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Abstract

Tsunami deposits provide information for estimating the magnitude and flow conditions

of paleo-tsunamis, and the inverse model has potential for predicting hydraulic condi-

tions of tsunamis from their deposits. Majority of the previously proposed models are

based on oversimplified assumptions and share limitations in applicability to original tsunami

hydrodynamics in transportation and deposition settings. We present a new inverse model

that serves as a modified version of the previously proposed model FITTNUSS, which

incorporates nonuniform and unsteady transport of suspended sediment and turbulent

mixing. The present model uses the deep neural network (DNN) for the inversion method.

In this method, forward model calculation was repeated at random initial flow condi-

tions to produce artificial training data sets that represent depositional characteristics

such as thickness and grain size distribution. Subsequently, the DNN was trained for es-

tablishing the general inverse model based on artificial data sets derived from the for-

ward model. Tests conducted using independent artificial data sets indicated that the

established DNN can reconstruct the original flow conditions from the characteristics of

the deposits. Finally, the model was applied to a data set of 2011 Tohoku-Oki tsunami

deposits. Jackknife resampling was applied for estimating the precision of the result. The

estimated results of the flow velocity and maximum flow depth were approximately 5.4

±0.140 m/s and 4.11 ±0.152 m, respectively after the uncertainty analysis. The DNN

showed promising results for reconstruction of the event from natural data set, which

would help in estimating the hydraulic conditions of paleo-tsunamis based on realistic

settings of tsunami deposits.

Plain Language Summary

This study presents an inverse model comprising the use of an artificial intelligence

technique to estimate the hydraulic conditions of paleo-tsunamis based on realistic set-

tings of tsunami deposits.

1 Introduction

Tsunami is one of the most disastrous natural hazards that occur in coastal zones.

It is a threat to the overall socio-economic infrastructure of coastal-based cities (Lin et

al., 2012). Tsunami hazard assessment is necessary for any fast-growing coastal city. The

2004 Indian Ocean tsunami and 2011 Tohoku-Oki tsunami caused devastating damage
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to many Asian countries and Japan, but such situations are worsened when countries

lack tsunami-related preparedness for disasters that cause human causalities and exten-

sive building damage (Imamura et al., 2019). Ghobarah et al. (2006) reported that the

debris carried by the 2004 Indian Ocean tsunami could cause major building damage.

The 2004 Indian Ocean tsunami caused extensive structural and non-structural destruc-

tion of reinforced concrete buildings (Saatcioglu et al., 2005).

To mitigate tsunami disasters, a method of inverse modeling of tsunamis based on

their geologic records has been developed. Tsunami deposits are defined as layers of sed-

iment formed by hydrodynamic activities of tsunami, and research on tsunami deposits

started since early 1950s (Shephard et al., 1950; Sugawara et al., 2014; Tang & Weiss,

2015).

The mode of sediment transportation and deposition by tsunamis can be under-

stood via a detailed study of tsunami deposits (Costa et al., 2015). Using this knowl-

edge, a quantitative reconstruction of environmental conditions such as flow velocity and

maximum flow depth has been attempted using several inverse modeling approaches (Johnson

et al., 2017; Jerolmack & Paola, 2010; Ganti et al., 2014).

However, previous studies on inverse modeling were based on forward models us-

ing unreasonably simplified assumptions. For example, in the settling–advection model

(or moving-settling tube model), it was assumed that all the sediment particles settle

in the water column without any turbulent mixing, resuspension, or erosional processes

(Soulsby et al., 2007; Moore et al., 2007; B. E. Jaffe & Gelfenbuam, 2007). Tang and Weiss

(2015) assumed that the suspension in tsunamis occurs under uniform and steady con-

ditions and inundation flows suddenly stop. As a result, situations to which these inverse

models are applicable are quite limited (B. Jaffe et al., 2016; Naruse & Abe, 2017). Moore

et al. (2007) proposed the point inverse model based on advection settings, wherein the

settling velocities of the larger particles (D84 and D100) in the deposit were used as in-

put data, and the model estimated the flow speed of the tsunami inundation. However,

the travel distances of the grains were largely underestimated in this model because of

the lack of resuspension processes. D. Smith et al. (2007) proposed another point model

based on particle settlings but only the finest grain size classes of 106–184 µm were used

in this model; however, the incorporation of larger grain size classses is essential for ob-

taining accurate estimation from tsunami deposits (Naruse & Abe, 2017). In contrast,
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Soulsby et al. (2007) proposed the 1D model that deciphered the run-up elevation and

inundation distance, although no resuspension, sediment dynamics and optimization of

input parameters were considered. B. E. Jaffe and Gelfenbuam (2007) presented a point

model (TsuSedMod) using suspended load as a formulation (Madsen et al., 1993) to re-

construct the maximum tsunami flow speed and vertical grain size distribution without

considering the temporal variation of deceleration of the flow. This model overestimated

the tsunami flow speed with uniform steady flow consideration in the formulations (Choowong

et al., 2008). This model incorporates nonuniform and unsteady transport of suspended

sediment and turbulent mixing; however, the FITTNUSS model still had many limita-

tions. It employed a tedious trial and error method L-BFGS-B method, which is efficient

quasi-Newtonian algorithm but it requires the gradient of the objective function that can

be obtained only by numerical method. Also, it may find local minimum solutions de-

pending on the starting values of calculation so that multiple iterations with different

starting values are needed. As a result, it was difficult to deal with larger amount of data

sets, and it was impossible to use uncertainty analyses because computational statisti-

cal methods, such as the jackknife method, require iterations of an inverse analysis.

