rules developed for the three 377 

regional cases. 378 

4.1. Spatial-STIM  379 

Our 1D bedrock incision model was developed in Python 3.10 by implementing an 380 

explicit upwind finite difference solution of Equation (12) for instantaneous incision along the 381 

profile. In keeping with the underlying assumptions of STIM, all models are run at a daily 382 

timestep. The starting condition for each model uses a drainage area distribution based on the 383 

relationship between profile length (L) [L] and drainage area (A) [L2] from Sassolas-Serrayet 384 

(2018): 385 

𝐿 = 𝑐𝐺𝑐𝐴𝑛𝐴      (19) 386 

𝑐 = 0.5𝐺𝑐√𝜋 + 0.25√𝐺𝑐
2𝜋 − 4    (20) 387 

where Gc, or the Gravelius coefficient, is set to 1.5 and the exponent nA is set to 0.54. This form 388 

of the relationship between drainage area and stream distance is useful because it allows for 389 

direct consideration of the shape of the drainage basin using a single parameter. A watershed 390 

with a Gc of 1 has a perfectly circular boundary and a watershed with a Gc of 2 is an narrow, 391 

elongated watershed. Because we are only simulating the river profile, we use a threshold 392 

drainage area, Ac, of 1 km2. Using the specified Gc and nA from above, this is equivalent to the 393 

Hack (1957) relationship of the form: 394 

𝐴 = 𝑘𝑎𝐿ℎ + 𝐴𝑐       (21) 395 
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where ka = 0.969 and h =1.851. For all runs, we set the spacing between nodes at 100 meters and 396 

saved outputs every 5000 years. All runs are initialized with a starting profile with a low and 397 

constant ksn of 25 m. 398 

Spatial variations in both mean runoff and runoff variability, i.e., shape parameter, are 399 

handled by adopting uniform river length bins along the longitudinal profile. Each bin has a 400 

single scale and shape parameter for all the nodes within the bin. At each time step, these 401 

parameters are recalculated based on the current topography. Figure 3 shows an example for how 402 

the mean runoff and shape parameter vary as a function of bin location at one time step during a 403 

transient. The location and dimensions of bins are fixed for each model run to maintain 404 

computational efficiency. However, our analysis of model sensitivity includes varying the bin 405 

size and number of bins within a profile to test the sensitivity of the results to these choices (see 406 

section 5.4). The key property of our model that allows hydroclimatology to coevolve with the 407 

topography occurs in the method we use to the recalculate the shape and scale parameters at 408 

every time step.  409 
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 410 

Figure 3. A) Long profile of model GC1U at 1 Myr into the model run, colors indicate 411 

individual bins and black squares mark bin boundaries. B) Same as A but for model GC1L at 0.6 412 

Myr into the model run, which represents approximately the same point in the transient response. 413 

C) Mean runoff and variability for GC1U at 1 Myr. Colored squares are mean runoff and 414 

variability for the individual bins. White square is runoff and variability from a drainage area 415 

weighted mean of the bins. The black circle is the median of 500 trials of mean runoff and 416 

variability from routing 100 years of discharge for each trial, small gray dots are mean runoff 417 
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and variability for individual trials. D) Same a C but for model GC1L at 0.6 Myr. E) Exceedance 418 

frequency plot for GC1U at 1 Myr, showing the relationship for individual bins in the thin 419 

colored lines, the area weighted mean runoff and variability in the black dashed line, and the 420 

mean runoff and variability from the median of the 500 trials. The colored square represents 421 

runoff (and the corresponding probability of that runoff occurring) in individual bins on a 422 

random day. F) Same as E but for model GC1L at 0.6 Myr.  423 

 424 

As described in section 3, we use both global (Figure 2A) and regional relationships 425 

(Figure 2B-C) to define the mean runoff and shape parameter within each bin. For a given time 426 

step and bin, the chain of action is: (1) Use the channel steepness from the previous step to 427 

calculate local relief using the linear relationships developed from SRTM-90 (e.g., Figure S1); 428 

(2) Use the local relief to calculate mean runoff using the power law relationships developed 429 

from WaterGAP3 (Figure 2B); (3) Also use the local relief to determine the maximum elevation 430 

by adding it to the minimum elevation within the bin; (4) Use the maximum elevation to 431 

calculate the snowmelt fraction using the power law relationships developed from WaterGAP3 432 

(Figure 2C); and finally (5) Use the snowmelt fraction to choose the applicable global empirical 433 

relationship between mean runoff and shape parameter (Figure 2A). In this way, the mean runoff 434 

and shape parameter are updated from channel topography alone and follow data driven rules. 435 

To ensure that the model does not extrapolate into an unreasonable part of parameter 436 

space, we impose a maximum relief that any bin can achieve. We set this to 2500 m for most 437 

runs based on a conservative estimate of what is observed in modern landscapes (e.g., Figure 438 

S1), but we also test the sensitivity of the model results to this choice (see Section 5.4). The 439 

imposition of a maximum relief is broadly consistent with the idea that there are limits to local 440 

relief set by hillslope strength (e.g., Montgomery & Brandon, 2002; Schmidt & Montgomery, 441 

1995). Embedded in the assumption of a maximum local relief is an expectation that this should 442 

be controlled by processes not considered in our model (e.g., non-linear hillslope diffusion or 443 

mass wasting). While we do not impose a limit on maximum elevation, it has an implicit limit set 444 

by the local relief maximum. We also make sure that the snowmelt fraction cannot exceed 1 by 445 

enforcing this as an upper bound. After meeting all these constraints, each bin has a scale and 446 

shape parameter describing the probability distribution of runoffs expected for each bin at a 447 

given time step (e.g., Figure 3). To simulate the stochasticity implied by these derived 448 

parameters, we use the SciPy weibull_min and appropriate sub-functions to randomly extract a 449 

runoff magnitude from the relevant pdf for that bin. In detail, every 100 years of model run time, 450 

the model generates a 100 year daily time series (i.e., 36,500 days) of runoffs within each bin. 451 

