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ABSTRACT 10 

Hydroperiod, or the amount of time a lentic waterbody contains water, shapes 11 

communities of aquatic organisms. Precise measurement of hydroperiod features such as 12 

inundation timing and duration can help predict community dynamics and ecosystem stability. In 13 

areas defined by high spatial and temporal variability, fine-scale temporal variation in inundation 14 

timing and duration may drive community structure, but that variation may not be captured using 15 

common approaches including remote sensing technology. Here, we provide methods to 16 

accurately capture inundation timing by fitting hidden Markov models to measurements of daily 17 

temperature standard deviation collected from temperature loggers. We describe a rugged 18 

housing design to protect loggers from physical damage and apply our methods to a group of 19 

intermittent ponds in southeastern Arizona, showing that initial pond inundation timing is highly 20 

variable across a small geographic scale (~50km
2
). We also compare a 1-logger (pond only) and 21 

2-logger (pond + control) design and show that, although a single logger may be sufficient to 22 

capture inundation timing in most cases, a 2-logger design can increase confidence in results. 23 

These methods are cost-effective and show promise in capturing variation in intraregional 24 

inundation timing that may have profound effects on aquatic communities, with implications for 25 

how these communities may respond to hydroperiod alteration from a changing climate. 26 

Key Words: temporary ponds, hydroperiod, HOBO Pendant logger, temperature sensor, 27 

hidden Markov models, American Southwest, aquatic, desert 28 
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1. Introduction 37 

For water-dependent organisms, hydroperiod – or the amount of time a lentic waterbody holds 38 

water – plays a critical role in population and community dynamics (De Meester et al., 2005). 39 

Dispersal decisions (Tournier et al., 2017), fitness (Johnson et al., 2013; Rogers & Chalcraft, 40 

2008), reproductive success (Ryan & Winne, 2001), survival (Acosta & Perry, 2001), and 41 

source-sink dynamics (Ruetz III et al., 2005; Werner et al., 2007) are all influenced by 42 

hydroperiod. Hydroperiod is also an important predictor of community composition (Razgour et 43 

al., 2010; Skelly, 1997; Waterkeyn et al., 2008) and diversity (Schriever et al., 2015; Schriever & 44 

Williams, 2013; Stendera et al., 2012), and thus may influence ecosystem stability. Specific 45 

components of hydroperiod, such as inundation timing or stability, influence species density and 46 

richness (Florencio et al., 2020; Kneitel, 2014) may play a key role in determining reproductive 47 

success of amphibians (Paton & Crouch III, 2002).  48 

The wide-ranging effects of hydroperiod on individual organisms, populations, and 49 

ecological communities necessitate tools to enable fine-scale measurement and monitoring of the 50 

timing, frequency, and duration of hydroperiod events in temporary lentic waters. Such tools will 51 

play an important role in predicting how hydroperiods may change in response to future water 52 

use and climate scenarios – and how organisms that rely on these habitats will fare. Satellite 53 

remote sensing tools such as Synthetic Aperture Radar (Bourgeau-Chavez et al., 2005; Hong et 54 

al., 2010) and Landsat imagery (DeVries et al., 2017; Díaz-Delgado et al., 2016; Murray-Hudson 55 

et al., 2015) enable wetland hydroperiod assessment over multi-year or multi-decade periods and 56 

covering 10s to 1000s km
2
. The accuracy of these methods continues to improve with advances 57 

in image analytical techniques that provide information on surface water presence and area at a 58 

sub-pixel level (Halabisky et al., 2018). Despite these promising advances, the temporal grain of 59 
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remotely sensed data remains coarse for most remotely sensed datasets. For example, Landsat 60 

captures images at a spatial resolution of 30 meters every 16 days (Irons et al., 2012; Ozesmi & 61 

