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Key Points:

1) At NOAA’s Barrow Observatory in Alaska, the annual tempera-
ture during 2015-2020 was about 3.37 oC higher than in 1985-1990.

2) Virtually all the upward trend in annual temperature through
2015 can be attributed to higher CO2 concentrations.

3) The model’s out-of-sample predictions are more accurate if the es-
timated associations between CO2 and temperature are not ignored.

Abstract

Survey evidence has indicated that a significant percentage of the population
does not fully embrace the scientific consensus regarding climate change. This
paper assesses whether the hourly temperature data support this denial. Specifi-
cally, this paper examines the relationship between hourly CO2 atmospheric con-
centration levels and temperature using hourly data from the NOAA-operated
Barrow observatory in northern Alaska. At this observatory, the average an-
nual temperature over the 2015-2020 period has been about 3.37 oC higher
than in the 1985-1990 period. A time-series model to explain hourly temper-
ature is formulated using the following explanatory variables: the hourly level
of total downward solar irradiance, the hourly CO2 value lagged by one hour,
proxies for the diurnal variation in temperature, proxies for the seasonal temper-
ature variation, and proxies for possible non-anthropomorphic drivers of tem-
perature. A time-series modeling specification is employed to capture the data’s
heteroskedastic and autoregressive nature. The model is estimated using hourly
data from 1 Jan 1985 through 31 Dec 2015. The results are consistent with
the hypothesis that increases in CO2 concentration levels have nontrivial conse-
quences for hourly temperature. The estimated annual contributions of factors
exclusive of CO2 and downward total solar irradiance are very small. The model
was evaluated using out-of-sample hourly data from 1 Jan 2016 through 31 Aug
2017. The model’s out-of-sample hourly temperature predictions are highly ac-
curate, but this accuracy is significantly degraded if the estimated CO2 effects
are ignored. In short, the results are consistent with the scientific consensus on
climate change.

Plain Language Summary
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According to the IPCC and other scientific organizations, including the AGU,
it is extremely likely that human influence has been the dominant cause of the
observed increase in global temperatures since the mid-20th century. However,
a significant percentage of the population does not fully embrace this consensus.
Using data from the NOAA-operated Barrow observatory in northern Alaska,
this paper assesses whether the hourly temperature data support this appar-
ent denial. It is first noted that the average annual temperature at Barrow
over the 2015-2020 period was about 3.37 oC higher than in the 1985-1990
period. The formal analysis employs hourly solar irradiance, CO2, and tem-
perature data. The model controls for possible non-anthropomorphic drivers
of annual temperature. The model was estimated from 1 Jan 1985 through 31
Dec 2015. The estimated annual effects of CO2 are significant in magnitude,
while the non-anthropomorphic drivers exclusive of solar irradiance are quanti-
tively unimportant. The model is evaluated from 1 Jan 2016 through 31 Aug
2017. The model’s out-of-sample hourly temperature predictions are highly ac-
curate, but this accuracy is significantly degraded if the estimated CO2 effects
are ignored. In short, the results are consistent with the scientific consensus on
climate change.
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. Introduction

According to the IPCC, it is extremely likely that human influence has been
the dominant cause of the observed increase in global temperatures since
the mid-20th century (IPCC, 2013, p. 17 ). As early as 2001, the science
academies of Australia, Belgium, Brazil, Canada, the Caribbean, China,
France, Germany, India, Indonesia, Ireland, Italy, Malaysia, New Zealand,
Sweden, Turkey, and the United Kingdom all endorsed the scientific consensus(
Australian Academy of Sciences et al., 2001). A more recent list of scientific
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academies that have accepted this view includes Academia Brasiliera de Ciên-
cias (Brazil), Royal Society of Canada (Canada), Chinese Academy of Sciences
(China), Academié des Sciences (France), Deutsche Akademie der Naturforscher
Leopoldina (Germany), Indian National Science Academy (India), Accademia
dei Lincei (Italy), Science Council of Japan (Japan), Russian Academy of
Sciences (Russia), Royal Society (United Kingdom), and the National Academy
of Sciences in the United States of America ( National Academies of Science,
2005). These institutes are not indicating that human activity is only partly
responsible for climate change. Instead, they have indicated that human
activity is the dominant driver.

In the United States, a country in which a nontrivial number of climate de-
niers hold powerful elected positions, the following scientific organizations have
explicitly endorsed the scientific consensus on climate change: American Asso-
ciation for the Advancement of Science, American Chemical Society, American
Geophysical Union, American Institute of Biological Sciences, American Mete-
orological Society, American Society of Agronomy, American Society of Plant
Biologists, American Statistical Association, Association of Ecosystem Research
Centers, Botanical Society of America, Crop Science Society of America, Eco-
logical Society of America, Natural Science Collections Alliance, Organization
of Biological Field Stations, Society for Industrial and Applied Mathematics,
Society of Systematic Biologists, Soil Science Society of America, University
Corporation for Atmospheric Research ( American Association for the Advance-
ment of Science, 2009).

This paper’s starting point is the observation that the survey data does not fully
reflect the scientific consensus. Using time-series quantitative methods, this
paper examines whether the hourly temperature data at the NOAA-operated
Barrow atmospheric observatory in northern Alaska supports this view. While
some might question the approach employed in this paper because the method-
ology is ”unorthodox” relative to the conventional meteorological framework,
it is well established that addressing an issue from a different perspective can
sometimes be useful. There is also the point that the methodology applied in
this paper has revolutionized the analysis of high-frequency time-series data in
other sectors.