This is done for efficiency as random selection of numbers from a distribution is one of the more 452 

computationally time intensive steps, but the compute time required to generate one random 453 

number is comparable to generating a large quantity of random numbers from a given 454 

distribution. This approach means that the mean runoff and variability are only updated every 455 

100 years, but even at the maximum 8 mm/yr rock uplift rate we impose, the amount of profile 456 

change - and thus change in either relief or maximum elevation -  in 100 years is sufficiently 457 

small as to not significantly influence the results. As the model evolves, at each 100 year 458 

increment when runoff time series are generated from the pdfs, the current total iteration number 459 

is used as the starting seed for the random number generator ensuring that the random numbers 460 

(i.e., runoff magnitudes) change through the model run. For each day, runoff within each bin is 461 

routed along the profile to calculate fluvial incision. 462 



manuscript submitted to Journal of Geophysical Research – Earth Surface 

 

4.2. Linked versus Unlinked Cases 463 

Whether neighboring bins are correlated or independent in time depends on how runoff 464 

events are generated in the landscape. The spatially correlated case mimics scenarios where 465 

storms or snowmelt events vary in runoff generation in space but occur contemporaneously. The 466 

spatially independent case mimics scenarios where storms or snowmelt events have systematic 467 

statistical properties with elevation, but who are independent of each other. We refer to the 468 

former as spatially ‘linked’ and the latter as ‘unlinked’. We specifically consider these two 469 

endmember scenarios by simulating the probability of exceedance of runoff magnitudes that 470 

occur within the bins on a given day as (1) completely independent (Figure 3E) or (2) the same 471 

across all bins (Figure 3F). Implementation of the unlinked vs linked scenarios is set by changing 472 

the pseudorandom seed number. For linked scenarios, the seed for the 100-year time series is set 473 

by the iteration number for all bins. In contrast, for the unlinked case, the seed i is incremented 474 

by 1, such that for bin 1, the seed is i, for bin 2, the seed is i+1, and so on. It is important to note 475 

that for the unlinked case, the size of the bins represents an assumed characteristic scale of runoff 476 

events. Real landscapes likely experience a mixture of small footprint, convective events and 477 

large footprint, synoptic-scale events that obscure a single representative. As highlighted by the 478 

analysis of event sizes in WaterGAP3 data from Forte & Rossi (In Review), generally smaller 479 

events are more common than larger events. We anticipate that mixtures of event sizes, like 480 

those suggested by the WaterGAP3 data, will produce intermediate behaviors and response 481 

times, which is why we consider both ‘linked’ and ‘unlinked’ scenarios for all parameter sets. 482 

We return to the importance of whether landscapes are better represented by an unlinked versus 483 

linked scenarios in the discussion. 484 

4.3 Model parameterization  485 

Our main objectives in this study are to extend the 1D stochastic-threshold incision 486 

model (STIM) of Lague et al. (2005) to include spatially varying daily runoff variability (spatial-487 

STIM) and to see how coupling expected orographic patterns in runoff variability alters 488 

predictions in the steady state and transient evolution of river longitudinal profiles using stream 489 

power. It is beyond the scope of this effort to do a full sensitivity analysis on all the STIM 490 

parameters, which have already been explored in great depth (DiBiase & Whipple, 2011; Lague, 491 

2014; Lague et al., 2005). Instead, we focus on driving our new model using empirical 492 

relationships for how mean runoff and daily runoff variability vary as a function of local relief 493 

and then test the sensitivity of our results to the differences in model structure we have added to 494 

spatial-STIM. As such, most STIM parameters (like thresholds, rock erodibilities, width scaling) 495 

are fixed in our model runs, typically to values that were calibrated to our prior work in the 496 

Greater Caucasus (Forte et al., 2022). The values of fixed parameters used in spatial-STIM are 497 

reported in Table S1. Table S2 summarizes all the parameters we do vary in our numerical 498 

experiments. The parameters we do vary are intended to answer two questions: (1) What do 499 

orographic relationships between mean runoff and daily runoff variability entail for STIM-based 500 

predictions for the relationship between channel steepness and uplift rates; and (2) How sensitive 501 

are spatial-STIM results to the new elements of model structure?  502 

We report our river incision modeling results in two parts that reflect the two questions 503 

posed above. The first part provides results for a series of baseline cases that use a similar model 504 

structure (50-km long rivers, 2-km wide bins), albeit for both the linked and unlinked scenarios. 505 

These baseline cases represent how a ~488 km2 area catchment responds to range of uplift rates 506 
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(0.25 to 8 mm/yr) under approximations of the modern hydroclimatic conditions of the 507 

mountainous regions of the Greater Caucasus, European Alps, and British Columbia. The second 508 

part tests the sensitivity of our findings to differences in model structure, specifically to profile 509 

length, bin size, bin number, and maximum local relief. To do this, we use the linked Greater 510 

Caucasus baseline case at rock uplift rates of 1 mm/yr as the starting point for sensitivity 511 

analyses. Sensitivity experiments vary: (1) stream length and number of bins using model setups 512 

of 10, 20, 30, 40, 50 and 100 km width bins fixed at 2 km wide, (2) maximum relief within a bin 513 

using model setups of 1500, 2000 and 2500 m, and (3) bin size using model setups of 2, 5, and 514 

10 km wide bins. Because profile length and bin size together define the number of bins, we also 515 

run a sensitivity experiment designed to: (4) test the notion that number of bins, and thereby the 516 

granularity of how we represent the hydroclimate, is controlling the steady state ksn. This latter 517 

test compares two profile lengths of 10 and 50 km long using both 5 and 10 bins.   518 

5 Results 519 

5.1 Model behavior for regional cases 520 

Direct comparison of the three regional cases for a given uplift rate, profile length, and 521 

bin size provides important insights into the behavior of spatial-STIM. Figure 4 shows the 522 

temporal evolution of all three sites for both linked and unlinked runoff parameters, a bin size of 523 

2 km, a river length of 50 km, and an uplift rate of 1 mm/yr. These time series highlight two 524 

complementary results: (1) Differences in the relief evolution of river profiles due to different 525 

hydroclimatic forcings are relatively modest at this rock uplift rate; (2) Whether the spatial 526 

parameters are linked or unlinked is much more significant, whereby unlinked scenarios nearly 527 

double both mean ksn and elevation as the long profile approaches steady state (Figure 4A-B). 528 