In this study, we present a new inversion method comprising the use of a deep neu-

ral network (DNN) (Romano et al., 2009). This inverse model incorporates the same for-

ward model used in FITTNUSS (Naruse & Abe, 2017). In this new methodology, how-

ever, the initial conditions and model parameters of the forward model are not optimized

to fit the observed characteristics of tsunami deposits. Instead, the forward model cal-

culation was simply repeated at random initial flow conditions (e.g., maximum inunda-

tion length, maximum flow depth, flow velocity, and sediment concentration) to produce

artificial training data sets that represent artificial depositional characteristics such as

the spatial distribution of thickness and grain size composition. The DNN was then trained

to establish a relation between the characteristics of deposits and flow conditions based

on artificial data sets. The established DNN can instantaneously predict the probable

flow conditions from deposits, such that it works as an inverse model based on the tsunami

deposits. The performance of the model was verified using training and test data sets.

The efficiency verification of the model using data sets proved to be good results. Finally,

this 1D model was applied to the 2011 Tohoku-Oki tsunami deposits from the Sendai

plain, and a fair prediction of the flow velocity, maximum flow depth, and concentration

of six grain size classes was obtained. The precision of the paleo hydraulics was also checked
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using the jackknife method. The methodology and result were compared with the FIT-

TNUSS model and the actual initial flow conditions. The comparison shows promising

endorsement towards the use of DNN as a tsunami hazard assessment tool.

2 Model Formulation

This DNN inverse model primarily uses the forward model of FITTNUSS (Naruse

& Abe, 2017), and the key feature of the new inverse model is that the model is imple-

mented using an artificial neural network. The forward model calculates the sediment

transportation and deposition from the averaged flow velocity, the maximum flow depth,

and initial sediment concentration, and it produces a spatial distribution of the thick-

ness and grain size composition, which are used to train the DNN inverse model.

2.1 Forward model

The FITTNUSS forward model is used in the present inverse model framework. Here,

we describe about brief review of FITTNUSS forward model, and the details are pre-

sented in Naruse and Abe (2017). In the FITTNUSS model, shallow layer-averaged one-

dimensional equations are used, which take the following form:

∂h

∂t
+
∂Uh

∂x
= 0, (1)

∂Uh

∂t
+
∂U2h

∂x
= ghS − 1

2
g
∂h2

∂x
− u2∗. (2)

where t and x are considered as the time and bed-attached streamwise coordinate which

is, transverse to the shoreline and is positive towards the landward side. Here, h refers

to the tsunami inundation depth, and U is the flow velocity. The gravitational acceler-

ation is denoted as g, S is the bed slope and u∗ is the friction velocity.

The sediment conservation equation of tsunami is given as follows:

∂Cih

∂t
+
∂UCih

∂x
= wsi(FiEsi − r0iCi). (3)

In the above equation, Ci refers to the volume concentration in the suspension of

the ith grain size class. The parameters wsi, Esi, r0i, and Fi represent settling velocity,
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sediment entrainment coefficient, ratio of near-bed to layer-averaged concentration of the

ith grain size class and volumetric fraction of the sediment particles in the bed surface

active layer above the substrate respectively (Hirano, 1971). The closure equations for

the above-mentioned equations include friction velocity (u∗), thickness of the active layer

(La) (Yoshikawa & Watanabe, 2008), Shield’s dimensionless shear stress (τ∗m), settling

velocity (wsi) (Dietrich, 1982), sediment entrainment coefficient (Esi) (Rijn, 1984), cor-

rection of damping effects (ψi) (Rijn, 1984), For the sedimentation of tsunamis, the Exner

equation of bed sediment continuity is used:

∂ηi
∂t

=
1

1− λp
wsi(r0iCi − FiEsi). (4)

Here ηi refers to the volume per unit area (thickness) of the sediments of the ith

grain size class which includes porosity of the bed sediment λp. As a result of the sed-

imentation, the grain size distribution in the active layer varies with time (Hirano, 1971),

which is expressed as follows:

La
∂Fi

∂t
=
∂ηi
∂t
− Fi

∂η

∂t
(5)

Thus, the rate of total sedimentation is as follows:

∂η

∂t
=
∑ ∂ηi

∂t
. (6)

Equations (4) to (6) were solved using the two step Adams–Bashforth scheme and

the predictor-corrector method. Finally, the the flow dynamics of tsunamis was simpli-

fied using the assumption proposed by (Soulsby et al., 2007), while considering veloc-

ity of tsunami run-up flow as uniform and steady but that the flow depth varies with time;

thus, the model is based on quasi-steady flow assumption. The simplified equation is as

follows:

∂Ci

∂t
+ U

∂Ci

∂x
=

Rw

H (Ut− x)
{wsi (FiEsi − r0iCi)} . (7)

where Rw and H indicate maximum inundation length and Maximum flow depth of the

tsunami at the seaward (upstream) boundary of the transect, respectively.
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In addition to these formulations, a transformed coordinate system (Crank, 1984)

has been applied to equation (7) to increase the computational efficiency of the forward

model. The implicit Euler method was used to solve the equation after applying coor-

dinate transformation. The entire forward and inverse model were implemented using

Python with the Numpy and Scipy libraries.

