References
Ahmadlouydarab, M., Liu, Z. S., & Feng, J. J. (2012). International
Journal of Multiphase Flow Relative permeability for two-phase flow
through corrugated tubes as model porous media. International
Journal of Multiphase Flow , 47 , 85–93.
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2012.07.005
Ahrenholz, B., Tölke, J., Lehmann, P., Peters, A., Kaestner, A.,
Krafczyk, M., & Durner, W. (2008). Prediction of capillary hysteresis
in a porous material using lattice-Boltzmann methods and comparison to
experimental data and a morphological pore network model. Advances
in Water Resources , 31 (9), 1151–1173.
https://doi.org/10.1016/j.advwatres.2008.03.009
Amaefule, J. O., & Handy, L. L. (1982). The Effect of Interfacial
Tensions on Relative Oil/Water Permeabilities of Consolidated Porous
Media. Society of Petroleum Engineers Journal , 22 (03),
371–381. https://doi.org/10.2118/9783-PA
Asar, H., & Handy, L. L. (1989). Influence of interfacial tension on
gas/oil relative permeability in a gas-condensate system. Spe
Reservoir Engng. , 3 (1, Feb. 1989), 257–264.
https://doi.org/10.2118/11740-pa
Benson, S. M., Hingerl, F., Zuo, L., Krevor, S., Reynolds, C., Niu, B.,
Calvo, R., Niemi, A., Pini, R., Krevor, S., Reynolds, C., Niu, B.,
Calvo, R., & Niemi, A. (2015). Relative permeability for multi-phase
flow in CO2 storage reservoirs. Part II: resolving fundamental issues
and filling data gaps. Global CCS Institute , December ,
1–52.
Burnside, N. M., & Naylor, M. (2014). International Journal of
Greenhouse Gas Control Review and implications of relative permeability
of CO 2 / brine systems and residual trapping of CO 2.International Journal of Greenhouse Gas Control , 23 ,
1–11. https://doi.org/10.1016/j.ijggc.2014.01.013
Chen, C., & Zhang, D. (2010). Pore-scale simulation of density-driven
convection in fractured porous media during geological CO2
sequestration. Water Resources Research , 46 (11).
https://doi.org/https://doi.org/10.1029/2010WR009453
Chen, S., & Doolen, G. D. (1998). LATTICE BOLTZMANN METHOD FOR FLUID
FLOWS. Annual Review of Fluid Mechanics , 30 (1), 329–364.
https://doi.org/10.1146/annurev.fluid.30.1.329
Dong, H., & Blunt, M. J. (2009). Pore-network extraction from
micro-computerized-tomography images. Physical Review E ,80 (3), 36307. https://doi.org/10.1103/PhysRevE.80.036307
Dou, Z., & Zhou, Z. F. (2013). Numerical study of non-uniqueness of the
factors influencing relative permeability in heterogeneous porous media
by lattice Boltzmann method. International Journal of Heat and
Fluid Flow , 42 , 23–32.
https://doi.org/10.1016/j.ijheatfluidflow.2013.01.020
Fan, M., Dalton, L. E., McClure, J., Ripepi, N., Westman, E., Crandall,
D., & Chen, C. (2019). Comprehensive study of the interactions between
the critical dimensionless numbers associated with multiphase flow in 3D
porous media. Fuel , 252 , 522–533.
https://doi.org/10.1016/j.fuel.2019.04.098
Fulcher, R. A., Ertekin, T., & Stahl, C. D. (1985). Effect of Capillary
Number and Its Constituents on Two-Phase Relative Permeability Curves.JPT, Journal of Petroleum Technology , 37 (2), 249–260.
https://doi.org/10.2118/12170-PA
Goel, G., Abidoye, L. K., Chahar, B. R., & Das, D. B. (2016). Scale
dependency of dynamic relative permeability–satuartion curves in
relation with fluid viscosity and dynamic capillary pressure effect.Environmental Fluid Mechanics , 16 (5), 945–963.
https://doi.org/10.1007/s10652-016-9459-y
Goldsmith, H. L., & Mason, S. G. (1963). The flow of suspensions
through tubes. II. Single large bubbles. Journal of Colloid
Science , 18 (3), 237–261.
https://doi.org/10.1016/0095-8522(63)90015-1
Gudjonsdottir, M., Palsson, H., Eliasson, J., & Saevarsdottir, G.