The other panels in Figure 4 show that the temporal evolution of the erosional response (Figure  529 

4C), mean discharge at the outlet (Figure 4D), discharge variability (Figure 4E), and maximum 530 

snow fraction (4F) exhibit a much broader range of responses depending on the site-specific 531 

rules. However, the relative insensitivity of steady state topography to different hydroclimatic 532 

rulesets as compared to the assumption of spatial correlation of runoff events suggests the need 533 

for deeper probing. While we do not intend to dismiss the importance of the different 534 

hydroclimatic rulesets here (see discussion in section 6), we focus our initial findings on model 535 

behavior on the assumption of linked versus unlinked runoff events.  536 
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 537 

Figure 4. Evolution of 1 mm/yr models for all three locations and for both unlinked and linked 538 

cases. A) Mean ksn along the profile. B) Mean elevation of the profile. C) Mean erosion rate 539 

along the profile. D) Discharge at the outlet. E) Variability of runoff at the outlet, comparing 540 

estimations from simple drainage area weighted average (thin lines) that result  from routing 500 541 

years of randomly sampled runoff for each timestep (thick lines). F) Maximum snowmelt 542 

fraction of runoff.  543 

 544 

As the longitudinal profile evolves towards steady state, a transient slope-break 545 

knickpoint migrates upstream to accommodate the rock uplift forcing (e.g., Figure 3), much like 546 

other stream-power based models of river incision (e.g., Crosby & Whipple, 2006; Rosenbloom 547 

& Anderson, 1994). However, a key novelty to our model is that mean runoff and the shape 548 
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parameter of the runoff distribution vary both in space and in time. For example, Figure 5 shows 549 

how runoff parameters vary with position during the transient case using the Greater Caucasus 550 

hydroclimatic rules. For both the unlinked and linked cases, we identified a time when the 551 

knickpoint had obtained a similar relative upstream position (Figure 3A-B; 1 Ma for unlinked; 552 

0.6 Ma for linked). Figures 3C-F show the runoff parameters for every bin in the profile at that 553 

time. On these plots we show the spatially averaged value for the shape parameter and mean 554 

runoff. We also show the median values of these parameters for a Monte Carlo simulation (500 555 

trials) using differently randomly sampled, 100 years long discharge records using the rulesets 556 

for this timestep. A persistent feature of unlinked cases is that the variability of routed discharge 557 

is significantly lower (i.e., larger shape parameter) than the corresponding averages of bins 558 

would suggest (Figure 3C & 3E). In linked cases, routed variability tends to be near the averages 559 

of all bins (Figure 3D & 3F). In contrast, both unlinked and linked scenarios show that mean 560 

runoff is effectively the same whether averaging across bins or from routing runoff down the 561 

profile. Regardless, the large differences between the steady state and transient behavior between 562 

unlinked and linked cases requires a closer examination of model dynamics. 563 

An important nuanced detail of the model evolution is the extent to which during 564 

individual model runs, the range of mean runoffs and shape parameter stay within reasonable 565 

values. Specifically, while our working model (Figure 1B) envisions periods of time or locations 566 

in snowmelt dominated regimes - i.e., where there is a linear relation between mean runoff and 567 

shape parameter - that exhibit both a high magnitude of mean runoff (e.g., 𝑅̅ > 5 mm/day) and 568 

very low variability (e.g., 𝑐𝑅  > 1.5), the empirical data from WaterGAP3 suggests that such 569 

conditions are unlikely (Figure 2A). Considering the mean runoffs and shape parameters for each 570 

bin across the full range of uplifts and all timesteps for the Greater Caucasus unlinked model 571 

runs, as an example, highlights that the majority of bins stay within ranges observed in the 572 

empirical data without any formal restriction to this range (Figure S2).  573 
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 574 

Figure 5. Representative stream profile evolution for an unlinked vs linked model. A) χ-575 

elevation for model GC1U through time. B) Same as A but for GC1L. C) Stream profile for 576 

model GC1U through time. D) Same as C but for GC1L. E) Average erosion rate between 577 

outputs along the profile for model GC1U. F) Same as E but for GC1L. G) Discharge along 578 

profile for model GC1U. H) Same as G but for model GC1L. 579 

 580 
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5.3 Explaining differences between unlinked versus linked scenarios  581 

To examine why there is such a large contrast between the linked and unlinked cases, 582 

Figure 5 shows contrasts between the linked and unlinked scenarios as a function of 𝜒 and 583 

stream distance for the Greater Caucasus hydroclimatic parameters. The temporal evolution of 𝜒-584 

elevation plots (Figure 5A-B) and longitudinal profiles (Figure 5C-D) reiterate that unlinking the 585 

runoff parameters as a function of location reduces the overall efficiency of erosion. While 586 

erosional efficiency is going down, the unlinked hydroclimatic parameters actually produce more 587 

significant pulses in erosion rate during the transient evolution of the profile (Figure 5E-F) and 588 

greater mean discharges (Figure 5G-H). Unlinked cases also generally take longer to reach 589 

steady state (Figure 5). We briefly offer our explanation for these results.  590 

 591 
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Figure 6. Frequency of exceedance of the erosion threshold between output timesteps in an 592 

unlinked vs linked scenario. A) Plot of frequency of exceedance as a function of profile distance 593 

(x) and model time (y) for the unlinked GC1U model, the area of consistently higher frequency 594 

of exceedance tracks the movement of the knickpoint through the profile. B) Same as A but for 595 

the linked GC1L model, notice that the color scale changes between A and B to highlight 596 

structure in both models. C) Cumulative frequency of exceedance of the erosion threshold across 597 

the entire model run as a function of stream distance for unlinked model GC1U. D) Same as C 598 

but for linked model GC1L. E) Mean (solid lines) and max and minimum (dashed lines) 599 

frequency of erosion threshold exceedance through time for the GC1U and GC1L models. F) 600 