2.2 Inverse model

Although artificial neural networks have been primarily applied for learning obser-

vational data sets for constructing predictive models (Ramirez et al., 2005), in this study,

they are used for learning the results of a numerical simulation to construct an inverse

model. First, artificial training data sets are prepared by repetition of the forward model

calculation with random initial and boundary conditions. The data set comprising the

spatial distribution of the grain size composition (Figure 1) is given to an input layer of

the NN. The nodes in the input layer receive the values of the volume per unit area of

each grain size class at the spatial grids used in the forward model. The feed-forward

calculation through several hidden layers is then performed, in which the values at the

nodes were summated with weighting coefficients that are assigned on connections to nodes

in the next layer, and the computed total input data passes through the activation func-

tions to produce the net output. The number of hidden layers was set to maximize the

model performance (S. Smith, 2013). As a result of this feed-forward calculation, the val-

ues obtained from the output nodes provide estimates of the hydraulic conditions of tsunamis

that formed the deposits. This procedure results in the training of the model followed

by testing of the model performance. The 20% of the artificial data is used to validate

the model performance during training. If the model tends to overlearn, the selection

of hyperparameters and the optimization method is required to be revised. After the model

training is completed, the model is ready for application to a natural data set; however,

the model performed training based on artificial data with a definite spatial grid inter-

val.

2.2.1 Procedures for training of the inverse model

Here, we describe the procedures used for generating a training data set and the

preprocessing. In the present study, in the forward model, the grain size distribution was

discretized into six grain size classes, and the number of spatial grids in the transformed
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Figure 1. Workflow of the DNN inverse model.

coordinate was 50. The number of spatial grid sizes in the fixed coordinates depends on

the size of the sampling window, as mentioned previously. It is important to determine

the appropriate number of training data sets produced by the forward model in order

to improve the inverse model training (Jordan & Rumelhart, 1992). In this study, the

number of iterations of the forward model calculation was incrementally increased, and

the relation between the number of training data sets and the performance of the inverse

model was investigated. The range of the explored conditions in the training data set

is described later. The sampling window was then set to the artificial training data sets

before starting the training of the DNN, and only the data in the sampling window was

used for the training. This sampling window was necessary because (1) the thickness of

the collected samples at a distant location becomes too thin to measure precisely and

predict computationally, and (2) the measurement transect cannot cover the entire dis-

tribution of the tsunami deposits in natural cases. Very thin and fine-grained tsunami

deposits in the distal area may not be differentiated from the background soil, and thus,

the region of analysis should be limited to a relatively proximal area wherein coarse and

thick-bedded deposits are distributed. Therefore, the specific window is preferably at the

proximal to middle part of the transect. As in the settings of our inverse model, the grid

spacing has been maintained at a constant value and measures 15 m in our model. The

number of spatial grids in the fixed coordinate varies according to the selected interval
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of the sampling window. After the production of the training data set and extraction

of the sampling window, the normalization of the input and teacher values was performed,

which is one of the most important processes in training the neural network. As the in-

put and teaching data have largely a different range of values from each other, the nor-

malization of the values is required to be performed to remove the computational biases

towards a specific dimension of data (Bishop et al., 1995). In this case, the maximum

inundation length has a larger range of values, while the values of concentration are very

low. Thus, the raw values of the teaching data may predict the inundation length pref-

erentially, while the concentration values tend to be ignored. Therefore, both the input

and teaching data in the artificial data set produced by the forward model were normal-

ized before they were given as input to the inverse model. The input data (volume per

unit area of deposits) were normalized using the following equation:

Xnorm = (Xraw–min valXraw/(maxvalXraw −min valXraw) (8)

where Xnorm and Xraw are the normalized and original values of the input data respec-

tively. min valXraw
and maxvalXraw

denote the minimum and maximum values of the

raw input data, respectively. Similarly, the teaching data that was the original condi-

tions used in the forward model calculation was normalized using the following equation:

Ynorm = (Yraw–min valYraw/(maxvalYraw −min valYraw) (9)

where Ynorm and Yraw are the normalized and original values of the teaching data re-

spectively. min valYraw
and maxvalYraw

denote the minimum and maximum values re-

spectively, of raw teaching data. After the training, the NN outputs the normalized val-

ues of the hydraulic conditions, such that these values were converted to values in the

original scale.