The paper is organized as follows. Section 2 reports on the survey data. Section
3 summarizes the views of climate deniers within the scientific community, the
term ”climate denier” indicating that the individual is not fully supportive of the
scientific consensus on climate change. Section 4 discusses the data used in the
analysis. To provide context, the trends in hourly temperature, downward total
solar irradiance, and CO2 concentrations at the Barrow atmospheric observatory
are reported. In response to an assertion about a lack of recent warming relative
to the pre-1940 period (Lindzen, 2020, pp. 12-13), the annual temperature at
the nearby Barrow Airport from 1921 through 2020 is reported. The time-
series nature of hourly temperature at Barrow is also discussed to facilitate the
modeling discussion in the remaining sections of the paper. Section 5 presents
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a model to examine the possible association between CO2 concentrations and
hourly temperature. Section 6 discusses the estimation process and also presents
the estimation results. Section 7 evaluates the model using out-of-sample data.
The paper’s findings are summarized in section 8.

2. The Survey Evidence

A 2019 YouGov survey of 30,000 individuals that are believed to be represen-
tative of the online population in 28 countries indicated that there were only
14 countries in which 50 % or more of the respondents would agree with the
statement that ”The climate is changing and human activity is mainly respon-
sible (Figure 1). A significant number of the respondents in the 28 countries
indicated that human activity is only partly responsible for climate change. For
example, while 40% of the respondents in Denmark agreed with the scientific
consensus that human activity is mainly responsible for climate change, 48%
agreed with the statement, ”The climate is changing and human activity is
partly responsible, together with other factors (emphasis added). In the
United Kingdom, 51% endorsed the scientific consensus, while 37% believe that
human activity is only partly responsible. In China, 45% endorsed the scientific
consensus, while 48% believe human activity is only partly responsible. In the
USA, 38% endorsed the scientific consensus, 37% reported that they believe
that human activity is only partly responsible for climate change, 9% believe
that human activity is not a driver of climate change, and 6% reported that
they do not believe that the climate is changing.
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Source: Source: https://zenodo.org/record/5833581#.YdwmtVnLdGM

Figure 1. Responses to a 2019 YouGov survey question posed to
30,000 people in 28 countries. Thinking about the global environ-
ment…In general, which of the following statements, if any, best de-
scribes your view?”

While it is tempting to attribute the findings for China in Figure 1 as evidence
of a form of climate denial by a large proportion of the population, the recent
findings by Yang et al. (2021) would seem to suggest that a misinterpretation
of climate change as a concept might be a more important driver. In other coun-
tries, other survey data are largely consistent with the data presented in Figure
1. For example, in a 2019 Irish Times/Iposos MRBI poll (Leahy, P., 2019),
respondents were asked if they agreed with the following statement: ”I don’t
think climate change will be as bad as some say so I’m not that worried about
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it.” While 57% of the respondents implicitly endorsed the scientific consensus by
disagreeing with the statement, 33% agreed. In this same poll, only 44% of the
respondents agreed with the statement, ”I am okay with the price of oil, gas,
petrol and diesel increasing to help tackle climate change.” This is obviously not
a majority and thus represents a challenge to implementing policies to reduce
emissions.

A November 2018 survey of 1,202 adults by the Energy Policy Institute at the
University of Chicago and the AP-NORC Center yields some useful insights on
the willingness of Americans to pay to mitigate climate change(EPIC, 2018). Ac-
cording to this survey, 57% of the respondents were willing to pay a $1 monthly
fee to combat climate change. About 23% were willing to pay a fee of 40 USD.
However, 43 percent were unwilling to pay anything highlights the challenge
of doing anything significant to reduce emissions. Acceptance of the view that
human activity is a driver of climate change was one of the primary correlations
of whether respondents were willing to pay to reduce emissions.

Suggestive of the possible political implications of the polling data, the UN-
FCCC (United Nations Framework Convention on Climate Change) secretariat
issued a report in September 2021 that indicated that the combined updated
Paris Accord pledges fall short of what it will take to meet the goals of the Paris
Accords. Specifically, even with the updated pledges, projected GHG emissions
in 2030 are only about 0.5% lower than in 2010. Being on track to limiting
global warming to below two °C would require a 25 percent reduction by 2030
(UNFCCC Secretariat, 2021a). The COP26 meetings that were held in Novem-
ber of 2021 have done little to improve the prospects that the goals of the 2015
Paris Accords will be met. The United States did announce its good intentions,
but climate deniers will most likely make those goals very difficult to achieve.
The conference faced other challenges including objections to phasing out coal.
While the conference made progress in the areas of carbon markets and finance,
the fact remains that there is a significant emissions gap (UNFCCC Secretariat,
2021b).

3 The Views of the Climate Deniers from within the Scientific Com-
munity

Somewhat surprisingly, some prominent individuals from within the scientific
community who have been labeled as climate deniers have actually conceded that
increases in CO2 concentrations have consequences for surface warming. For ex-
ample, the CO2 Coalition (2015), a sharp critic of the scientific consensus, whose
members include the well-known influencers Richard Lindzen, Patrick Michaels,
Roy Spence, and William Happer, has explicitly acknowledged the greenhouse
effect. It notes that predicting greenhouse-induced warming is difficult because
atmospheric processes are very complicated. It then pivots back and reports
that it believes that the data suggests that the warming associated with a dou-
bling of CO2 levels will be very modest. In its words,

”Basic physics implies that more atmospheric CO2 will increase
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greenhouse

warming. However, atmospheric processes are so complicated that
the amount of

warming cannot be reliably predicted from first principles. Recent
observations of

the atmosphere and oceans, together with geological history, point
to very modest

warming, about 1 C (1.8 F) if atmospheric CO2 levels are doubled.”

CO2 Coalition, 2015

The CO2 Coalition assertion that the warming associated with a doubling of
CO2 will be modest appears to be largely premised on a belief that the recent
warming is about the same as before the 1940s (Lindzen, 2020, pp. 12-13). As
will be seen, this belief is not supported by the data in northern Alaska.