Bauer, 2002). Remotely-sensed images can be obscured by cloud cover, further decreasing 62 

temporal resolution. In many regions, inundation of intermittent lentic habitat may occur over 63 

hours or days. Temporal resolution on the order of 2-4 weeks may miss important fine-scale 64 

differences in pond inundation timing, particularly in regions with unpredictable spatial patterns 65 

of precipitation that drive a patchwork of inundation dates. 66 

Temperature and conductivity sensors are used increasingly in both lotic and lentic 67 

systems to provide fine-scale spatial and temporal hydroperiod measurements (Anderson et al., 68 

2015; Arismendi et al., 2017; Jaeger & Olden, 2012). Daily temperature variance is typically 69 

lower in water than in air, and comparison of daily temperature variance provides a reliable 70 

proxy for inundation state (Sowder & Steel, 2012). A rapid drop in daily temperature variance 71 

can reliably measure the precise timing of an inundation event (Anderson et al., 2015; Arismendi 72 

et al., 2017). For example, Anderson et al. (2015) tested the ability of temperature sensors to 73 

accurately predict inundation states both in natural wetlands and in controlled mesocosms. The 74 

authors deployed temperature sensors for two six-month periods in ponds over a 7140 ha area 75 

that varied in size and depth. They demonstrated that daily temperature variance reflected pond 76 

filling and drying events, with higher variance in dry ponds and in control sensors placed on the 77 

ground outside of ponds, and they determined an approximate variance threshold to predict 78 

inundation states. Arismendi et al. (2017) placed paired temperature sensors and electrical 79 

resistors in temporary streams. They found that using daily temperature standard deviation more 80 

accurately predicted inundation states than mean hourly or daily temperature measurements, and 81 

they applied 2-state hidden Markov models, which account for autocorrelation of time series 82 
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data, to the daily temperature standard deviations measured from the streams in order to predict 83 

shifts from wet to dry states. 84 

 Here, we describe methods for deployment and data analysis of an array of temperature 85 

loggers to monitor inundation state of intermittent ponds in the San Rafael Valley of Arizona, 86 

USA. The objectives of this study were: 1) design a sturdy, low cost, and low maintenance 87 

housing unit for temperature sensor deployment in remote and rugged terrain; 2) deploy paired 88 

sensors (one within the target pond and one outside the pond) to monitor hydroperiod inundation 89 

states in temporary ponds; 3) evaluate inundation states using hidden Markov models, comparing 90 

inundation date inference between 1-logger (pond only) and 2-logger (pond + control) 91 

experimental design; 4) compare observed and inferred inundation state recorded during in-92 

person visits to ponds. Overall, our findings point to the utility of temperature loggers as a cost-93 

effective, low profile tool in uncovering ecologically relevant spatiotemporal differences in 94 

intraregional inundation timing. This is particularly useful in regions with highly localized 95 

precipitation events that drive small-scale differences in spatiotemporal hydroperiod dynamics. 96 

 97 

2. Methods 98 

2.1 Study area 99 

We deployed paired temperature loggers (one within and one outside a pond) in 16 intermittent 100 

ponds in the Coronado National Forest, located within the Huachuca Mountains Canelo Hills 101 

(HMCH) region and San Rafael Valley of southeastern Arizona, USA in June and July 2018 102 

(Figure 1). The HMCH region is part of the Madrean Sky Islands, with an elevation range of 103 

approximately 1150 m to 2880 m. Habitat composition includes cienega wetlands, semi-arid 104 

grasslands and thorn-scrub, and evergreen and coniferous woodlands. The climate of this region 105 
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is semi-arid, with up to half of the annual rainfall occurring during the summer monsoon season 106 

(Sheppard et al., 2002). Rain events during the monsoon season are typically short in duration, 107 

high in intensity, and seasonally predictable but spatially variable (Goodrich et al., 2008). Ponds 108 

in the region were originally constructed to provide water for livestock and are often called 109 

“stock tanks”; these ponds are now surrogating for aquatic habitat lost to human activities and 110 

support a range of aquatic species (Rosen & Schwalbe 1998; Storfer et al. 2014; Mims et al. 111 