Then, the training and teaching data set were given to the NN for training. The

overall neural network structure consists of three parts, the input layer, hidden layers,

and output layer (Figure 3). In the inverse model, the input layer of neural network struc-

ture consists of input nodes where the input values comprise the volume per unit area

of each grain size class at the spatial grids. Thus, the number of input nodes can be ex-

pressed as M×N where M and N are the total number of spatial grids and grain size
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Figure 2. Example of the forward model calculation and sampling window used for the

inverse analysis. (a) Spatial variation of the volume per unit area of each grain size class of

the tsunami deposit calculated using the forward model (b) Spatial variation of sediment con-

centration of each grain size class in the run-up flow when the flow has reached the maximum

inundation point.

classes respectively. In this study, the number of dense hidden layers was set as three

along with the total 2500 nodes, and thus total number of layers was five (Figure 3). Here,

the rectified linear activation function (ReLU) was used as an activation function that

calculates the output value from the total net weighted inputs (Ian & Yoshua, 2016). ReLU

is function that is widely used for this purpose (Patterson & Gibson, 2017). The drop

out has been applied to the hidden layer for regularization of the NN (Srivastava et al.,

2014). The results of the feed-forward calculation of this NN during the training pro-

cess were evaluated by the loss function (mean squared error), which is defined as fol-

lows:

J =
1

2

∑(
Ifmk − INN

k

)2
(10)

where Ifmk is denoted as the teaching data that are the initial parameters used for pro-

ducing in the training data and INN
k denotes the predicted parameters. This loss func-

tion quantifies how close the NN was to an ideal inverse model. The values of this func-
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tion were averaged over the entire data set (Patterson & Gibson, 2017). To minimize the

loss function J , the back-propagation method with the stochastic gradient decent algo-

rithm (SGD) was used to optimize the weight coefficients at links of the network (Patterson

& Gibson, 2017). The nesterov momentum was used with the SGD to speed up the com-

putation and improve convergence (Sutskever et al., 2013). Although other optimizers

such as AdaDelta, Adam, or AdaMax can provide an acceptable performance (Patterson

& Gibson, 2017), this optimizer was showing best performance in case of our model. This

optimization process was repeated for prescribed times, and the training set was shuf-

fled before splitting it into batch chunks that were used for the SGD optimization dur-

ing each epoch.

Figure 3. NN architecture for the inverse model. The NN structure includes one input and

one output layer with three hidden layers and a total of five layers.

In order to estimate how well the model was trained without overfitting, valida-

tion was performed with the validation data set that was also generated from the for-
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ward model calculation. Among the produced data sets, 80% and 20% of the data were

used for the training and validation respectively. The results of validation were used for

tuning of the hyperparameters which are explained later. Finally, the performance of the

model was evaluated after the hyperparameter tuning and using the test data sets, which

comprised the unused data set during the training process.

In our model, there are several hyperparameters that should be specified for the

tuning of the training of the NN. The tuned hyperparameters were the learning rates,

batch size and momentum used in the SGD, rates of drop out, number of hidden lay-

ers, types of activation function, and number of epochs. The hyperparameters were se-

lected by trial and error in this study. The number of training data sets is also a hyper-

parameter of the inverse model, and it was tested by changing the number of repetitions

of the forward model calculation. The trained model can work on a data set with a spe-

cific spatial grid in the fixed coordinate and grid spacing. In order to apply the inverse

model to the natural data set in 1D vectors, the collected samples must be fit into that

fixed coordinate. A linear 1D interpolation was required as it provides values at posi-

tions between the data points, which are joined by straight line segments (Bourke, 1999).

A linear 1D interpolation was applied to the natural data set in this case.

In addition to the training and validation data, 500 independent data were kept

aside for the testing of the inverse model. Therefore, after the model was trained, the

model was applied to the test data sets to check its performance before applying it to

the natural data sets. The correlation between the teaching data in the test data set and

the prediction of the model from the test data set was used to determine the precision

and accuracy of the inverse model prediction. The residuals from the teaching data in

the test data set were plotted in a histogram to determine the deviation of the predic-

tion from the test data set from the true initial conditions.

2.2.2 Uncertainty analysis of inversion results

The jackknife method was used for the error assessment of the results of the inverse

model. This method estimates the standard error of the predicted value of the model

using a resampled population. Quenouille (1949) first introduced this resampling method

(Nisbet et al., 2009).
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The jackknife test is similar as the bootstrap method, but instead of a random sam-

pling of a data set, the inversion model works on each separate set of samples by omit-

ting a single set of observations per iterations from a total of N observations. Inversions

are carried out N times and the resulting ensemble of solutions were interrogated to a

single estimate for each parameter. In short, it involves a leave-one-out strategy in a data

set of N observations and the model works on the rest of the samples and gives results

accordingly. Preferably, N−1 observations were built on the data set as resampled data

for the model. Farrell and Singh (2010) discussed the importance of the jackknife method

in survey sampling.

We briefly describe the jackknife uncertainty analysis. The estimate from a sam-

ple and the jackknife estimates are denoted as S and S∗ respectively. The number of ob-

servations in the sample is N and the set of observations is denoted as {X1, ..., Xn, ..., XN}.