4 The data employed in this study and an overview of the changing
climate in northern Alaska

The study employs temperature, solar radiation, and CO2 data reported by
the Barrow (BRW) atmospheric station of the Earth System Research Labora-
tory (ESRL), Global Monitoring Division (GMD), of the National Oceanic and
Atmospheric Administration (NOAA). This observatory is one of the baseline
observatories operated by NOAA. It is located near sea level 8 km east of Utqi-
aġvik (formerly Barrow), Alaska at 71.3230 degrees north and 256.6114 degrees
West. Continuous atmospheric measurements of CO2 have been recorded at this
observatory since July 1973 (Thoning et al., 2021). Herbert et al. (1986) discuss
how the data are processed. Peterson et al. (1986) discuss the first ten years
(1973-1982) of atmospheric CO2 measurements at the observatory and report
good agreement of the Barrow results with the reported data from four neigh-
boring high latitude sites. Tans and Thoning (2020) provide a general overview
of the methods used to collect and process the CO2 data at Mauna Loa, one
of NOAA’s other baseline observatories. Along with the hourly temperature
data corresponding to BRW, the CO2 data for BRW were downloaded from the
ESRL website (http://www.esrl.noaa.gov/gmd/dv/data/ ).

Continuous atmospheric measurements of downward total solar irradiance have
been reported at the BRW observatory since January 1976. Before 1998, the
data were reported at three minutes intervals. The data were subsequently
reported at one-minute intervals. For this study, the reported values were rolled
up to hourly averages. Data were dropped from the analysis if the number of
valid minutes of data for an hour was less than 15.

Consideration was given to the inclusion of CH4 data in the analysis. This action
would have resulted in the loss of 26,381 hourly observations due to unavailable
or invalid CH4 measurements. (the collection of the CH4 data commenced in
1986 but was subsequently suspended for about nine months in 2012/2013).
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The probable effect of this data loss on model convergence was an important
consideration in excluding this variable from the analysis, model convergence
being one of the major challenges of the methodology employed in this paper
(STATA, 2021, p. 33). The omission of CH4 and other variables reflecting
greenhouse gas concentrations represents a shortcoming in the analysis.

The sample period for this study is 1 Jan 1985 through 31 Dec 2015. Data before
1 Jan 1985 were not employed in this study because the reported downward total
solar irradiance data largely did not meet ESRL’s standards before that date.
For example, only about 31% of the downward total solar irradiance values in
1984 were deemed by ESRL to be valid. The period 1 Jan 2016 through 31 Aug
2017 is reserved for out-of-sample analysis. The evaluation period terminates
on 31 Aug 2017 because of a significant data availability issue.

In thinking about meteorological issues at BRW, it is useful to begin by first
noting the extremes and high level of variability in the level of downward total
solar irradiance at this location. In terms of variability, the data from 2014 is
instructive (Figure 2). Concerning the extremes, there are about 67 days of
virtually total darkness each year ( about 18 Nov to 22 Jan), while the sun does
not completely set from 11 May to 31 Jul.

Figure 2. The level of hourly downward total solar irradiance at BRW, 1 Jan
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2014 – 31 Dec 2014

There has been a significant upward trend in annual temperature at BRW since
1985 (Figure 3). Specifically, the average annual temperature over the 2015-2020
time period was about 3.37 oC higher than in 1985-1990. The temperature data
reported by the PABR weather station at the nearby Barrow Airport from 1985
through 2020 are consistent with the trend at BRW (Figure 4). The PABR
data also indicates that the four warmest years since 1921 occurred in 2016,
2017, 2018, and 2019. In these four years, the average annual temperature was
about 5.03 o C higher than the average annual temperature from 1921 through
1939. These findings do not support the assertion by Lindzen that the recent
warming is about the same as before the 1940s (2020, pp. 12-13). In terms of
the magnitudes of the recent warming, the increases are consistent with Arctic
amplification, as explained by Pithan & Mauritsen (2014) and Winton (2006).

The upward trend in temperature at both BRW and PABR is consistent with
the temperature trend for the Arctic noted by Markon et al. (2018, p 1190-1192)
and Thoman et al. (2020, p. 4). Box et al. (2019) have reported fundamen-
tal changes among nine key attributes of the Arctic climate system over 1971
through 2017. The qualitative story is clear: ”the transformation of the Arc-
tic to a warmer, less frozen, and biologically changed region is well underway.”
(Thoman et al., 2020, p. 1). Consistent with these changes, the annual mean
permafrost temperatures have increased at many locations throughout the Arc-
tic (Romanovsky et al., 2017, p. 69). For example, based on data reported by
EPA, the average annual permafrost temperature at the Deadhorse Permafrost
Observatory ( https://permafrost.gi.alaska.edu) over the years 2015 through
2020 was about 2.81 oC higher than during the years 1985 through 1990 (EPA,
2021). In four of the 11 permafrost observatories whose 2020 annual temper-
atures are reported by EPA, the 2020 average temperatures were between -1
and 0 oC. There is evidence that thawing has adverse implications for carbon
emissions because of stimulated microbial decomposition (Schuur et al., 2021).

According to the Arctic Monitoring and Assessment Programme, ”Arctic warm-
ing can also have effects far beyond the region: for example, the recent rapid
warming of the Arctic appears to have created conditions favoring a persistent
pattern in the jet stream that provokes unusual extreme temperature events
in the Northern Hemisphere.” (AMAP, 2019, p 4). According to Taylor et al.
(2017, p. 303), it is very likely that human activities have contributed to these
trends. While the literature supports this finding (Marzeion et al., 2014; Rupp
et al., 2013; Kunkel et al., 2016; Zhang and Knutson, 2013; Kirchmeier-Young
et al., 2017; Wang and Overland, 2012; Vinnikov et al., 1999; Stroeve et al.,
2007; Min et al., 2008; Kay et al., 2011; Day et al., 2012; Christensen et al.,
2013; Najafi et al., 2015; Chylek et al., 2014; Fyfe et al., 2013; Bindoff et al.,
2013; and Gillett et al., 2008 ), it has also been reported that the significant
natural climate variability in the Arctic poses an attribution challenge (Taylor
et al. 2017, p. 319).