Individual frequency of exceedance of erosion threshold at a specific node compared to the 601 

average erosion rate of that note for all time steps. 602 

 603 

Interpreting the dynamics in spatial-STIM inevitably requires understanding the 604 

frequency of exceedance of erosional thresholds in the model (Figure 6), which are fixed to one 605 

value in all of our model runs. For both the linked and unlinked scenarios, areas above the 606 

knickpoint rarely exceed the threshold for erosion and are thus passively uplifted until the 607 

knickpoint passes. The knickpoint itself focuses threshold exceedances to the area just below 608 

where channels are steepest (red areas along profile in Figure 6A-B). This hotspot in threshold 609 

exceedance is localized near the knickpoint for the unlinked case and persists in downstream 610 

reaches for the linked case. Because the knickpoint is migrating upstream, cumulative threshold 611 

exceedances as a function of stream position are relatively smooth when averaged over the long-612 

term (Figure 6C-D) with an average that stabilizes to a single value (Figure 6E). Threshold 613 

exceedance frequencies are generally higher in the unlinked case (Figure 6F) and, locally, 614 

erosion rates can get much higher in the unlinked case (note the color scale difference between 615 

Figure 6A and 6B). Such observations alone might suggest a more efficient hydroclimate in the 616 

unlinked case. However, these river profiles are approaching steady state. Our findings argue that 617 

the river profiles need to adjust to more frequent temporal exceedances to overcome the spatial 618 

heterogeneity in runoff generation. Specifically, the unlinked case makes it much less probable 619 

that upstream reaches ‘benefit’ from water flowing from upstream. Higher probabilities of 620 

exceedance are needed in upstream reaches to balance rock uplift, which are accommodated by 621 

steepening, because rare runoff events are not contemporaneous. These dynamics result in a 622 

negative upstream trend in cumulative exceedance (Figure 6C) that is not observed in the linked 623 

case (Figure 6D). Taken as a whole, the linked scenarios is able to maintain lower relief at lower 624 

mean discharges because of the spatial autocorrelation of events in a river basin. This outcome, a 625 

direct result of the assumptions we use in how runoff accumulates downstream, is larger than the 626 

topographic adjustments induced by the details of the orographic rules for hydroclimate we use.  627 

5.4 Sensitivity of spatial-STIM to other elements of model structure  628 

While the most significant difference between model outcomes is tied to whether the 629 

runoff distributions are linked or unlinked along the river profile, other structural elements of the 630 

model are also important to model dynamics. Specifically, we interrogate how the three new 631 

model parameters added to spatial-STIM (bin size, maximum local relief, profile length) and one 632 

derived parameter (number of bins) influence model behavior (Figure 7). This latter parameter 633 

encodes the ratio between the size of the system (profile length) and the scale over which 634 



manuscript submitted to Journal of Geophysical Research – Earth Surface 

 

changes in hydroclimatic parameters are represented (bin size), thus embedding modification to 635 

the number of degrees of freedom that model entails.  636 

 637 

Figure 7. Summary of sensitivity experiments. Black symbols indicate results of reference 638 

experiments used elsewhere, gray symbols indicate results of a specific sensitivity experiment. 639 

Across all of the models, uplift rate is 1 mm/yr and the Greater Caucasus empirical model 640 

parameters are used. A) Effect of runoff bin size. See Figure S4 for temporal evolution of the 641 

relevant models. B) Effect of imposed maximum relief. See Figure S5 for temporal evolution of 642 

the relevant models. C) Effect of profile length. See Figure S6 for temporal evolution of the 643 

relevant models. Note that for all of these models, the bin size is kept at 2 km, so different profile 644 

lengths imply different number of bins. D) Effect of number of bins, comparing models that are 645 

either 50 km (squares - GC1U-5B, GC1U-10B) or 10 km (circles - GC1U-10L, GC1U-10L-1B) 646 

long. 647 

 648 
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 649 

For all sensitivity experiments, we use the Greater Caucasus hydroclimatic parameters 650 

and rock uplift rates of 1 mm/yr, with the steady-state channel steepness as the model target. 651 

Baseline conditions (black symbols) assume 50-km river lengths, bin sizes of 2 km, and 652 

maximum imposed relief of 2.5 km. For unlinked scenarios, the sensitivity of ksn to bin size is 653 

substantial (Figure 7A, S3). A 5X increase in bin size corresponds to ~33% reduction in ksn. 654 

Increasing the size of bins both decreases the granularity with which orographic gradients in 655 

hydroclimatic parameters are represented as well as increase the degree of spatial 656 

autocorrelation. To this latter point, we plotted the linked case to show that the effect of 657 

increasing bin size is approaching the ksn values observed when the events are linked over the 658 

entire river profile. The sensitivity of ksn to maximum local relief is near zero (Figure 7B, S4). 659 

We placed a threshold in maximum local relief to prevent extrapolating our runoff parameter 660 

relationships to unrealistic values. As such, we wanted to make sure that this threshold was not 661 

strongly influencing the long-term behavior of the model. The insensitivity of channel steepness 662 

to this maximum local relief gives us confidence our model interpretations are not unduly 663 

sensitive to this threshold parameter, though we hypothesize that if this maximum relief was set 664 

unrealistically low or high, that this would begin to influence model results. For unlinked 665 

scenarios, the sensitivity of ksn to profile length, and thus system scale, is substantial (Figure 7C, 666 

S5). A 10X increase in profile length corresponds to ~50% increase in ksn. Increasing the length 667 

of profiles, while holding bin size constant, increases the granularity with which orographic 668 

gradients in hydroclimatic parameters are represented by creating more bins for a given elevation 669 

gradient. Because both bin size and profile length impact the granularity of orographic gradients 670 

in runoff parameters, we also did a test where we changed the length of the profiles (10- and 50-671 

km) for different bin numbers (Figure 7D). Systems of different lengths had similar values for ksn 672 

as long the number of bins was the same. More bins, and thus finer resolving power of gradients 673 

in runoff parameters, led to slight increases in steady ksn. For example, a 2X increase in bin 674 

number led to ~15% increase in ksn, albeit within uncertainty of estimated values. 675 