The sample estimate of the parameter acts as a function of the observations in the sam-

ple (Abdi & Williams, 2010). The equation is given as follows:

S = f(X1, ..., Xn, ..., XN ) (11)

Let S−n be the n−th partial prediction of the parameter, which is produced by the

inverse model without the nth observation. The equation for the prediction S−n is given

as follows:

S−n = f(X1, ..., Xn−1, Xn+1..., XN ) (12)

S∗
n represents a pseudo value estimation of the nth observation. This parameter

is defined as the difference between the estimates S obtained from the entire sample and

the estimates S−n obtained without the nth observation as follows:

S∗
n = NS − (N − 1)S−n (13)

The mean of the pseudo values are regarded as the jackknife estimate S∗. The equa-

tion for the jackknife estimate is given as follows:
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S∗ = S∗
mean =

1

N

N∑
n

S∗
n (14)

where S∗
mean is also the mean of the pseudo values. The variance of the pseudo values

is denoted as σvar
JK and the formula for the variance is given as follows:

σvar
JK =

∑
(S∗

n − S∗
mean)2

N − 1
(15)

Finally, the jackknife standard error of the parameter estimate is denoted as σSE
JK ,

The formula for the jackknife standard error is

σSE
JK =

√
σvar
JK

N
=

√∑
(S∗

n − S∗
mean)2

N(N − 1)
(16)

The confidence interval for this study has been computed using this jackknife stan-

dard error formula.

3 Results of training and test of the inverse model

The hyperparameters for the training were set as follows. Among the hyperparam-

eters used in the SGD algorithm, the learning rate was set as 0.02 and batch size was

kept as 32 for our models (Patterson & Gibson, 2017). The use of larger or smaller learn-

ing rates did not provide improved results. Furthermore, other batch sizes were used in

the training of the model, but the model was not improved. The selection of number of

layers and the number nodes were tested by increasing or decreasing layers or nodes, and

finally three hidden layers with 2500 nodes were used in the models. Another hyperpa-

rameter is the rate of drop-out at each hidden layer, which was 50% in our model. Thus,

during the training, 50% of the layer outputs that were randomly selected were kept in-

active. This regularization process helps to reduce overfitting and increases the efficiency

of the training (Srivastava et al., 2014). Finally, the number of epochs in the training

process, which indicates number of times that a full data set has passed the optimiza-

tion calculation (J. Smith & Eli, 1995), were determined depending on the rates of the

progress of the training (Figure 4). This is described in the following sections.

The input parameters for the inverse model include the maximum inundation length,

flow velocity, maximum flow depth, and the sediment concentration of six grain size classes.
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Figure 4. History of learning indicated by the variation of the loss function (mean squared

error). Both the values of the loss function for the training and validation data sets decrease over

2000 epochs without any discrepancy, thus indicating that overlearning did not occur.

The range of values for the maximum inundation length, flow velocity, maximum flow

depth, and sediment concentration used for generating the training data sets were 2500

to 4500 m, 1.5 to 10 m/s, 1.5 to 12 m, and 0 to 2%, respectively. The values of the loss

function of the training and validation at the first epoch were 0.0929 and 0.0691 for the

training and validation data, respectively. These values are based on the maximum records

of tsunamis in the studies of Mori et al. (2012), Nakajima and Koarai (2011), Foytong

et al. (2013), B. E. Jaffe et al. (2012).

The values of the loss function of training and validation at the first epoch were

0.0929 and 0.0691 for the training and validation data, respectively. The value of the loss

function decreased to less than 0.01 after 200 epochs. The present model was reasonably

converged over 2000 epochs for both the training and validation performance, which re-

mained in unison and equivalent. Moreover, the plot for the loss function was smooth,

and there was no anomalous oscillation. The last and lowest loss function at the final

epoch was 0.0040 for the training data sets and was 0.0018 for the validation data sets.

The sampling window was set from 0 to 2000 m in this training and the following tests

(Figure 2).
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For the current inverse models, the forward model was calculated repeatedly from

500 to 4500 iterations, and it provided the best result with 4500 iterations of calcula-

tions of the forward model (Figure 5). Figure 5 presents a plot of the relation between

the number of training data and loss function of the validation data set. The loss value

of the validation data set decreases as the amount of training data increases, which cre-

ates concave-upward shape. When the number of training data in the data set was 500,

the loss function was higher but decreased significantly after 1500 training data sets. The

loss function reached a minimum value after 3500 training data sets and did not change

much subsequently. Thus, it was suggested that the number of training data sets should

be greater than 3500. The number of training data sets thus used was 4500.

Figure 5. Relation between the loss function of the validation and number of training data

sets selected for the inverse model. The results of the training improved as the number of train-

ing data sets increased, whereas it varied slightly after 4000 training data sets.

After the training of the model, the prediction results of the inverse model from

the test data sets were plotted against the original conditions used for producing the test

data sets. Figure 6(a-i) shows that the nine predicted initial conditions from the arti-

ficial test data sets were distributed along the 1:1 line in the graph, thus indicating that

the test results showed a correlation with the true initial conditions. Furthermore, the

residuals of the predicted parameters from the true initial conditions were plotted on a
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histogram to show the distribution of the deviation of the test results from the original

conditions.

Figure 7(a-i) shows that the deviation of the parameters predicted from the orig-

inal values were distributed in a relatively narrow range without large biases from the

true conditions, except in the case of the maximum flow depth. Only the maximum flow

depth was slightly biased. Based on the scatter diagram (Figure 7), the values of the pre-

dicted maximum flow depth were approximately 0.5 m lower than the original value.