2016). We selected ponds based on historical hydroperiod data that indicated they were generally 112 

intermittent and tended to have longer (>1 month) duration wetted phases (Parsley et al., 2020).  113 

 

 

Figure 1. Study ponds (N=14) in the Huachuca Mountains-Canelo Hills region of southeastern 114 

Arizona (reference map inset). Colors indicate pond initial fill dates, ranging from 17 July 2018 115 

(T8, 9, 12, and 13) to 25 August 2018 (T2). Initial fill dates were calculated from paired pond-116 

control Hidden Markov models, where inundation was defined as a period of 5 or more 117 

consecutive days with the daily temperature standard deviation measured by the pond logger was 118 

at least 2°C less than that of the control logger. UTM coordinates (NAD 83) indicate position of 119 

each corner of the map. 120 
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 121 

 122 

2.2 Sensors, housing units, and deployment 123 

We selected a waterproof temperature logger with the capacity for battery replacement by the 124 

user for longevity (company: Onset, Bourne, MA, USA; model: HOBO Pendant, MX2201; 125 

diameter: 3.35 cm; temperature range: -20 ˚C to 50˚C; temperature precision: ± 0.5˚C; cost: 126 

$54.00 USD; data retrieval: Bluetooth, battery: user replaceable CR2032 3V lithium). Our study 127 

region is remote with rugged terrain, and deployed equipment is exposed to variable weather, 128 

UV exposure, and potential tampering from humans, wildlife, or livestock. The intermittent 129 

ponds in our study region are visited frequently by cattle, and equipment must be able to 130 

withstand trampling or tampering. With this in mind, we designed a rugged housing unit to 131 

protect temperature loggers from damage and ensure long-term durability (Figure S1). We 132 

placed a logger inside a PVC junction box (hereafter called the housing unit) with two nuts 133 

between the box and the lid for increased air or water flow. The logger moved freely inside the 134 

housing unit to increase the chance that it remained submerged (i.e., fell to the lowest point 135 

within the housing unit) if disturbed after deployment. The housing unit was connected to a 136 

concrete tie or other secure post (e.g., a metal fence post marking edges of allotments) via a 137 

3/32” (2.381 mm) galvanized, uncoated steel cable strung through the holes of the junction box. 138 

We fastened the cable by swaging a crimping sleeve. We provide a complete list of 139 

specifications for tools and materials in Table S1. 140 

At each of the 16 ponds, we deployed one logger at the approximate deepest point of fill 141 

within the tank (the pond logger) and one logger approximately 10 m outside of the high-water 142 

mark for the pond (the control logger). Where possible, we placed control loggers in sunny, 143 
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shade-free areas in order to most closely match conditions and exposure of the pond logger. If 144 

the pond basin consisted of fine clay or silt, we placed the housing unit on a flat rock partially 145 

buried to sit flush with the ground and to avoid it becoming buried in silt upon pond inundation. 146 

We then secured the housing unit to an existing fence post (typically a metal T post) or to a 147 

concrete tie using steel cable looped through the housing. We used a mallet to drive concrete ties 148 

completely into the ground for protection of livestock. Finally, we covered units with loosely 149 

stacked rocks to minimize livestock tripping risk and to help camouflage units to avoid 150 

tampering (Figure S2).  Loggers recorded temperature at 15-minute intervals with Bluetooth set 151 

to manual (i.e., not continuously seeking a signal), resulting in an estimated 3.2-year battery life 152 

for each logger. We visited ponds three times after sensor deployment: 31 Jul – 2 Aug 2018, 31 153 

Mar - 3 April 2019, and 21 – 27 June 2019 (time of data retrieval). 154 

 155 

2.3 Prediction of pond inundation states using Hidden Markov models 156 

We used a custom script in R v3.6.1 (R Development Core Team, 2018) to calculate the daily 157 

temperature standard deviations (tSDs) measured by each temperature logger. We then used the 158 

package depmixS4 v1.4.0 (Visser & Speekenbrink, 2010) in R to fit hidden Markov models 159 