6 Discussion  676 

Adding complexity to geomorphic transport laws like stream power is useful to the 677 

degree that new models are able to: (1) Be implemented over the spatiotemporal scales of 678 

interest; (2) Capture dynamics that cannot otherwise be simulated; and (3) Improve the ability to 679 

calibrate models and test hypotheses with empirical data. Given that stream power is one of the 680 

most widely used erosion laws in landscape evolution studies, we critically evaluate both the 681 

strengths and limits of adding spatiotemporal stochasticity to stream power. 682 

6.1 Spatial-STIM and its predecessors 683 

One useful lens through which to consider our new model results is in how spatial-STIM 684 

predictions compare to other 1D models built on stream power (Howard, 1994; Whipple & 685 

Tucker, 1999). We focus on three important metrics to evaluate how our new model compares to 686 

its predecessors—namely the steady state channel steepness, the steady state concavity, and the 687 

response time to steady states.  688 



manuscript submitted to Journal of Geophysical Research – Earth Surface 

 

 689 

Figure 8. A) Mean ksn and erosion rate at the end of each run for runs spanning erosion rates. 690 

Lines are power law fits to model results in a stream power context. Equivalent ‘n’ values for 691 

each stream power relationship are shown in the explanation. B) Same as A but calculating ksnQ 692 

sensu Adams et al., (2020). Note, for the calculation of ksnQ presented here, we follow Adams et 693 

al., (2020), which uses precipitation as a proxy for runoff to calculate discharge. To accomplish 694 

this in our 1D model results (which do not formally calculate precipitation), we use empirical 695 

relationships between runoff and precipitation from WaterGAP3 for each region to estimate 696 

precipitation from the modelled runoff. We compare the results of calculating ksnQ directly from 697 

runoff in Figure S6, but ultimately the differences are subtle. C) Best fit concavity (𝜃) for models 698 

using drainage area. D) Best fit concavity for models using precipitation weighted drainage area 699 

sensu Leonard et al., (2023). 700 

6.1.1 Steady state channel steepness 701 

Given this broader context, Figure 8 shows the steady state relationships between channel 702 

steepness and erosion rates for our regional cases using both linked and unlinked parameters. We 703 

plot results both in terms of ksn and ksnQ using a reference channel concavity of 0.5 (see section 704 

6.1.2 for discussion on patterns in concavity). For any given scenario, all model results are well 705 

approximated by a power law, similar to predictions from simple stream power (e.g., Equation 706 



manuscript submitted to Journal of Geophysical Research – Earth Surface 

 

8). In general though, power law fits of channel steepness show strongly sublinear behavior, and 707 

imply stream power values of n of ~3.5 – 4.5 for linked scenarios and ~6 – 14 for unlinked 708 

scenarios (Figure 8A). That individual scenarios imply different values for K  and n should be 709 

expected because these stream power parameters encode details of both climate and rock 710 

properties (e.g., Kirby & Whipple, 2012; Whipple et al., 2022), the former of which we are 711 

explicitly varying in the different scenarios. However, the wide range and large magnitudes of n 712 

are a bit more surprising and could be interpreted as local channel steepness thresholds (Hilley et 713 

al., 2019). Consistent with other stochastic-threshold models of river incision (see Lague, 2014 714 

for discussion), effective values of n are positively correlated with the shape parameter of the 715 

runoff distribution (Figure 9A), though our results are not entirely analogous. The relationship 716 

between the shape parameter of the runoff distribution and n largely emerges from the unlinked 717 

cases in our model results. For linked cases, which are more similar to the Lague et al. (2005) 718 

model, similar runoff variabilities produce a wide range of values for n. Furthermore, a negative 719 

correlation between K and mean runoff emerges from the spatially varying hydroclimatic rules 720 

used to evolve the profiles (Figure 9C).  721 

While we do not perform a formal “ground truthing” of our model results, we can 722 

consider comparisons between measured and modeled ksn-E relationships from the Greater 723 

Caucasus (Figure S7), where the underlying STIM parameters (e.g., ke, 𝜏c, kw) are approximately 724 

calibrated based on Forte et al., (2022). Comparisons of the simple SPIM type fits to different 725 

sets of linked vs unlinked, basin size, and corresponding number of bins suggests that such a 726 

“random sampling” across basins with different underlying stochastic parameters is an 727 

acceptable explanation for the array of erosion rates observed there (e.g., Figure S7). 728 

 729 

https://www.zotero.org/google-docs/?C60vyY
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Figure 9. A) Mean shape parameter across models for a given scenario compared to 1/n from fits 730 

in 8A. B) Mean variability across models for a given scenario compared to 1/n from fits in 8B. 731 

C) Mean runoff across models for a given scenario compared to K from fits in 8A. D) Mean 732 

runoff across models for a given scenario compared to Klp from fit in 8B. 733 

We also present the similar topography erosion rate relationships using an alternative 734 

calculation of channel steepness. We do this to explore whether normalizing our calculations by 735 

spatial gradients in runoff can help collapse model results onto a single relationship, thus 736 

following up on the recent empirical successes of using ksnQ (Adams et al., 2020; Leonard et al., 737 

2023). Using ksnQ instead of ksn does reduce the overall range of stream power values of n to ~2.4 738 

- 3 for linked cases and ~5 – 8.7 for unlinked cases (Figure 8B). However, this modified form of 739 

channel steepness does not significantly collapse the data onto a single relationship, as might 740 

otherwise be expected for model runs with the same underlying ‘rock properties’ (i.e., same 741 

values for ke, 𝜏c, and kw). The point is emphasized further in the persistence of trends between 742 

shape parameter and n (Figure 9B) and runoff and Klp (Figure 9D) for values from the ksnQ-E 743 

relationships (Figure 8B). The overall relationships between stream power parameters and the 744 

two different calculations of channel steepness are quite similar, though they differ in detail as 745 

the rank order of values between ksn (Figure 9A; 9C) and ksnQ (Figure 9B; 9D) are different. 746 

6.1.2 Steady state concavity 747 

One possible explanation for the complex suite of relationships between channel 748 

steepness and erosion rates shown in Figure 8A-B is that our model scenarios produce systematic 749 

variations in concavity. Other 1D river incision models show that steady state concavity is 750 

differentially sensitive to orographic gradients in precipitation as a function of rock uplift rate 751 