4 Result of application to the 2011 Tohoku-Oki tsunami deposit

The model was applied to the 2011 Tohoku -Oki Tsunami deposits distributed around

the Sendai plain for the evaluation of the models. This region was extensively surveyed

for hazard evaluation as well as tsunami deposits (Naruse & Abe, 2017; Abe et al., 2012),

and thus, large amounts of field data are available for evaluating the inverse models. In

this study, the field data used was the same as that used for the FITTNUSS model (Naruse

& Abe, 2017), and therefore the inversion methodology can be compared with the pre-

vious study.

4.1 Field description and settings for inverse analysis

We briefly describe the field sampling method for the measured data. The field work

for obtaining these tsunami deposits was conducted soon after the tsunami event in June

2011 (Naruse & Abe, 2017), and the details can be referred to in the studies of Abe et

al. (2012) and Naruse and Abe (2017). The study area (Figure 8) mainly consists of a

long sandy beach, high onshore seawall, aeolian sand dunes, coastal forests, and long flat

rice-paddy fields successively towards the landward side (Naruse & Abe, 2017). The de-

posit samples were obtained every 50–100 m at 26 sites along the transect. The thick-

ness of tsunami sand and mud layers ranged from 0.1 cm to 34 cm. The grain size anal-

ysis of the tsunami deposit showed that the tsunami sand mostly comprised medium sand

with a small presence of fine and very fine sand (Naruse & Abe, 2017). The measured

grain size distributions were then discretized to six grain size classes (Figure 9), while

the previous FITTNUSS model employed four grain size classes (Naruse & Abe, 2017).

The representative diameters of the grain size classes were 615, 406, 286, 177, 117 and

77 µm respectively.
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Figure 6. Verification of the performance of the model using artificial test data sets. The

values estimated using the inverse model were plotted against the original values used for the

production of the test data sets. The solid lines indicate a 1:1 relation and suggest precise esti-

mation.
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Figure 7. Histograms show the deviation of the predicted results from the original values of

the artificial test data sets.
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Figure 8. Location of the survey transect and sampling points on the Sendai plain. The lo-

cation of the surveyed transect is shown on the topographic map of the study area. The 4 km

long transect was situated transverse to the shoreline, and the tsunami deposit was sampled at 27

locations along the transect (Naruse & Abe, 2017).

The parameters such as the flow velocity estimated using the inverse model were

verified by comparing them with the data obtained from aerial videos and observations

of the Sendai plain (Hayashi & Koshimura, 2013; Mori et al., 2012). Although it is dif-

ficult to assess sediment concentration data obtained from direct field observation, Goto

et al. (2014) roughly estimated the sediment concentration in the tsunami inundation

flow based on the ratio of the deposit thickness and flow height. We compared our re-

construction of the sediment concentration with their results.

4.2 Determination of length of sampling window

In this case, the sampling window was set at a region from 0 to 2000 m along the

transect. Although the total distance of the transect for collecting the samples was ap-

proximately 3000 m, the measured bed thickness was very thin (several millimeters) and

exhibited a large fluctuation in the distal region (2000 to 3000 m) (Figure 12). There-
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Figure 9. Total grain size distribution of the tsunami deposits in the Sendai plain and the

discretized fraction of the sediments in the six grain size classes.

fore, a 2000 m long sampling window was extracted from the sampling distance, which

is 3000 m. This size of sampling window was also used for training the inverse model.

For this situation, the number of spatial grids used for the inversion was 133 because the

grid spacing in the fixed coordinates was 15 m. The selection of a sampling window of

this size was checked based on a comparison with the results obtained using different sam-

pling windows, and the results of the comparison suggested that 2000 m was the most

suitable for obtaining stable results. Figure 10 shows the fluctuations of the jackknife

standard error estimation of the parameters depending on the sampling window sizes.

The majority of the parameters such as flow velocity and sediment concentrations ex-

hibited a decreasing trend in their estimation errors as the length of the sampling win-

dow was increased. In particular, the jackknife error of the flow velocity decreased sig-

nificantly above a sampling window size of 1000 m in length. The estimates of the max-

imum inundation length show large errors but it decreased suddenly at approximately

2500 m. In contrast, the error in the maximum flow depth increased above a sampling

window size of 2000 m. Hence, it was decided that the size of the sampling window was

set as 2000 m. It should be noted that the computation result for the maximum inun-

dation length was unstable at this selection.
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Figure 10. Variation of jackknife standard error with changing range of sampling window

distance.
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Table 1. Predicted results by inverse model applied to 2011 Tohoku-Oki tsunami deposit data

obtained from Sendai plain

Parameters Predicted Results Confidence Interval (95%)

Maximum Inundation Length 4045 m ± 121.17 m

Flow Velocity 5.4 m/sec ± 0.140 m/sec

Maximum Flow Depth 4.11 m ± 0.152 m

Concentration of C1 (615 µm) 0.55% ± 0.034%

Concentration of C2 (406 µm) 2.19% ± 0.048%

Concentration of C3 (268 µm) 1.98% ± 0.058%

Concentration of C4 (177 µm) 0.14% ± 0.018 %

Concentration of C5 (117 µm) 0.18% ± 0.012%

Concentration of C6 (77 µm) 0.04% ± 0.0011%

4.3 Result of inversion

The inverse model reconstructed the flow conditions of the tsunami from the de-

posit of the 2011 Tohoku-Oki tsunami in the Sendai plain. The model estimated flow

parameters that were close to the observed values.