At the hourly levels, both downward total solar irradiance and temperature are
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highly variable (Figures 5 and 6). Concerning the hourly CO2 concentration lev-
els, there is a significant upward trend in the hourly CO2 concentration levels
over the sample period (Figure 7). Despite the upward trend in both CO2 con-
centrations and temperature, there is no visually obvious relationship between
the two variables (Figure 8). While some climate deniers may be tempted to
claim that the data in this figure vindicates their position, the view here is that
a lack of correlation between two variables only rules out causality when the
hypothesized relationship is quite simple.

Figure 3. The average hourly temperature at the Barrow Observatory, 1985
-2020
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Figure 4. The average annual temperature at the PABR/Barrow Airport
weather station, 1921 -2020

11



Figure 5. The hourly temperature at the Barrow Observatory, 1 Jan 1985 – 31
Dec 2016
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Figure 6. Hourly downward total solar irradiance levels at the Barrow Obser-
vatory, 1 Jan 1985 – 31 Dec 2016
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Figure 7. Hourly CO2 concentration levels at the Barrow Observatory, 1985
-2019
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Figure 8. A scatter diagram of hourly temperature and CO2 concentration
levels at BRW, 1 Jan 1985 – 31 Dec 2015

The autocorrelative nature of hourly temperature is an important characteristic
of the data (Figure 9). As the figure indicates, the magnitude of the autocorrela-
tive process is quite significant. For example, the estimated correlation between
the temperature at hour t and hour t-1 equals 0.9970, a value that is so large
that it is reasonable to wonder if there is a unit root issue (an example of a unit
root process is when the variable y in time t equals its value in time t‐1 plus a
random error term). The absence of a unit root is an essential prerequisite for
the modeling approach employed in this paper, given that statistical analysis
of variables with a unit root can give rise to spurious results (Kennedy, 2008,
p. 301). Fortunately, an Augmented Dickey-Fuller test for a unit root yields
a P-value that is less than 0.0001 both with and without a possible trend, and
thus the null hypothesis of a unit root is rejected. Consistent with this finding,
the Phillips-Perron test for a unit root also yields a P-value less than 0.0001
both with and without a possible trend. Consideration was given to further
unit root testing using the DF-GLS test developed by Elliot et al. (1996). This
test is regarded as a leading second-generation unit root test that avoids some
of the shortcomings of the Augmented Dickey-Fuller and Phillips-Perron tests
(Baum and Hurn, 2021, pp. 117-120 ). The application of this methodology
requires a data series without any gaps. The Barrow data set has 325 gaps in
terms of temperature, and thus, the DF-GLS test cannot be applied.

Fortunately, hourly temperature data analysis at another observatory in the
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polar region may be instructive. One of the few stations in the polar region
that substantially meets the zero data gap requirements of the DF-GLS
test is the Syowa station on East Ongle Island, located about 4km from
the Antarctic continent with a latitude 69.0125° South and a longitude
of 39.5900° East. This station is supported by the National Institute of
Polar Research in Japan. The data from this station was obtained from
NASA’s CERES/ARM Validation Experiment using the following link:
https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection.jsp .

From Apr 14, 2002, through Jan 31, 2016, a period with 120,982 hours and no
data gaps, the mean temperature at the observatory was about -10.7 °C, with
the hourly values ranging from 41.25 °C to 7.65 °C. At one hour lagged, the
autocorrelation in temperature equals 0.9959, a value seemingly suggestive of
a unit root issue. This possible suspicion is not supported by the Augmented
Dickey-Fuller, Phillips–Perron, or the DF-GLS tests.

While the feasible tests do not support the null hypothesis of a unit root in
the hourly temperature data, a quantitative analysis of hourly time-series
temperature data needs to control its autocorrelative nature to effectively
extract the signal from the noise in the data. The method of ordinary least
squares is woefully deficient in this regard. This point of caution is consistent
with Granger and Newbold (1974, p. 117), who state the following in their
article entitled, ”Spurious regressions in econometrics”: ”In our opinion the
econometrician can no longer ignore the time series properties of the variables
with which he is concerned ‐ except at his [ or her ] peril.” Readers tempted
to dismiss this warning may wish to reflect on the fact that Granger was the
co-recipient of the Sveriges Riksbank Prize in Economic Sciences in Memory of
Alfred Nobel in 2003 for his contributions to the field of time-series methods
(https://www.nobelprize.org/prizes/economic-sciences/2003/granger/facts/ ).
The other awardee in 2003 was Robert Engel, the developer of the ARCH
model, which is discussed in the next section.
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Figure 9. The autocorrelations in hourly temperature at Barrow, 1 Jan 1985
– 31 Dec 2015

5 A Model of Hourly Temperature

The modeling approach employed in this paper accepts the late Professor George
Box’s well-known aphorism that ”All models are wrong; some models are useful”
(Box et al., 2005, p. 440). They are all ”wrong” because all are simplifications
of a complex reality but can be useful if they capture important aspects of that
reality. A possible corollary of Professor Box’s aphorism is that a quantitative
model can easily be portrayed as terribly ”wrong,” even if it is useful. For ex-
ample, it may be contended that the model presented here is ”wrong” because
it is plagued by multicollinearity, autocorrelation, heteroskedasticity, overfit-
ting, and unit-root issues. Other readers may conclude that the model is wrong
because it somehow ”forces” the estimated relationship between CO2 concentra-
tions and temperature to be positive because both are rising over time ( note:
the correlation between temperature and CO2 equals -0.1495). Still, others will
argue that the results are biased because the model’s dependent variable is the
natural logarithm of temperature.

A model’s vulnerability to being declared wrong even though all models are
”wrong” represents a significant challenge to recognizing insights provided by
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useful models. Fortunately, the out-of-sample predictive accuracy of a model
provides invaluable insights into its usefulness. Common sense informs us that
a time-series model that yields accurate predictions is useful because its impli-
cations will generally be robust to skepticism if the out-of-sample evaluation
period is sufficiently long. With this metric in mind, the modeling approach
proceeds by estimating the model using 228,085 observations and performing
an out-of-sample analysis with 13,175 observations.