(Roe et al., 2003), though they typically fall within the range of expected values between 0.4 and 752 

0.6 (Whipple et al., 2022). As such, we consider best-fit concavities both using drainage area 753 

(Figure 8C) and precipitation-weighted drainage area (Figure 8D). For each model run, we 754 

determine the best-fit concavity by using the linear relationship between 𝜒-elevation or 𝜒Q-755 

elevation (sensu Leonard et al., 2023). Given that all model runs use a ratio of the area exponent, 756 

m, to the slope exponent, n, of 0.5, deviations from this value indicate concavity anomalies 757 

induced by differences in how runoff is generated in the model. The range of concavities is 758 

relatively large, spanning from ~0.3 to 0.6. Importantly, unlinked scenarios consistently develop 759 

profiles with concavities < 0.5. In contrast, linked scenarios consistently develop profiles with 760 

concavities > 0.5. While the largest anomalies (i.e., positive and negative deviations from 0.5) 761 

often occur at lower uplift rates, though this is not universally true. For example, the British 762 

Columbia hydroclimatic parameters produce concavities that are relatively insensitive to rock 763 

uplift rates when bins are unlinked, but display strong, non-monotonic sensitivity when the bins 764 

are linked (Figure 8C-D). Because there is a tradeoff between the relative roles of mean runoff 765 

and daily runoff variability on erodibility, numerical models like spatial-STIM are needed to 766 

identify how sensitive concavity is to rock uplift rates. For a given set of hydroclimatic 767 

parameters, concavity can vary by ~0.1. We also note that precipitation-weighted concavity 768 

(Figure 8D) shows more sensitivity to rock uplift rates than conventional calculations of 769 

concavity. This is the opposite of the effect described in Leonard et al. (2023), where these 770 

authors showed that precipitation-weighted concavity reduces the dynamic range of values 771 

observed in central Andean drainages. Based on this, we suggest that systematic changes in 772 

channel concavity with rock uplift rates may provide important insights into the importance of 773 

orographic effects on runoff parameters and the relative scale of runoff generating events, e.g., 774 
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synoptic events may be more analogous to linked cases and convective events may be more 775 

analogous to unlinked cases.  776 

6.1.3 Transient response timescales 777 

Stream power predictions of steady state morphology are non-unique (Gasparini & 778 

Brandon, 2011). By instead targeting the functional relationship between channel steepness and 779 

erosion rate for a given set of environmental conditions (e.g., rock properties, climatic setting), 780 

stream power predictions are more discriminating, but are still non-unique. For example, there is 781 

always a K and n - or Klp and n - pair that describes the expected steady state topography 782 

produced by our model outputs for each of the simulated scenarios (Figures 8-9). As such, we 783 

consider here whether differences in model dynamics are observed in the transient behavior of 784 

the 1D river profiles. To assess this, we compared the response times to steady state for both 785 

spatial-STIM and simple stream power. We calculated the analytical solution to stream power 786 

using the equations in Whipple (2001). Using the Hack parameters from model initialization (Eq. 787 

21), we can derive the analytical solution for response time using the fit values for K and n for 788 

each model scenario. To do this, we first back-calculate the initial rock uplift rates that 789 

correspond to the initial ksn of 25 m used in all model runs. We then calculate the fractional 790 

change in rock uplift rates and apply the equations in Whipple (2001) to calculate a response 791 

time. For comparison to spatial-STIM, we have to also define steady state in our numerical runs. 792 

We define the time to steady state as the time it takes for the absolute value of the difference 793 

between maximum elevations of the profiles to fall below 0.1 m. Figure 10 summarizes these 794 

calculations and includes direct comparison between spatial-STIM and the analytical solutions 795 

for stream power (Figure 10C). Response times for spatial-STIM plot very close to the 1:1 line, 796 

suggesting broad agreement. Importantly, while it is clear that the simple stream power model 797 

can reproduce the transient dynamics of spatial-STIM, the values of K and n cannot be derived 798 

from first principles. In other words, the values for these parameters are not readily inferred from 799 

known differences in modern estimates of mean runoff and daily runoff variability of our three 800 

regional cases. This is further emphasized in comparisons of modeled vs observed ksn-E 801 

relationships for the Greater Caucasus (e.g., Figure S7).  802 

 803 

Figure 10. Comparison of analytical steady state (SPIM) to empirical steady state (STIM). A) 804 

Estimated time to steady-state from model initiation using the change in maximum elevation 805 

between saved timesteps and defining steady-state as when the absolute value of this metric 806 
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drops below 0.1 m. B) Analytical solution for response time using estimates of K and n from 807 

Figure 8 and calculating what the effective initial uplift rate for each model was assuming this K 808 

and n and the starting ksn (25 m) to calculate the appropriate fractional change in uplift rate sensu 809 

Whipple (Whipple, 2001). C) Comparison of the empirical and analytical response times. 810 

6.1.4 Utility of spatial-STIM 811 

The stream power approximation for each scenario simulated in this study adequately 812 

explains both the steady state and transient response of river profiles. However, there are other 813 

reasons to favor spatial-STIM. Any attempt to calibrate a 1D model of river incision is going to 814 

attempt to constrain free parameters using observational data. While most of our model 815 

parameters are fixed, we were able to produce a very wide range of behaviors in spatial-STIM by 816 

simply including empirical patterns between mean runoff and runoff variability at the three 817 

regional sites. Surprisingly, the details of our hydroclimatic rules were less important than one 818 

new structural element of our model (i.e., linking or unlinking bins) that handles the spatial 819 

autocorrelation of runoff events. As an illustrative example, consider that we have good evidence 820 

for ‘mixed’ populations of runoff generating events being sourced from snowmelt and rainfall-821 

runoff in the Greater Caucasus (Forte et al., 2022). Using the same set of hydroclimatic rules, the 822 

K and n for linked and unlinked cases are very different. Attempting to fit a stream power 823 

relationship to an arbitrary mix of these two cases would likely produce hybrid values of K and n 824 

that are not reflective of either runoff source or the expected behavior of the system, e.g., 825 

response time or the extrapolation of channel steepness to estimates of erosion rates.   826 