(HMMs) to detect temporal shifts in tSD, representing pond filling and drying events. HMMs 160 

can be used to identify shifting trends in time series data (e.g. high tSDs associated with dry 161 

states and low tSDs associated with wet states) while accounting for temporal autocorrelation. 162 

Therefore, they are useful tools for modeling climatic data (reviewed in Srikanthan & McMahon, 163 

2001). We initially fit both 2-state and 3-state HMMs to both of our datasets, with the former 164 

modeling a simple scenario of distinct dry and wet states, and the latter factoring in the potential 165 

effects of seasonal differences, which may cause daily tSD readings to differ due to varying 166 
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water depths above the sensors (Anderson et al., 2015) or as a result of seasonal environmental 167 

variation (Campbell & Diebold, 2005). We compared two different datasets for each study site: 168 

one using temperature data from the paired pond and control loggers at each site, calculated by 169 

subtracting the tSDs of the pond loggers from the tSDs of control loggers (wherein a value of 0 170 

indicates no difference in daily tSD between the pond and air temperatures), and another using 171 

tSDs from pond loggers only. 172 

 173 

3. Results and Discussion 174 

3.1 Assessment of housing unit performance 175 

We retrieved data from 30 (n = 14 pond loggers, n = 16 control loggers) of the 32 loggers 176 

deployed, with two pond loggers underwater at the time of collection. We downloaded 177 

temperature data for the entire study period (between 1 July 2018 and 21 June 2019) for 26 178 

loggers. Four pond loggers at sites T1, T2, T8, and T13 failed due to a potentially faulty logger 179 

backing design that was addressed by the manufacturer during the time between initial 180 

deployment and site visits in June 2019; all pond loggers were replaced by the manufacturer, and 181 

replacements were deployed following data retrieval in June 2019. No subsequent issues 182 

emerged (0% failures) using loggers with the updated backing for other experiments during 183 

which loggers were submerged in water for months at a time (M.C. Mims, unpublished data). 184 

During each site visit, we evaluated logger function, cleared any mud or sediment in the rugged 185 

housing units, and replaced disturbed rock piles (Figure S3). 186 

Overall, we found that the logger design accomplished our goals, but there were some 187 

considerations and limitations. Our logger housing design successfully protected the loggers 188 

from physical damage, even when disturbed by cattle. Careful placement of loggers in the 189 
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deepest point in the pond is also imperative for accurate hydroperiod estimation. At site T11, we 190 

observed that the pond logger did not appear to be placed at the lowest point within the pond, as 191 

was intended. We observed very shallow water pooled in another location near the logger in 192 

summer 2019 that dried a few days later. Therefore, the data collected from this logger may not 193 

accurately reflect the pond inundation state. The other issue with our physical design was the 194 

accumulation of sediment or other debris within the rugged housing unit that contain the logger 195 

and interfered with temperature readings from the pond loggers at sites A14, T4, T9, and T17 196 

(see Figure S3 for example). We occasionally observed animals inside housing units, including 197 

several salamanders inside the housing for the pond logger at site T9 (Figure 2). Additionally, 198 

rock piles placed on top of the rugged housing likely affected absolute temperature readings. 199 

Though rock color or density may have had differential effects among loggers, we suspect the 200 

variation among loggers was likely low overall. Furthermore, because this method considers tSD 201 

rather than absolute temperature, we do not anticipate these differences had substantial effects on 202 

results. 203 
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Figure 2. Three-state hidden Markov model predictions for pond T9 using (a) pond-only dataset, 204 

and (b) paired pond-control dataset. (c) Photos from site visits (dates correspond with stars in 205 

(a)), in which observed pond inundation state was dry at the time of sensor deployment (1 July 206 