In the model, the association between CO2 concentrations and temperature is
presumed to be conditional on the level of downward total solar irradiance mea-
sured at the Earth’s surface, downward total solar irradiance being the primary
driver of the weather and climate system. The other drivers of the surface energy
balance, such as upward and downward longwave irradiance, are not included as
explanatory variables in the model because they are hypothesized to be affected
by CO2 concentrations. Upward short-wave irradiance is not hypothesized to be
directly affected by CO2 concentrations. Its inclusion as an explanatory variable
is open to question, given that it is largely driven by downward solar irradiance
and temperature. The inclusion of this variable would significantly reduce the
sample size, given that ESRL only commenced reporting this variable in 1993.

In the model, CO2 concentrations are lagged one hour to avoid the issue of
possible two-way causality between temperature and CO2 concentrations. The
model also includes binary variables for the solar zenith angle, the hour-of-the-
day, day-of-the-year, and year. These variables are included as proxies for the
drivers of the diurnal variation in temperature, the seasonal variation in temper-
ature, and the possible non-anthropomorphic drivers of temperature unrelated
to total downward solar irradiance. In terms of functional form, linearity is not
presumed, but instead, the data are permitted to speak for themselves on this
critical issue.

The initial version of the model is given by:

lnTempt = �0 + �1 ZeroSolart + �2 Solart + �3 (CO2t-1*ZeroSolart)

+ �4 (CO2t-1*Solart) + �5 Solart * CO2t-1 + ∑9
ℎ=1 𝛽ℎAngleh

+ ∑24
𝑖=2 𝜙𝑖HourofDayi + ∑365

𝑗=2 𝛾𝑗DOYj + ∑2014
𝑘=1985 𝛿𝑘Yea𝑟𝑘 (1)

Where

lnTempt is the natural logarithm of hourly temperature measured in Kelvin in
hour t.

ZeroSolart is a binary variable that equals one if the level of downward total
solar irradiance at Barrow in period t is equal to zero. The variable has a value
of zero otherwise.

Solart is the downward total solar irradiance level at Barrow in period t.

CO2t-1 is the atmospheric level of CO2 concentrations at Barrow in hour t-1.
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PosSolart is a binary variable that equals one if the level of downward total solar
irradiance at Barrow in period t is positive. The variable has a value of zero
otherwise.

Angleh is a vector of nine binary variables representing the solar zenith angle.

HourofDayi is a vector of 23 binary variables representing the hour of the day.

DOYj is a vector of 364 binary variables representing the day of the year.

Yea𝑟𝑘 is a vector of 30 binary variables representing the year of the sample.

Please note that the terms in (1) denoted using the Greek alphabet (e.g., �1) are
the estimated parameters obtained given this version of the model. From (1),
the total number of coefficients to be estimated equals 432. Some may suspect
that this represents an excessive number of explanatory variables and that the
model is” overfitted” as a result. If true, this would be a serious concern given
that overfitted models are plagued by an inadequate ability to generate accurate
out-of-sample predictions. In this case, the possible suspicion of overfitting is
not supported by the ”rule of thumb” advanced by Trout (2006), who suggests
that a least-squares regression model with k explanatory variables should have
at least 10*k observations. In the least-squares version of the model presented
here, there are about 528 observations per estimated parameter. Based on
Trout’s ”rule of thumb,” overfitting is not an issue. Nevertheless, it is cheerfully
conceded that the model, like all models, is ”wrong.” Despite this shortcoming,
the model will ultimately be seen to be useful.

6 Estimation and Results

The model was estimated using hourly data from 1 Jan 1985 through 31 Dec
2015. The empirical analysis was conducted in two steps. In the first step,
the functional form given by Eq. (1) is evaluated. Subsequently, a nonlinear
functional form is identified.

The second estimation step employs an autoregressive component that recog-
nizes that the temperature in hour t is not statistically independent from the
temperature outcomes in previous hours, as seen in Figure 9. Step two of the
estimation is accomplished by first recognizing that the disturbance term’s vari-
ance in a regression equation is heteroskedastic instead of homoscedastic, i.e.,
variable instead of constant over time. Under these circumstances, the accepted
approach is to employ an autoregressive conditional heteroskedasticity (ARCH)
model. The approach is a useful method in modeling times series data that
exhibit time-varying volatility, i.e., periods of turbulence followed at some point
by periods of relative calm. This approach was proposed by Engle (1982) to
improve the analysis of financial data. It has since proven itself as an invaluable
method when modeling a variable that exhibits time-varying volatility. Hourly
temperature is one of those variables. Those tempted to claim otherwise are
cheerfully invited to consult the book entitled ”Environmental Econometrics
Using Stata,” authored by Baum and Hurn (2021).
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The second step of the estimation also makes use of an autoregressive-moving-
average with exogenous inputs model specification (ARMAX) with the trans-
formed explanatory variables from the first step (e.g., Solart

1/4) being included
as the exogenous inputs and where the disturbance terms are presumed to fol-
low an autoregressive moving-average (ARMA) specification. The estimation
approach runs counter to the Box-Jenkins philosophy of being parsimonious in
terms of modeling (Box and Jenkins, 1976), who believed that there was more
room for prediction errors when more parameters were estimated (Hamilton,
1994, p. 106). The view here is that the goal of predictive accuracy can some-
times be enhanced by including more ARMA terms. Thus, while researchers
who analyze daily, monthly, or quarterly data can report useful results using
parsimonious specifications, the approach here will go substantially beyond this.
This approach makes sense given the autocorrelations evidenced in Figure 9 and
the high level of variability in temperature, as evidenced by Figure 5. The het-
eroskedasticity in the conditional variance is modeled as a function of binary
variables representing the solar zenith angle, the hour of the day, the day of the
year, the year of the sample, and the following variables: √𝐶𝑂2𝑡−1, √Solar𝑡 .
Instead of assuming that hourly temperature is independent of the conditional
variance, the model permits the data to speak for itself on this issue. This
linkage is relevant if the level of a variable depends on the variance in the dis-
turbance term. The ARCH-in-mean model introduced by Engel et al. (1987)
offers an approach to estimate this linkage.