Our model analysis also shows that unlinked models were quite sensitive to the 827 

characteristic scales of runoff events (Figure 7A) and watershed size (Figure 7C). These findings 828 

place central importance on understanding the climatic controls on the ratio of these two spatial 829 

scales (Figure 7D) if we want to understand the topographic response to base level fall. 830 

Empirical studies (e.g., Binnie et al., 2007; Cyr et al., 2010; DiBiase et al., 2010; Forte et al., 831 

2022; Harkins et al., 2007; Miller et al., 2013; Olivetti et al., 2012; Ouimet et al., 2009; Rossi et 832 

al., 2017; Safran et al., 2005; Scherler et al., 2014) typically sample across a range of watershed 833 

sizes that may be interacting in complex ways with the characteristic scale of runoff generating 834 

events that may themselves vary with landscape position and contributions from snowmelt (Forte 835 

& Rossi, In Review). Given this strong sensitivity to spatial scale, it is unclear how generalizable 836 

empirical estimates of K and n are when comparing across landscapes. While typical 837 

uncertainties associated with erosion thresholds (e.g., Shobe et al., 2018), rock erodibility (e.g., 838 

Yanites et al., 2017), channel width scaling (e.g., Gallen & Fernández‐Blanco, 2021), and 839 

sediment flux dynamics (e.g., Whipple & Tucker, 2002) still remain (and were not explored in 840 

this analysis), we argue from our simulations that we may not be accounting even for the most 841 

important aspects of climate in current models of bedrock river incision.  842 

6.2 Implications on climate-tectonic coupling 843 

 We undertook this analysis to understand how orographic gradients in mean runoff and 844 

daily runoff variability alter predictions for the topographic evolution of mountain ranges as they 845 

grow (e.g., Figure 1). Specifically, we focused on the important transition from rainfall-846 

dominated probability distributions to snowmelt-dominated ones as topography grows, based on 847 

our own findings in the Greater Caucasus (Forte et al., 2022). Analysis of WaterGAP3 model 848 

data revealed that these hydrological transitions may be generally important to mid-latitude 849 
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mountain ranges where glacial erosion is still limited (Forte & Rossi, In Review). Our new 1D 850 

model of river incision shows that if such orographic gradients are honored, then it is relatively 851 

easy to generate highly sub-linear (3 < n < 14) relationships between channel steepness and 852 

erosion rates that might otherwise be interpreted as mechanistically ambiguous channel steepness 853 

thresholds (Hilley et al., 2019). While the snowmelt transition was our target, the model behavior 854 

we show in this analysis is more general. As long as there is an inverse relationship between 855 

mean runoff and daily runoff variability (e.g., Molnar et al., 2006; Rossi et al., 2016) and mean 856 

runoff increases as topography (i.e., relief) grows, then the dynamics of our model simulations 857 

will apply. Assuming a constant set of hydroclimatic variables as mountain ranges grow is likely 858 

unrealistic, and thus we argue that increasingly sublinear relationships between topography and 859 

erosion may be the norm and not the exception. Early hypotheses on climate-tectonic feedbacks 860 

assumed that the most important orographic effects are in extracting precipitation on the 861 

windward side and diminishing precipitation on the leeward size of topographic barriers (e.g., 862 

Beaumont et al., 1992; Whipple & Meade, 2006; Willett, 1999). Subsequent efforts focused on 863 

the importance of mountain topography setting the spatial distribution of precipitation (Roe et 864 

al., 2003) and phase of precipitation in mountain landscapes (Anders et al., 2008).  While all 865 

these orographic effects are undoubtedly important, our model simulations provide a natural 866 

progression to these insights by also accounting for how stochastic runoff generation (DiBiase & 867 

Whipple, 2011; Lague et al., 2005; Tucker, 2004) will itself be a function of the relief evolution 868 

of mountain ranges. Our results further highlight that a critical, and largely ignored, set of 869 

parameters associated with the scale of runoff events with respect to watershed size may be 870 

fundamental to understanding potential feedbacks between climate and tectonics. 871 

6.3 Limitations and Future Directions 872 

While our new model provides important insights into how realistic orographic gradients 873 

in runoff generation will impact stream-power based predictions for topographic relief, there are 874 

several important limitations to our model analysis to keep in mind. First, we only use modern 875 

relationships between local relief and mean runoff, maximum elevation, snowmelt fraction at 876 

select locations to drive model scenarios. Related to this assumption is that the observed 877 

relationships will persist across geologically long periods of time, even though we know that 878 

mean precipitation varies with broader climate cyclicity and glacial-interglacial forcing (e.g., 879 

Cruz et al., 2005; Wang et al., 2008). As such, we would expect that both mean runoff, runoff 880 

variability, and snowmelt fraction should all vary, perhaps significantly, across glacial-881 

interglacial cycles or larger climate transitions. One novelty of our model is that it makes explicit 882 

the rules that describe how hydroclimatology will coevolves with topographic relief. To take 883 

advantage of this model feature in simulating glacial-interglacial cycles, we need more detailed 884 

accounting for how these cycles impact mean runoff and daily runoff variability through time. 885 

Second, the discrete boundaries imposed by binning the river profile is quite imperfect. Not only 886 

does it imply a scale beyond which runoff parameters can be treated independently, it also fixes 887 

the location of these event properties in space. The arbitrary locations of these bins are likely an 888 

unrealistically hard constraint on the event-scale properties of snowmelt and rainfall-runoff 889 

events.  890 

Keeping these limitations in mind, we highlight a few promising directions for future 891 

modeling and data analysis on this topic. As computational power increases, we are seeing more 892 

realistic simulations of orographic precipitation in bedrock river incision modeling (e.g., Han et 893 

al., 2015; Shen et al., 2021). Our results suggest that these efforts would benefit from bringing 894 
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commensurate improvement in the land surface models that convert precipitation to runoff. For 895 

mid-latitude mountain landscapes, it is important to honor the importance of precipitation phase 896 

on orographic gradients in runoff patterns (e.g., Anders et al., 2008; Forte et al., 2022; Rossi et 897 

al., 2020). Similarly, prior studies highlight the potential importance of Milankovitch forcings on 898 

precipitation for landscape evolution (Godard et al., 2013). How these cyclical variations of 899 

precipitation are then converted to mean runoff, daily runoff variability, and snowmelt fraction is 900 

thus an important unknown. Our focus on the form of ksn-E relationships suggest that a natural 901 

extension of this work should also be to examine how spatial-STIM might alter coupled models 902 

between climate and tectonics. Relatively simple analytical approaches to this problem (Whipple 903 

