References
Abbühl, L. M., Norton, K. P., Schlunegger, F., Kracht, O., Aldahan, A., & Possnert, G. (2010). El Niño forcing on 10Be-based surface denudation rates in the northwestern Peruvian Andes? Geomorphology ,123 (3–4), 257–268. https://doi.org/10.1016/j.geomorph.2010.07.017
Adams, B. A., Whipple, K. X., Forte, A. M., Heimsath, A. M., & Hodges, K. V. (2020). Climate controls on erosion in tectonically active landscapes. Science Advances , 6 (42), eaaz3166. https://doi.org/10.1126/sciadv.aaz3166
Anders, A. M., Roe, G. H., Hallet, B., Montgomery, D. R., Finnegan, N. J., & Putkonen, J. (2006). Spatial patterns of precipitation and topography in the Himalaya. Special Paper of the Geological Society of America , 398 (03), 39–53. https://doi.org/10.1130/2006.2398(03)
Barros, A. P., & Lettenmaier, D. P. (1994). Dynamic modeling of orographically induced precipitation. Reviews of Geophysics ,32 (3), 265–284. https://doi.org/10.1029/94RG00625
Barstad, I., & Smith, R. B. (2005). Evaluation of an orographic precipitation model. Journal of Hydrometeorology , 6 (1), 85–99. https://doi.org/10.1175/JHM-404.1
Bierman, P., & Steig, E. J. (1996). Estimating Rates of Denudation Using Cosmogenic Isotope Abundances in Sediment. Earth Surface Processes and Landforms , 21 (2), 125–139. https://doi.org/10.1002/(sici)1096-9837(199602)21:2<125::aid-esp511>3.0.co;2-8
Binnie, S. A., Phillips, W. M., Summerfield, M. A., Fifield, L. K., & Spotila, J. A. (2008). Patterns of denudation through time in the San Bernardino Mountains, California: Implications for early-stage orogenesis. Earth and Planetary Science Letters ,276 (1–2), 62–72. https://doi.org/10.1016/j.epsl.2008.09.008
Bonnet, S., & Crave, A. (2003). Landscape response to climate change: Insights from experimental modeling and implications for tectonic versus climatic uplift of topography. Geology , 31 (2), 123–126. https://doi.org/10.1130/0091-7613(2003)031<0123:LRTCCI>2.0.CO;2
Bookhagen, B., & Burbank, D. W. (2010). Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research: Earth Surface , 115 (3), 1–25. https://doi.org/10.1029/2009JF001426
Bookhagen, B., & Strecker, M. R. (2008). Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophysical Research Letters , 35 (6), 1–6. https://doi.org/10.1029/2007GL032011
Bookhagen, B., & Strecker, M. R. (2012). Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern Central Andes. Earth and Planetary Science Letters ,327328 , 97–110. https://doi.org/10.1016/j.epsl.2012.02.005
Brocard, G. Y., & van der Beek, P. A. (2006). Influence of incision rate, rock strength, and bedload supply on bedrock river gradients and valley-flat widths: Field-based evidence and calibrations from western Alpine rivers (southeast France). In Tectonics, Climate, and Landscape Evolution (Vol. 398, pp. 101–126). Geological Society of America. https://doi.org/10.1130/2006.2398(07)
Brown, E. T., Stallard, R. F., Larsen, M. C., Raisbeck, G. M., & Yiou, F. (1995). Denudation rates determined from the accumulation of in situ-produced 10Be in the luquillo experimental forest, Puerto Rico.Earth and Planetary Science Letters , 129 (1–4), 193–202. https://doi.org/10.1016/0012-821X(94)00249-X
Burbank, D. W., Blythe, A. E., Putkonen, J., Pratt-Sitaula, B., Gabet, E., Oskin, M., et al. (2003). Decoupling of erosion and precipitation in the Himalayas. Nature , 426 (6967), 652–655. https://doi.org/10.1038/nature02187
Carretier, S., Regard, V., Vassallo, R., Aguilar, G., Martinod, J., Riquelme, R., et al. (2013). Slope and climate variability control of erosion in the Andes of central Chile. Geology , 41 (2), 195–198. https://doi.org/10.1130/G33735.1
Clark, M. K., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., & Tang, W. (2006). Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau. Journal of Geophysical Research: Earth Surface , 111 (3), 1–23. https://doi.org/10.1029/2005JF000294
Cyr, A. J., Granger, D. E., Olivetti, V., & Molin, P. (2014). Distinguishing between tectonic and lithologic controls on bedrock channel longitudinal profiles using cosmogenic 10Be erosion rates and channel steepness index. Geomorphology , 209 , 27–38. https://doi.org/10.1016/j.geomorph.2013.12.010
D’Arcy, M., & Whittaker, A. C. (2014). Geomorphic constraints on landscape sensitivity to climate in tectonically active areas.Geomorphology , 204 , 366–381. https://doi.org/10.1016/j.geomorph.2013.08.019
Darling, A., Whipple, K., Bierman, P., Clarke, B., & Heimsath, A. (2020). Resistant rock layers amplify cosmogenically-determined erosion rates. Earth Surface Processes and Landforms , 45 (2), 312–330. https://doi.org/10.1002/esp.4730