The possible merits of representing the explanatory variables using a nonlinear
specification are addressed using the multivariable fractional polynomial (MFP)
methodology (Royston and Sauerbrei, 2008). The MFP is initiated by estimat-
ing a strictly linear model in the explanatory variables. Subsequent estimations
cycle through a battery of nonlinear transformations of the explanatory vari-
ables (e.g., cube roots, square roots, squares, etc.) until the model that best
predicts the dependent variable is found. In the present case, the MFP results
support specifying some of the explanatory variables with powers other than
unity. The revised structural equation is:

lnTempt = 𝛼′
0 + 𝛼′

1 ZeroSolart + 𝛼′
2Solart

1/4 + 𝛼′
3 (CO2t-1*ZeroSolart)3

+ 𝛼′
4 (CO2t-1*PosSolart)1/4 + 𝛼′

5 (Solart * CO2t-1 )1/4 + ∑9
ℎ=1 𝛽′

ℎAngleh

+ ∑24
𝑖=2 𝜙′

𝑖 HourofDayi + ∑365
𝑗=2 𝛾′

𝑖 DOYj + ∑2014
𝑘=1985 𝛿′

𝑘 Yea𝑟𝑘 (2)

Please note that the terms in (2) denoted using the Greek alphabet (e.g., 𝛼′
1)

are the estimated parameters obtained given this version of the model. Least
squares estimation of (2) produces a seemingly respectable R2 of about 0.831.
However, the parameter estimates are highly suspect, given that a Portman-
teau (Q) test (Box and Pierce, 1970; Ljung and Box, 1978) indicates that the
residual error terms are plagued by autocorrelation. For example, for lags one
through 100, the P values are less than 0.0001, indicating that the null hypoth-
esis of no autocorrelation in the residuals is rejected. The null hypothesis of
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no autoregressive conditional heteroskedasticity is rejected with a P-value less
than 0.0001 using Engle’s Lagrange multiplier test (Engle, 1982). Consistent
with these issues, the least-squares model is not useful, as evidenced by out-of-
sample predictions over the period 1 Jan 2016 through 31 Aug 2017 that have
a root-mean-squared-error (RMSE) of about 5.67 o C.

ARCH/ARMA methods can generate predictions that are much more accurate
than the predictions from a least-squares model. In this case, the ARCH pro-
cess’s modeled lag lengths are lags 1 and 2. Consideration was given to including
additional ARCH terms to model the apparent diurnal pattern of the ARCH
process (e.g., 24, 48 72, 96 etc.) Consideration was also given to employing al-
ternative ARCH and GARCH specifications. These approaches were abandoned
due to model convergence issues. For the AR process, the lag lengths are p =1
through 12, 23, 24, 25, 26, 47, 48, 49, 71, 72, 73, 96, 97, 120, 121, 144, 145 167,
168,169, 192, 193, 216, 240, 264, 288, 312, 335, 336, 337, 360, 384, 408, 432, 456,
480, 600, 671, 672, 673, 840, and 960. The MA modeled lag lengths are q =
1 through 25, 48, 49, 71, 72, 73, 96, 97, 120, 121, 144, 145, 167, 168, 169, 192,
193, 216, 240, 264, 288, 312, 335, 336, 337, 360, 384, 408, 432, 456, 480, 600,
671, 672, 673, 840, and 960.

Equation (2) was estimated assuming that the residual error terms correspond
to the Student t distribution. This distribution allows for more kurtosis (’heavy
tailedness’) than the Gaussian distribution. Specifically, the level of kurtosis
that is accommodated by this distribution in excess of the Gaussian’s level of
three equals 6/(v - 4) provided that v > 4, where v is the number of degrees of
freedom (Harvey, 2013, p. 20). In this case, the number of degrees of freedom
does not refer to the sample size minus the number of estimated parameters. In-
stead, it is a ”shape” parameter for the distribution. In this case, the estimated
value of v is less than four. Specifically, the estimated value of v is approxi-
mately 2.87. This outcome is not ideal. Consideration was given to employing
the generalized error distribution but was abandoned due to model convergence
issues. Despite this less-than-ideal outcome, it is worth noting that the standard
errors for the coefficients are based on the full Huber/White/sandwich formu-
lation. Thus, from Bollerslev & Wooldridge (1992), the variance estimates are
robust to symmetric non-Gaussian disturbances. As a result, the reported P-
values are meaningful even though the error distribution is not Gaussian. Unit
root issues were addressed using both the Augmented Dickey-Fuller

and Phillips–Perron tests. Using these tests, the null hypothesis that the stan-
dardized residuals have a unit root is rejected based on a P-value that is less
than 0.0001.

Selected parameter estimates are reported in Table 1. Observe that 𝛼′
2 , the co-

efficient corresponding to Solart
1/4 is positive and highly statistically significant.

Two of three CO2 coefficients, 𝛼′
3 and 𝛼′

4 are also positive and highly statisti-
cally significant while 𝛼′

5 is negative and highly statistically significant. These
findings are consistent with the view that CO2 concentrations have implications
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for hourly temperature but do not address the magnitude. Concerning the pos-
sible non-anthropomorphic drivers of temperature, it is interesting to note that
16 of the 30 variables in question are statistically significant. With 2015 being
represented in the constant term, negative values for a year are consistent with
higher predicted temperatures in 2015 than in the year in question. There are
13 such cases. For these cases, the coefficients’ median value is -0.00543, a value
that hardly seems important in terms of magnitude.