2018), wet during a return visit the following spring (3 April 2019), and dry at the time of sensor 207 

retrieval (24 June 2019). Though we observed no standing water on 24 June 2019, the pond 208 

supported vegetation, and we found salamanders in the sensor housing unit (inset photo; possibly 209 

contributing to different predicted states on 24 June 2019). Colors indicate temporal state 210 

predictions for each pond (pink=dry, blue=wet) and lines represent daily temperature standard 211 

deviation (tSD) measurements from pond logger (black lines) and control logger (grey lines). 212 

 213 

 214 

 215 

 216 
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3.2 Comparison of 2- versus 3-state Hidden Markov models and determination of wet state 217 

threshold values 218 

Because the fit() function in depmixS4 will force each dataset into the designated number of 219 

states, even in the absence of a true wet state, we used the HMM parameter estimates to 220 

determine appropriate tSD thresholds to designate each state as “wet” or “dry” for both datasets, 221 

comparing the predicted states to the known states of the ponds during our four site visits (Tables 222 

S2 and S3). For the paired pond-control dataset, we used a wet state threshold of -2.0°C, 223 

meaning that the daily tSDs measured by the pond sensors were at least 2.0°C lower on average 224 

than those measured by the control sensors. This -2.0°C threshold minimized the number of false 225 

dry state predictions. It did result in a false wet prediction for T17, but this was likely due to 226 

sediment in the pond sensor housing that may have affected the reading. A more conservative 227 

threshold of -2.2°C falsely predicted T12 as dry (Table S3). 228 

Use of HMMs with >2 states can help resolve variation among dry-wet states, improving 229 

classifications. Although 2-state HMMs have been applied in past work (Arismendi et al., 2017), 230 

we found that 2-state HMMs appeared to over- or underestimate inundation duration for several 231 

ponds or predict additional wet states when we were confident that the ponds were dry (Figure 232 

S4). Using 3-state HMMs and subsequently combining multiple wet or dry states provided more 233 

accurate and consistent state predictions between pond only and paired pond-control datasets 234 

(Tables S2, S3). Anderson et al. (2015) showed that seasonal fluctuation, canopy cover, pond 235 

vegetation, and water depth can influence temperature variance readings from temperature 236 

loggers placed in wetland basins, and that loggers in relatively deeper water have lower variance 237 

than those in shallower water. Therefore, we focused our analyses on results from the 3-state 238 

HMMs, which allow for the potential for seasonal variation in daily tSDs and intermittent wet-239 
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dry states (e.g., damp), accounting for potential uncertainty due to wet sediment or other factors 240 

(see Figure 3 for examples). 241 

Upon fitting 3-state HMMs to the pond-only dataset, we found that a threshold between 242 

2.9°C to 3.3°C minimized the number of false dry states for most ponds (Table S2, Table S3). 243 

This threshold is slightly lower than that proposed by Anderson et al. (2015), who determined 244 

that using daily temperature variances cutoffs between 13 and 15 (corresponding to tSDs 245 

between 3.6°C and 3.9°C) for the wet state provided the most accurate predictions of pond 246 

inundation states in their field experiments. Within our pond-only dataset, using a less 247 

conservative tSD threshold of 3.5°C decreased the accuracy leading to a false wet state 248 

prediction for pond T15U. For pond T8, the state with the highest average temperature standard 249 

deviation (~2.8°C) fell below our wet state cutoff of 3.0°C (Table S5). Because we knew that the 250 

pond was dry at two timepoints in this state (during logger deployment and logger retrieval), we 251 

decreased the wet state threshold to 2.7°C for this particular pond and considered the average 252 

tSD of 2.8°C to reflect a dry state. 253 

To further define a “reliable” wet state prediction from our HMMs, we also required that 254 

the pond remain in a given state for a minimum of 5 consecutive days. We chose this cutoff 255 

based on site observations in early August 2018, during which ponds T17 and T20, which had 256 

short predicted wet states of 7 and 5 days in July respectively, both showed evidence of prior 257 

inundation despite being dry at the time of our visit, and pond A14, which had a predicted wet 258 

state of 4 days in mid-July but showed no evidence of earlier inundation in early August (Table 259 