& Meade, 2004, 2006), as well as more complex dynamical models (e.g., Braun & Yamato, 904 

2010; Roe et al., 2006; Stolar et al., 2007), have yielded important insights into potential 905 

feedbacks between climate and tectonics. While we can say that the dynamics in our 1D model 906 

will act to dampen such feedbacks, the question of by how much is still open and deserves more 907 

careful study. 908 

Finally, the assumption of spatial autocorrelation of runoff events proved to be the 909 

strongest regulator of erosional efficiency in our new model structure. Within the context of a 1D 910 

models like ours, having events that are stochastic in space and time is challenging, but not 911 

insurmountable. As such, we need more hydrological studies that can help us generalize the 912 

spatial statistics of rainfall- and snowmelt-runoff events. Promising work characterizing 913 

potentially significant spatial variability in precipitation patterns in high relief landscapes exist 914 

(e.g., Anders et al., 2006, 2007; Barros et al., 2000; Campbell & Steenburgh, 2014; Frei & Schär, 915 

1998; Minder et al., 2008), but generalizing these into how this spatial stochasticity is, or is not, 916 

reflected in runoff at a similar scale remains largely unclear. Similarly, the analysis of 917 

WaterGAP3 data by Forte & Rossi (In Review) suggested a fundamental relationship between 918 

runoff event size and contribution from snowmelt with events with larger footprints being 919 

dominated by high proportions of snowmelt, further highlighting the interconnectedness of many 920 

of the parameters we consider. While fully distributed hydrological models come at a high 921 

computational cost for landscape evolution studies, statistical descriptions of these dynamics 922 

may be tractable over landscape evolution timescales. Furthermore, the way space is represented 923 

in 1D river profiles may not be able to fully mimic the spatial statistics of runoff events, thereby 924 

requiring 2D landscape evolution modeling. The Landlab modeling library (Barnhart et al., 2020; 925 

Hobley et al., 2017) already has many of the process components suited to implementing spatial-926 

STIM in a 2D framework. Thus understanding how well we have captured spatiotemporal 927 

stochasticity using the assumptions of our 1D model is an important open question that should be 928 

tested in 2D (Tucker, 2004; Tucker & Bras, 2000). Despite the clear needs for refining and 929 

understanding the applicability of spatial-STIM, our findings show that simply accounting for 930 

spatial variations in daily runoff variability is an important step towards generating testable 931 

predictions for the erosion laws used by our community. 932 

7 Conclusions 933 

Results from simulations using our new empirically driven 1D profile model that 934 

considers both temporal and spatial stochasticity in runoff and snowmelt events highlight that 935 

generally sublinear relationships between channel steepness and erosion rate are an expected 936 

outcome of orographic development within mountain ranges. Specifically that because of the 937 

linkage between mean runoff and runoff variability wherein increasing mean runoff drives 938 

decreasing variability, development of orographic gradients in runoff imply orographic gradients 939 
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in runoff variability. This is strengthened by the tendency for increasing elevation of mountain 940 

ranges to preferentially accumulate snow, driving a greater component of runoff to be related to 941 

snowmelt and further reducing the variability of runoff. Given the expectation that decreasing 942 

runoff variability should lead to increasingly sublinear channel steepness erosion rate 943 

relationships, this implies a potential negative feedback between the topographic growth of 944 

mountain range and continued steepening and provides a process based explanation for the 945 

observation of pseudo-thresholds in channel steepness erosion rate relationships. 946 

A critical outcome of our model results is also that a fundamental parameter for 947 

controlling the nature of channel steepness erosion rate relationships is the extent to which the 948 

probability of exceedance of runoff events within a given catchment are “linked” or “unlinked” 949 

and the corresponding spatial scale of individual runoff events in cases where these probabilities 950 

are unlinked. These two endmember states roughly correspond to the extent to which runoff 951 

generating events in a given catchment tend to be dominated by spatially restricted convective 952 

storm events or more spatially broad synoptic events. Broadly, for identical parameters, unlinked 953 

scenarios predict steeper landscapes than the equivalent linked scenario. This implies a 954 

fundamental scale dependence on the nature of channel steepness erosion rate relationships and 955 

an expectation that smaller catchments would be more dominated by synoptic events or 956 

convective storm events that are the same size or larger than the catchment (i.e., linked) whereas 957 

larger catchments are more likely to be sensitive to spatially restricted runoff generating events 958 

(i.e., unlinked), but this can be importantly modified by local weather and storm patterns. In the 959 

context of the majority of empirical channel steepness erosion rate relationships from catchment 960 

averaged cosmogenic nuclides, we would broadly expect that many such datasets from a single 961 

mountain range reflect mixtures of catchments that could either best be described as linked or 962 

unlinked scenarios. While for a single set of hydroclimatogical parameters and assuming a linked 963 

or unlinked scenario, the resulting channel steepness erosion rate pattern can be fit by a simple 964 

stream power relationship, the extent to which this is meaningful in real datasets, where linked 965 

and unlinked type catchments are mixed, is unclear. Ultimately, our results have important 966 

implications not only for our understanding of expected coupling between hydroclimatology, 967 

topography, and tectonics as a mountain range grows, but also the type of observations we as a 968 

community should be considering within our datasets. Future work should focus on both 969 

considering the implications of spatial and temporal stochasticity of runoff and snowmelt events 970 

within 2D, but also better empirical quantification of the characteristic spatial and temporal scale 971 

of runoff events within mountainous catchments and how these evolve with time through glacial-972 

interglacial cycles. 973 
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