(2015). Calculation of relative permeabilities from field data and
comparison to laboratory measurements. Geothermics , 54 ,
1–9. https://doi.org/10.1016/j.geothermics.2014.10.004
Harbert, L. W. (1983). Low interfacial tension relative permeability.Proceedings - SPE Annual Technical Conference and Exhibition ,1983 -Octob , 2–9. https://doi.org/10.2523/12171-ms
Heins, R., Simjoo, M., Zitha, P. L., & Rossen, W. R. (2014). Oil
Relative Permeability During Enhanced Oil Recovery by Foam Flooding. InSPE Annual Technical Conference and Exhibition .
https://doi.org/10.2118/170810-MS
Huang, H., & Lu, X. Y. (2009). Relative permeabilities and coupling
effects in steady-state gas-liquid flow in porous media: A lattice
Boltzmann study. Physics of Fluids , 21 (9).
https://doi.org/10.1063/1.3225144
Huang, H., Sukop, M. C., & Lu, X.-Y. (2015). Rothman–Keller multiphase
Lattice Boltzmann model. In Multiphase Lattice Boltzmann Methods:
Theory and Application (pp. 94–135).
https://doi.org/https://doi.org/10.1002/9781118971451.ch4
Huang, H., Wang, L., & Lu, X. Y. (2011). Evaluation of three lattice
Boltzmann models for multiphase flows in porous media. Computers
and Mathematics with Applications , 61 (12), 3606–3617.
https://doi.org/10.1016/j.camwa.2010.06.034
Jeong, G. S., Lee, J., Ki, S., Huh, D. G., & Park, C. H. (2017).
Effects of viscosity ratio, interfacial tension and flow rate on
hysteric relative permeability of CO2/brine systems. Energy ,133 , 62–69. https://doi.org/10.1016/j.energy.2017.05.138
Jiang, F., & Tsuji, T. (2015). Impact of interfacial tension on
residual CO2 clusters in porous sandstone. Water Resources
Research , 51 (3), 1710–1722.
https://doi.org/10.1002/2014WR016070
Jiang, F., & Tsuji, T. (2016). Numerical investigations on the effect
of initial state CO2 topology on capillary trapping efficiency.International Journal of Greenhouse Gas Control , 49 ,
179–191. https://doi.org/10.1016/j.ijggc.2016.03.006
Jiang, F., Tsuji, T., & Hu, C. (2014). Elucidating the Role of
Interfacial Tension for Hydrological Properties of Two-Phase Flow in
Natural Sandstone by an Improved Lattice Boltzmann Method.Transport in Porous Media , 104 (1), 205–229.
https://doi.org/10.1007/s11242-014-0329-0
Legland, D., Kiêu, K., & Devaux, M. F. (2007). Computation of Minkowski
measures on 2D and 3D binary images. Image Analysis and
Stereology , 26 (2), 83–92.
https://doi.org/10.5566/ias.v26.p83-92
Lenormand, R., Touboul, E., & Zarcone, C. (1988). Numerical models and
experiments on immiscible displacements in porous media. Journal
of Fluid Mechanics , 189 , 165–187.
https://doi.org/10.1017/S0022112088000953
Li, H., Pan, C., & Miller, C. T. (2005). Pore-scale investigation of
viscous coupling effects for two-phase flow in porous media.Physical Review E - Statistical, Nonlinear, and Soft Matter
Physics , 72 (2), 1–14.
https://doi.org/10.1103/PhysRevE.72.026705
Mahmoudi, S., Mohammadzadeh, O., Hashemi, A., & Kord, S. (2017).
Pore-scale numerical modeling of relative permeability curves for
CO2–oil fluid system with an application in immiscible CO2 flooding.Journal of Petroleum Exploration and Production Technology ,7 (1), 235–249. https://doi.org/10.1007/s13202-016-0256-4
McDougall, S. R., Salino, P. A., & Sorbie, K. S. (2007). The
Effect of Interfacial Tension Upon Gas-Oil Relative Permeability
Measurements: Interpretation Using Pore-Scale Models .
https://doi.org/10.2523/38920-ms
Niibori, Y., Ahn, J., & Mimura, H. (2011). Uncertainty of Relative
Permeability to Describe Two-Phase Flow in Geological Disposal System.Nuclear Technology , 175 (3), 641–651.
https://doi.org/10.13182/NT11-A12512
Odeh, A. S. (1959). Effect of Viscosity Ratio on Relative Permeability
(includes associated paper 1496-G). Transactions of the AIME ,216 (01), 346–353. https://doi.org/10.2118/1189-G
Øren, P. E., & Bakke, S. (2003). Reconstruction of Berea sandstone and
pore-scale modelling of wettability effects. Journal of Petroleum
Science and Engineering , 39 (3–4), 177–199.