S2, Table S3). 260 

 261 
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 Figure 3. Inundation state predictions by 3-state hidden Markov models (HMMs). Shown are 262 

marginal distributions and predicted inundation timing for select ponds that (a) became 263 

inundated for long durations during the study period, (b) filled for relatively shorter durations, 264 

and (c) had no predicted wet state. Left panels represent marginal distributions and right panels 265 

represent HMM estimates from paired pond-control models (top) and pond-only models 266 

(bottom). Shading on HMM graphs indicate temporal state predictions for each pond (pink=dry, 267 

blue=wet) and lines represent temperature standard deviation (tSD) measurements from control 268 

loggers (grey lines) and pond loggers (black lines). Dashed lines indicate wet state thresholds 269 

(3.0°C for the pond only dataset and -2.0°C difference for the paired dataset). 270 

 271 

 272 
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3.3 Pond inundation regimes 273 

Under the wet state criteria defined above, 3-state HMMs for the pond-only model accurately 274 

predicted inundation states for 92% of site visits for the 14 ponds. The paired pond-control 275 

model accurately predicted inundation states for 90% of sites visits. Most of the incorrect state 276 

predictions were likely due to sediment or additional debris accumulating within the rugged 277 

housing units, which was more likely to affect precision of drying dates rather than initial 278 

inundation timing. 279 

Based on HMM estimates, ponds varied in both initial timing and duration of inundation 280 

(Figure 4), with initial inundation dates ranging from 10 July 2018 to 7 August 2018, over a 281 

small geographic area (Figure 1). Eleven of the fourteen ponds in our study had at least one 282 

predicted wet state during our monitoring period. Ten of these ponds had wet states predicted 283 

from both datasets. Based on the state predictions by both models, ponds in the central range of 284 

our study area filled first, with ponds T8, T9, T12, and T13 all inundated between 10 - 17 July 285 

2018. Ponds in the northern and southern portions of the study area had more variation in their 286 

initial inundation dates, which were predicted to occur between late July and mid-August (Table 287 

S6, Figure 1, Figure 4). 288 

Disagreement between pond-only and pond-control models regarding whether or not a pond 289 

filled was rare. Only pond T20 was predicted to have a wet state by one model (the pond-only 290 

model) and not the other. The presence of vegetation at the perimeter of the pond and mud inside 291 

the housing of the T20 pond logger during our visit in April 2019 suggest that the pond may have 292 

been inundated with water at some point during logger deployment. Visual inspection of the T20 293 

temperature standard deviation readings revealed a slight difference between August and 294 

October 2018. Ponds T11 and T15U, which had no predicted inundation dates, also showed 295 
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slightly lower readings from the pond loggers relative to the control loggers at certain points in 296 

the monsoon season and had mean state values close to but slightly above our wet state 297 

thresholds. It is possible that some water accumulated in these ponds and that our wet state 298 

threshold for the HMMs lacked the sensitivity to capture these low signals. The tSD threshold 299 

may need to be adjusted to increase precision in cases where small amounts of water accumulate 300 

for durations shorter than 5 days. 301 

  302 



17 

 

 303 

 

Figure 4. Hidden Markov model (HMM) pond inundation predictions. Lines show daily tSDs 304 

measured by pond loggers (black) and control loggers (grey). Rectangles represent wet days 305 

predicted by HMMs from single pond loggers (light green), by paired pond-control loggers (light 306 

blue), and by both models (dark blue). Grey shading indicates a predicted dry/damp state and 307 

lack of shading indicates no data due to logger failure. 308 

 309 

 310 
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3.4 Comparison of 1 (pond-only) versus 2 (paired pond-control) logger design  311 

Models using temperature data from pond loggers alone predict inundation states that closely 312 

aligned with those using paired pond-control logger data, indicating that a single logger design 313 

may be sufficient to capture inundation timing of longer-duration events (Table S5, Figure 4). 314 