In terms of explanatory power, the model’s R2 equivalence based only on the
model’s structural parameters equals 0.8105 The model’s R2 equivalence, based
on all the parameter estimates, including the ARCH/ARMA terms, equals
0.9968. Those who believe this level of explanatory power is ”too good to be
true, ”are cheerfully invited to reinspect Figure 9 and contemplate the concept
of autocorrelation. In any event, the view here is while the model’s explana-
tory power level is encouraging, its true adequacy can only be determined by
considering how well it performs on data not used in its estimation. It is also
noted that even though a model’s R2 equivalence is a well-recognized measure
of model adequacy, a good case can be made that achieving white noise in the
residuals is also important. Consistent with this view, Becketti (2013, p. 256)
has noted, ”…the measure of a well-specified and accurately fitted time-series
model is evidence that the residuals … are white noise.” This standard of model
adequacy is consistent with Kennedy (2008, p. 315) and Granger and Newbold
(1974, p. 119). To assess whether this measure of adequacy is achieved, Port-
manteau (Q) tests were conducted for the hourly lags 1 through 100, 192, 284,
and 672. At lag 1, the P-value at lag 1 is 0.1958, thereby failing to reject the
null hypothesis of a white noise error structure. For the remaining 111 lags
that were assessed, the P-values are less than .05, thereby rejecting the null
hypothesis of a white noise error structure. Based on these findings, the model,
like all models, is ”wrong.” Nevertheless, the findings of the next section of the
paper indicate that the model is useful.

Table 1. Estimation Results

Variable Estimated Coefficient Absolute Value of the t-Statistic P-Value
Constant term -84.5387 3.41 < 0.001
ZeroSolart 0.053421 9.25 < 0.001
Solart

1/4 0.01102 11.23 < 0.001
(CO2t-1*ZeroSolart)3 7.70E-11 7.57 < 0.001
(CO2t-1*PosSolart)1/4 0.01296 9.04 < 0.001
(Solart * CO2t-1 )1/4 -0.00232 10.42 < 0.001
Year1985 -0.01111 9.96 < 0.001
Year1986 -0.00371 2.36 0.018
Year1987 -0.00983 6.91 < 0.001
Year1988 -0.00808 6.87 < 0.001
Year1989 -0.00498 1.76 0.079
Year1990 -0.0033 1.47 0.141
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Variable Estimated Coefficient Absolute Value of the t-Statistic P-Value
Year1991 -0.00285 1.82 0.068
Year1992 -0.00664 2.21 0.027
Year1993 -0.00265 2.52 0.012
Year1994 -0.00339 2.47 0.014
Year1995 -0.00384 4.43 < 0.001
Year1996 -0.00305 1.73 0.083
Year1997 0.001996 1.06 0.288
Year1998 0.005733 3.48 0.001
Year1999 -0.00766 4.34 < 0.001
Year2000 -0.00543 4.26 < 0.001
Year2001 -0.00359 2.97 0.003
Year2002 0.002124 0.61 0.541
Year2003 -0.00658 3.21 0.001
Year2004 -0.00449 4.07 < 0.001
Year2005 -0.00211 1.11 0.265
Year2006 0.000883 0.33 0.743
Year2007 0.005622 4.31 < 0.001
Year2008 1.92E-06 0 0.999
Year2009 0.002597 1.98 0.048
Year2010 0.000847 0.38 0.707
Year2011 0.001634 0.23 0.817
Year2012 -0.00044 0.22 0.829
Year2013 0.001147 0.46 0.643
Year2014 0.002601 1.40 0.162
Number of Observations 228,085
R-Square equivalence based on the full model 0.9968
R-Square equivalence based on the model’s structural component. 0.8105

of the 364 variables representing the day of the year are statistically
significant, while 22 of the 23 variables representing the hour of the day are
statistically significant. Only three of the nine solar angle variables are
statistically significant.
In terms of the ARMA terms, 44 of the 53 AR terms and 31 of the 61 MA
terms are statistically significant. Both of the ARCH terms are statistically
significant. Only one of the three ARCH-in-Mean terms is statistically
significant. Concerning the variables that model the heteroskedasticity in the
conditional variance, 298 of the 429 variables are statistically significant.

7 An Out-of-Sample Evaluation of the Model’s Performance

In this section, the model is evaluated using hourly out-of-sample hourly data.
The period of evaluation is 1 Jan 2016 to 31 Aug 2017. Recalling that the de-
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pendent variable in the model is the natural logarithm of temperature measured
in Kelvin, it might seem that a simple retransformation back would yield the
optimal predicted value. Unfortunately, merely taking the antilogarithm of the
predicted natural logarithm of temperature measured in Kelvin may result in a
biased temperature prediction (Granger and Newbold, 1976, pp. 196-197). This
bias is easily resolved when the error distribution is Gaussian using a method
presented by Guerrero (1993). Given the non-Gaussian nature of the error dis-
tribution in this case, the matter was resolved by estimating a post-processing
regression without a constant term using all of the observations in the sample.
The explanatory variable in this post-processing regression is the hourly tem-
perature measured in Kelvin, while the explanatory variable in this regression
is the antilog of the transformed predicted values. The estimated coefficient
corresponding to the explanatory variable equals 0.9999895. The associated R-
Square equals 1.0000. The estimated parameter from this regression was used
to detransform the out-of-sample transformed predicted temperature values.

The accuracy of the out-of-sample predictions was compared with the ERA5
predictions for the same general location. For those unfamiliar with ERA5,
it was produced by the Copernicus Climate Change Service at the European
Centre for Medium-Range Weather Forecasts (ECMWF). In a significant ad-
vance from its earlier databases, it reports hourly values across the globe. The
ERA5 hourly temperature values for the Barrow location were obtained from
Meteoblue, a highly regarded meteorological service created at the University
of Basel, Switzerland ( https://content.meteoblue.com/en/specifications/data-
sources/weather-simulation-data/reanalysis-datasets ).