Table 1 shows the predicted hydraulic conditions of the 2011 Tohoku-Oki tsunami

of the Sendai plain. The predicted result of the flow velocity was approximately 5.4 m/s

with a range of uncertainty ± 0.140 m /sec using jackknife standard error calculation

with a 95% confidence interval (Figure 11b). The value of the maximum flow depth was

appoximately 4.11 m (± 0.152 m uncertainty using jackknife standard error calculation

(Figure 11c) with a 95% confidence interval).

The reconstructed total sediment concentration over six grain size classes was 5.08%.

The estimated value of the sediment concentration of each grain size class ranged from

0.04% to 2.19% (Figure 11d-11i).

The model predicted the maximum inundation length of the tsunami from the de-

posit, as approximately 4045 m with a ± 121.17 m jackknife standard error with a 95%

confidence interval (Figure 11a). The actual inundation length was 4020 m (Naruse &

Abe, 2017), which is consistent with the reconstructed value.
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Figure 11. Jackknife estimates for the results predicted by the inverse model to determine the

uncertainty of the model.
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Figure 12. Spatial variation of the thickness of the tsunami deposit. Spatial distribution of

volumes per unit area of six grain size classes is presented. The solid circles indicate the values

measured by Naruse and Abe (2017), and the lines indicate the results of the forward model

calculation obtained using parameters predicted by the inverse model.

For the error assessment of model results, the jackknife method was used. In this

method the standard error and variance is estimated from a large population (Nisbet et

al., 2009).

Finally, using the reconstructed initial conditions of the tsunami, the forward model

was used to calculate the spatial distribution of the thickness and grain size composi-

tion for a comparison with the measured distribution. Figure 12 exhibits the thickness

and grain size distribution with the distance for the measured data and simulated re-

sults. The measured values of volume per unit area for each grain size class matched the
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Figure 13. Comparison between field observation and results of inverse analysis of 2011

Tohoku-Oki tsunami. The solid dots are measured values by field observation, and the lines are

results of the inverse analysis of this study. (a) Velocity of run-up flow of the 2011 Tohoku-Oki

tsunami on Sendai plain. (b) Maximum flow depth of 2011 Tohoku-Oki tsunami on Sendai plain.

Values measured from the aerial videos are indicated by the solid and open circles (Hayashi &

Koshimura, 2013), and the results of the inverse analysis are shown by the lines.
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simulated results except in the case of the finest grain size class, where the predicted val-

ues were larger than the actual measurements.

5 Discussion

5.1 Tests of inverse models

The tests of the inverse models performed using the artificial data sets of tsunami

deposits demonstrated that the models built using NN can predict the flow velocity and

the concentration of six grain size classes, maximum inundation length precisely. The

scatter diagram of the predicted parameters against the true conditions indicates excel-

lent correlation (Figure 6). For example, 2σ of the estimation error of the maximum in-

undation length was 121.17 m, and the range of true values was 2500–4500 m (Figure

11). Thus, the precision of estimates is only the order of approximately 5%. More im-

portantly, there was no large deviation of mode of predicted values from true conditions

except for the maximum flow depth. Especially in cases of estimates of sediment con-

centration, mean of the estimation errors ranges within 1.0 × 10−3. These lines of re-

sults imply that the prediction of the inverse model is precise and accurate.

However, the model tends to estimate maximum flow depth values that are approx-

imately 0.5 m higher. As a result, in the comparison of the predicted values and orig-

inal values of the maximum flow depth plotted in the histogram, the deviation shows a

positive bias, and the mode value was approximately 0.5 m towards the negative side.

Despite the skewness, it is possible to correct the final result of the maximum flow depth

by adding 0.5 m with the final reconstructed value from original field data.

5.2 Reconstruction of the flow parameters of the 2011 Tohoku-Oki tsunami

After applying the inverse models to the 2011 Tohoku-Oki tsunami, the predicted

results of the flow velocity and the inundation depth were close to the values observed

in the aerial video and field measurements (Figure 13), which indicates the effectiveness

of the proposed method in applying the actual tsunami deposits.

Figure 13 shows that the averaged value of the observed inundating flow velocity

of 2011 Tohoku-Oki tsunami ranged from 4.8 to 5.8 m/s, and the reconstructed values

are in this range.
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The predicted inundation length was 4045 m which is very close to the original max-

imum inundation length of approximately 4020 m. Furthermore, the model predicted the

concentration of six grain size classes satisfactorily. The range of the estimated concen-

tration for each grain size class was 0.04–2.19 vol.%, and the total concentration was 5.08

vol.%. There has been no direct observation of the sediment concentration in the inun-

dating tsunami flows, and thus, it is impossible to compare the reconstruction with the

actual observation. Goto et al. (2014) estimated the sediment concentration of the 2011

Tohoku-Oki tsunami as roughly 2 vol.% based on the ratio of thickness of tsunami de-

posits and the inundation depth. This estimate is smaller than the predicted values in

this study. However, from the turbid water remained in the box after the tsunami, Arikawa

(2019) recently reported that the tsunami flow reached 1,130 kg/m3 in density that cor-

responds to approximately 6 vol.%, which is close to the prediction by the inverse mod-

els proposed in this study.