https://doi.org/10.1016/S0920-4105(03)00062-7
Ramstad, T., Øren, P. E., & Bakke, S. (2010). Simulation of two-phase
flow in Reservoir rocks using a lattice Boltzmann method. SPE
Journal , 15 (4), 923–933. https://doi.org/10.2118/124617-pa
Schlüter, S., Berg, S., Rücker, M., Armstrong, R. T., Vogel, H.-J.,
Hilfer, R., & Wildenschild, D. (2016). Pore-scale displacement
mechanisms as a source of hysteresis for two-phase flow in porous media.Water Resources Research , 52 , 2194–2005.
https://doi.org/10.1002/2015WR018254
Shad, S., Gates, I. D., & Maini, B. B. (2008). Experimental study of
heavy oil-water flow structure effects on relative permeabilities in a
fracture filled with heavy oil. Society of Petroleum Engineers -
International Thermal Operations and Heavy Oil Symposium, ITOHOS 2008 -
“Heavy Oil: Integrating the Pieces,” 2 , 690–701.
https://doi.org/10.2118/117644-ms
Shen, P., Zhu, B., Li, X. Bin, & Wu, Y. S. (2010). An Experimental
Study of the Influence of Interfacial Tension onWater-Oil Two-Phase
Relative Permeability. Transport in Porous Media , 85 (2),
505–520. https://doi.org/10.1007/s11242-010-9575-y
Succi, S., Sbragaglia, M., & Ubertini, S. (2010). Lattice Boltzmann
Method. Scholarpedia , 5 (5), 9507.
https://doi.org/10.4249/scholarpedia.9507
Tölke, J., Freudiger, S., & Krafczyk, M. (2006). An adaptive scheme
using hierarchical grids for lattice Boltzmann multi-phase flow
simulations. Computers & Fluids , 35 (8), 820–830.
https://doi.org/https://doi.org/10.1016/j.compfluid.2005.08.010
Tsuji, T., Jiang, F., & Christensen, K. T. (2016). Characterization of
immiscible fluid displacement processes with various capillary numbers
and viscosity ratios in 3D natural sandstone. Advances in Water
Resources , 95 , 3–15.
https://doi.org/10.1016/j.advwatres.2016.03.005
Vafai, K. (2000). Handbook of Porous Media . Marcel Dekker, Inc.
Wu, Q., & Wang, J. (2020). A thermo-hydro-mechanical coupling analysis
for the contaminant transport in a bentonite barrier with variable
saturation. Water (Switzerland) , 12 (11), 1–23.
https://doi.org/10.3390/w12113114
Yang, J., & Boek, E. S. (2013). A comparison study of multi-component
Lattice Boltzmann models for flow in porous media applications.Computers and Mathematics with Applications , 65 (6),
882–890. https://doi.org/10.1016/j.camwa.2012.11.022
Yiantsios, S. G., & Higgins, B. G. (1988). Numerical solution of
eigenvalue problems using the compound matrix method. Journal of
Computational Physics , 74 (1), 25–40.
https://doi.org/10.1016/0021-9991(88)90066-6
Yih, C. S. (1967). Instability due to viscosity stratification.Journal of Fluid Mechanics , 27 (2), 337–352.
https://doi.org/10.1017/S0022112067000357
Yiotis, A. G., Psihogios, J., Kainourgiakis, M. E., Papaioannou, A., &
Stubos, A. K. (2007). A lattice Boltzmann study of viscous coupling
effects in immiscible two-phase flow in porous media. Colloids and
Surfaces A: Physicochemical and Engineering Aspects , 300 (1-2
SPEC. ISS.), 35–49. https://doi.org/10.1016/j.colsurfa.2006.12.045
Zhang, Y., Jiang, F., & Tsuji, T. (2022). Influence of pore space
heterogeneity on mineral dissolution and permeability evolution
investigated using lattice Boltzmann method. Chemical Engineering
Science , 247 , 117048. https://doi.org/10.1016/j.ces.2021.117048
Zhao, H., Ning, Z., Kang, Q., Chen, L., & Zhao, T. (2017). Relative
permeability of two immiscible fluids flowing through porous media
determined by lattice Boltzmann method. International
Communications in Heat and Mass Transfer , 85 (May), 53–61.
https://doi.org/10.1016/j.icheatmasstransfer.2017.04.020
Zheng, X., Mahabadi, N., Yun, T. S., & Jang, J. (2017). Effect of
capillary and viscous force on CO2 saturation and invasion pattern in
the microfluidic chip. Journal of Geophysical Research: Solid
Earth , 122 (3), 1634–1647.
https://doi.org/https://doi.org/10.1002/2016JB013908