The out-of-sample temperature predictions from the ARCH/ARMAX model
presented in this paper have a predictive R-square of 0.9962. The predictions are
more visually more accurate than the ERA5 values for the same general location
(Figure 10), although it should be noted that the ERA5 values correspond to a
grid that includes land and ocean while Barrow represents a land location within
that grid. Nevertheless, the ERA5 values may serve as a useful benchmark
for the ARCH/ARMAX out-of-sample predictions. Regarding the RMSE, the
predictions associated with the ARCH/ARMAX model have an RMSE equal to
about 0.682 oC, while the ERA5 outcomes have an RMSE of about 3.117 oC.
Interestingly, an ordinary least-squares analysis of the ERA5 prediction errors
indicates that the errors are not purely random. Specifically, the prediction
error is conditional on the magnitude of the predicted temperature and lagged
value of the CO2 concentration. The latter finding is consistent with the central
thesis of this paper. Following Granger’s discussion of prediction errors (1986,
p. 91), both of these findings suggest a pathway to improving the accuracy of
the ERA5 predictions.

The out-of-sample temperature predictions from the ARCH/ARMAX model are
significantly degraded when the estimated effects of CO2 are ignored (Figure 11).
The differential in predictive accuracy is visually apparent if one inspects the
vertical distance between the scatter points and the 45o line representing the
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relationship between predicted and actual temperature when the predictions are
perfect. As reported above, the full model presented in this paper has an RMSE
equal to 0.682 oC over the evaluation period, constraining the CO2 estimated
effects to be equal to zero results in predictions with an RMSE equal to 3.379
oC.

The out-of-sample analysis is supportive of the earlier discussion indicating the
unimportance of factors other than CO2 and the total downward solar irradi-
ance being drivers of the increase in annual temperature over the sample period.
Specifically, using the full model, the mean predicted temperature over the eval-
uation period equals - 8.725218 oC. The mean predicted temperature over the
evaluation period is -8.725221 oC if the estimated effects of the binary vari-
ables for 1986 through 2014 are constrained to equal zero. In short, the binary
variables to control for the possibility of annual temperature being affected by
factors other than CO2 or total downward solar irradiance have virtually no ef-
fect on the out-of-sample predicted temperature. Interestingly, the mean actual
temperature over the evaluation period equals -8.712713 oC, a very close value
to the mean of the predicted values.

Figure 10. The ERA5 and the ARCH/ARMAX prediction errors, 1 Jan 2016
– 31 Aug 2017.
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Figure 11. The ARCH/ARMAX model predictions with and without the CO2
estimated effects and the actual temperature outcomes, 1 Jan 2016 – 31 Aug
2017.

The structural predictions are less accurate than the predictions from the full
model but may yield useful insights. The predictions from the structural model
have an RMSE equal to 5.21 oC while constraining the CO2 estimated effects to
be equal to zero results in predictions with an RMSE equal to 8.29 oC (Figure
12). In short, constraining the estimated effects of CO2 to be equal to zero
reduces the accuracy of the out-of-sample structural predictions. In terms of
temperature, the predicted level is significantly lower when the estimated struc-
tural effects of CO2 are ignored (Figure 13). Observe that the difference in the
mean levels of predicted temperature is nontrivial.
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Figure 12. The RMSEs in the out-of-sample structural predictions

Figure 13. The out-of-sample structural predictions of temperature (oC)

8 Summary and Conclusion

This paper employed an ARCH/ARMAX model with statistical controls for to-
tal downward solar irradiance and 426 binary variables to examine the relation-
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ship between CO2 concentrations and hourly temperature at NOAA’s Barrow
Observatory in northern Alaska. The model was estimated using hourly data
from 1 Jan 1985 through 31 Dec 2015. The model was evaluated using hourly
data from 1 Jan 2016 through 31 Aug 2017. The out-of-sample predictive R-
square equivalence of 0.9962 suggests that the model has essentially resolved the
attribution challenge associated with the significant natural climate variability
in the Arctic. Consistent with this view, the out-of-sample predictions are more
accurate than the highly regarded ERA5 values for the same general vicinity.
Thus, though the model fails to achieve the within-sample goal of ”white noise”
in the residuals, the out-of-sample performance of the model strongly suggests
that the model is indeed ”useful.”

The modeling results are consistent with the physics that indicates that rising
CO2 concentrations have consequences for temperature, a point that even cli-
mate deniers such as Richard Lindzen, William Happer, Roy Spencer, Patrick
Michaels, and the other members of the CO2 Coalition have conceded. What is
different is that the model also offers useful insights into the magnitude of the
relationship between CO2 concentrations and hourly temperature. Specifically,
the out-of-sample predictions are significantly more accurate when the predic-
tions reflect the estimated and statistically significant CO2 coefficients compared
to when those coefficients are ignored. The out-of-sample results indicate that
CO2 concentrations have nontrivial implications for hourly temperature using
this approach. The modeling results also addressed the possible contribution of
factors other than CO2 being drivers of increased temperature over the sample
period. The mean of the out-of-sample predicted temperature over the evalua-
tion period is not materially affected by these variables, even though some of
those variables are statistically significant.

Given that all models are ”wrong,” it is a picayune task to dismiss the esti-
mation results reported in Table 1. It is much more challenging to rationally
dismiss the implications of the large decline in the out-of-sample predictive ac-
curacy when the estimated CO2 effects are ignored. One possibility is that some
unknown natural factor at work is the true culprit of the decline in predictive
accuracy. While climate deniers may find this an attractive explanation for the
results presented in this paper, the model’s out-of-sample predictive R-square
equivalence of 0.9962 suggests that unknown factors are not a significant driver
of temperature. There is also the point that attributing the large decline in the
out-of-sample predictive accuracy when the estimated CO2 effects are ignored
to an unknown variable is highly likely to represent obscurantism as opposed to
a conclusion that represents the best of all competing explanations as explained
by Lipton (2004, p. 56). In short, the beliefs of the climate change deniers are
not supported by the hourly temperature data at NOAA’s Barrow Observatory
in Alaska. Considering the inadequate results of COP26, this suggests that the
current outlook of the Earth’s future is quite grim. Research that further illumi-
nates the shortcomings of the views by climate deniers might help matters. One
approach being considered is an analysis of the drivers of the hourly surface
energy imbalance, a metric that is easily understood as being important but
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that climate deniers almost never mention.
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