The predicted results for the maximum flow depth were also very close to the ob-

served maximum flow depth in the field data (Figure 13). The model predicted 4.11 m

that approximates the observed values well. The uncertainty analysis performed using

the jackknife method indicated that the error of estimates ranges from 3.8 m to 4.4 m,

which is reasonably narrow for an assessment of the magnitude of the tsunami. How-

ever, considering the reconstruction bias of the maximum flow depth that was detected

when the inverse models were tested using the artificial data, 0.5 m should be added to

the maximum flow depth predicted by the inverse models (Figure 11c). Thus, the recon-

structed values obtained using the model may be corrected to 4.6 m, which is closer to

the observed data set.

5.3 Comparison with existing models

In the present study, we presented the use of a deep-learning NN as an inversion

technique with a modified FITTNUSS forward model to obtain the initial tsunami hy-

draulic condition based on tsunami deposits. The advantages of this new methodology

are that (1) it can employ a more realistic forward model than previous methods, and

(2) the performance of the inverse model can be tested before its application to actual

deposits by using artificial data sets. In addition, (3) it is possible to conduct an uncer-

tainty analysis of the inversion using the resampling method owing to the computational

efficiency of the model.
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Firstly, the DNN inverse model can employ the forward model, which is compu-

tationally expensive. The new inverse model requires only a limited number of iterations

of the forward model calculation for producing the training data sets, and these itera-

tions can be parallelized. The calculation for producing each training data set is inde-

pendent. In contrast, the previous inverse models, including the FITTNUSS model (Naruse

& Abe, 2017), employed the optimization method (e.g., L-BFGS) in which the forward

model calculation depends on the result of the previous iteration, and thus, this trial and

error procedure cannot be parallelized. It was time consuming to obtain the best solu-

tion and was difficult to improve the computational efficiency in the previous method-

ology. Therefore, the previous inverse model only employed the largely abridged forward

models such as the “moving-settling tube” (Soulsby et al., 2007) or sudden settling from

equilibrium uniform flows (B. E. Jaffe & Gelfenbuam, 2007). The recent inverse model

TSUFLIND (Tang et al., 2018; Tang & Weiss, 2015) also probably employed a similar

simplified assumption because of this computational load problem. In the new inverse

model, this limitation is diminished in the forward model, such that the former can po-

tentially employ fully hydrodynamic models as the forward model.

Secondly, the inverse model proposed herein can be tested prior to the actual anal-

ysis because each inversion (i.e., feed-forward calculation of the NN) is completed instan-

taneously in this method. In previous methods, such as FITTNUSS, each inversion re-

quires a long time such that it was not realistic to iterate the inversion several hundred

times for testing the performance of the model. In addition, a modern statistical uncer-

tainty analysis requires resampling procedures in which the iteration of the inversion is

also required. Therefore, it was possible to apply the jackknife uncertainty analysis in

the case of the DNN inversion in this study, but it is difficult to provide an error range

of the estimates for the FITTNUSS method or other methods in a realistic time period.

6 Limitation and scope of improvement

The present model shows promising results, but the reliability of this model is re-

quired to be validated by using more field data. The options and hyperparameters of the

inversion, such as the sampling window size, can be tested using other examples of mod-

ern tsunami deposits with known flow parameters. Furthermore, it is necessary to ap-

ply this model to tsunami deposits in Tohoku and other regions along with older tsunami
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deposits in order to scrutinize the present model comprehensively and to develop a ro-

bust model that can be used in the relevance of hazard evaluation.

In addition, the model still has some limitations in terms of its applicability and

accuracy. For example, the reconstructed values of the maximum flow depth showed a

bias of -0.5 m, and the cause of this bias is unknown. However, in deciphering other pa-

rameters such as the maximum inundation length, flow velocity, and sediment concen-

tration, this model showed satisfactory results for tsunamis of any scale. Currently, this

model can only be applied to flat coastal areas and does not incorporate a steeply slop-

ing surface or topographically complicated regions. Nevertheless, these limitations can

be overcome by further modifications to the forward model because the DNN inversion

model can potentially incorporate complete hydrodynamic models as the forward model.

7 Conclusion

The new model presented in this study uses an artificial NN to derive the hydraulic

conditions of a tsunami. It successfully reconstructed the flow conditions including the

maximum inundation length, flow velocity, maximum flow depth and sediment concen-

trations from artificial tsunami deposits produced by the forward model as well as the

natural tsunami deposits of 2011 Tohoku-Oki tsunami. The reconstructed flow velocity

and maximum depth were 5.4 m/sec and 4.11 m respectively, which are in the ranges

of observed values of the tsunami. The uncertainty of the results was determined using

the jackknife method, which also shows that the model yields results that do not com-

prise large ranges of data. Thus, in future studies, it is expected that this model would

be able to successfully reconstruct the flow conditions of modern and ancient tsunamis.
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