However, control logger data may help alleviate some of the wet state false-positives, 315 

particularly when the standard deviation of daily air temperature is relatively low or issues such 316 

as sediment in rugged housing units occur. For example, earlier inundation dates are predicted 317 

for several ponds by the pond-only model relative to the paired pond-control model. This may be 318 

a true wet state, or the coincident low temperature standard deviations measured by the control 319 

loggers may have simply resulted in lower variance in the temperature on those days. For site 320 

T13, the state was correctly predicted as wet by the paired pond-control model, but not by the 321 

pond-only model in April 2019. While we did observe water in the pond at this time, the water 322 

level was just at the base of the rock pile covering the logger housing, which may explain the 323 

discrepancies between the models. In cases such as this when shallow water is present, the 2-324 

logger design may help to increase the probability of detecting inundation. Predicting pond 325 

drying may require an array of pond loggers situated at different heights within in the pond to 326 

capture this fine-scale variation. But considerations exist for the pond-control logger model as 327 

well. For example, pond-only models predicted wet states for most ponds in the winter months 328 

(between December and February) that were not predicted by the paired pond-control models. 329 

The relatively low tSDs of the loggers in the winter months may be due to snow accumulation on 330 

top of the control loggers. 331 

Although we have relatively high confidence in inundation timing, drying dates were less 332 

precise largely due to the accumulation of sediment in the housing unit. Paired pond-control 333 
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models also predicted later drying states for ponds T4, T9, and A14. At site A14, mud was 334 

discovered in the logger housing on 31 March 2019 and was cleared. In the days preceding 31 335 

March 2019, the temperature standard deviations from the pond logger were considerably lower 336 

than those from the control logger at this site, despite a lack of water in the pond, resulting in the 337 

paired pond-control model falsely predicting that the pond was in a wet state. After the sediment 338 

was cleared, the difference in these tSDs decreased to nearly zero, and the paired pond-control 339 

model correctly designated the pond state as dry. Mud and debris found inside the rugged 340 

housing of the pond loggers at sites T4 and T9 in late June likely caused the tSDs of these pond 341 

loggers to remain low relative to those of the control loggers even after drying, leading to false 342 

wet predictions. 343 

To improve drying date precision, the housing unit design would likely need to exclude 344 

sediment, which is difficult to do without making other compromises. Solutions for avoiding the 345 

issue of sediment packing in rugged housing units, and the subsequent decoupling of pond and 346 

control data, include packing the housing unit with insulation or other material that would not 347 

allow sediment to enter. However, this can lead to issues such as a buoyant housing unit and may 348 

affect the temperature readings if the material is a good insulator. Conductivity sensors offer an 349 

alternative to temperature loggers. However, custom modifications required to create 350 

conductivity sensors can be time-consuming or, if outsourced, may result in units that are >2 351 

times the cost of temperature loggers. Additionally, conductivity sensors may suffer from the 352 

same issues related to poor or imprecise detection of drying patterns due to water trapped in 353 

sediments. Temperature measurements offer data that are biologically meaningful (temperature 354 

as well as presence/absence of water) and that may address multiple needs depending on the 355 

objectives of a study. 356 
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 357 

4. Conclusions 358 

Precise measurement of pond inundation timing can be essential for studies of ecological and 359 

hydrological dynamics, particularly in areas with fine-scale variation in climate, where limited 360 

water supply may be crucial in shaping population and community dynamics. In this study, we 361 

observed an approximate 4-week difference in initial inundation timing between ponds within a 362 

small geographic range (~50km
2
), which is a substantial portion of the aquatic stage for many 363 

aquatic organisms that rely on these ponds to complete their life cycle (e.g., amphibians: Mims et 364 

al., 2020; Moore et al., 2020); these intraseasonal differences in inundation timing may thus have 365 

major implications for community composition and species turnover in these habitats. Fine-scale 366 

hydrological data such as those presented herein provide valuable information about dynamic 367 

water regimes that can improve conservation strategies by identifying potential refugees for 368 

plants and wildlife and can also aid in planning for human adaptation in response to the changing 369 

climate. 370 
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