DiBiase, R. A., Whipple, K. X., Heimsath, A. M., & Ouimet, W. B. (2010). Landscape form and millennial erosion rates in the San Gabriel Mountains, CA. Earth and Planetary Science Letters ,289 (1–2), 134–144. https://doi.org/10.1016/j.epsl.2009.10.036
Duvall, A. (2004). Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California. Journal of Geophysical Research , 109 (F3), 1–18. https://doi.org/10.1029/2003jf000086
Ferrier, K. L., Huppert, K. L., & Perron, J. T. (2013). Climatic control of bedrock river incision. Nature , 496 (7444), 206–209. https://doi.org/10.1038/nature11982
Finlayson, D. P., Montgomery, D. R., & Hallet, B. (2002). Spatial coincidence of rapid inferred erosion with young metamorphic massifs in the Himalayas. Geology , 30 (3), 219–222. https://doi.org/10.1130/0091-7613(2002)030<0219:SCORIE>2.0.CO;2
Forte, A. M., Yanites, B. J., & Whipple, K. X. (2016). Complexities of landscape evolution during incision through layered stratigraphy with contrasts in rock strength. Earth Surface Processes and Landforms , 41 (12), 1736–1757. https://doi.org/10.1002/esp.3947
Fox, M., Goren, L., May, D. A., & Willett, S. D. (2014). Inversion of fluvial channels for paleorock uplift rates in Taiwan. Journal of Geophysical Research: Earth Surface , 119 (9), 1853–1875. https://doi.org/10.1002/2014jf003196
Gallen, S. F., Wegmann, K. W., & Bohnenstiehl, D. W. R. (2013). Miocene rejuvenation of topographic relief in the southern Appalachians.GSA Today , 23 (2), 4–10. https://doi.org/10.1130/GSATG163A.1
Gasparini, N. M., & Whipple, K. X. (2014). Diagnosing climatic and tectonic controls on topography: Eastern flank of the northern Bolivian Andes. Lithosphere , 6 (4), 230–250. https://doi.org/10.1130/L322.1
Gasparini, N. M., Bras, R. L., & Whipple, K. X. (2006). Numerical modeling of non–steady-state river profile evolution using a sediment-flux-dependent incision model. In S. D. Willett, N. Hovius, M. T. Brandon, & D. M. Fisher (Eds.), Tectonics, Climate, and Landscape Evolution (Vol. 398, p. 0). Geological Society of America. https://doi.org/10.1130/2006.2398(08)
Gasparini, N. M., Whipple, K. X., & Bras, R. L. (2007). Predictions of steady state and transient landscape morphology using sediment-flux-dependent river incision models. Journal of Geophysical Research: Earth Surface , 112 (3), 1–20. https://doi.org/10.1029/2006JF000567
Godard, V., Bourlès, D. L., Spinabella, F., Burbank, D. W., Bookhagen, B., Fisher, G. B., et al. (2014). Dominance of tectonics over climate in himalayan denudation. Geology , 42 (3), 243–246. https://doi.org/10.1130/G35342.1
Goren, L., Fox, M., & Willett, S. D. (2014). Tectonics from fluvial topography using formal linear inversion: Theory and applications to the Inyo Mountains, California. Journal of Geophysical Research F: Earth Surface , 119 (8), 1651–1681. https://doi.org/10.1002/2014JF003079
Granger, D. E., Kirchner, J. W., & Finkel, R. (1996). Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment. Journal of Geology ,104 (3), 249–257. https://doi.org/10.1086/629823
Hack, J. T. (1957). Studies of Longitudinal Stream Profiles in Virginia and Maryland . Retrieved from https://pubs.usgs.gov/pp/0294b/report.pdf
Han, J., Gasparini, N. M., Johnson, J. P. L., & Murphy, B. P. (2014). Modeling the influence of rainfall gradients on discharge, bedrock erodibility, and river profile evolution, with application to the Big Island, Hawai’i. Journal of Geophysical Research: Earth Surface ,119 (6), 1418–1440. https://doi.org/10.1002/2013JF002961
Han, J., Gasparini, N. M., & Johnson, J. P. L. (2015). Measuring the imprint of orographic rainfall gradients on the morphology of steady-state numerical fluvial landscapes. Earth Surface Processes and Landforms , 40 (10), 1334–1350. https://doi.org/10.1002/esp.3723
Harel, M. A., Mudd, S. M., & Attal, M. (2016). Global analysis of the stream power law parameters based on worldwide 10Be denudation rates.Geomorphology , 268 , 184–196. https://doi.org/10.1016/j.geomorph.2016.05.035
Henck, A. C., Huntington, K. W., Stone, J. O., Montgomery, D. R., & Hallet, B. (2011). Spatial controls on erosion in the Three Rivers Region, southeastern Tibet and southwestern China. Earth and Planetary Science Letters , 303 (1–2), 71–83. https://doi.org/10.1016/j.epsl.2010.12.038
Howard, A. D. (1994). A detachment‐limited model of drainage basin evolution. Water Resources Research , 30 (7), 2261–2285. https://doi.org/10.1029/94WR00757
Howard, A. D., & Kerby, G. (1983). Channel changes in badlands.Geological Society of America Bulletin , 94 , 739–752.
Insel, N., Ehlers, T. A., Schaller, M., Barnes, J. B., Tawackoli, S., & Poulsen, C. J. (2010). Spatial and temporal variability in denudation across the Bolivian Andes from multiple geochronometers.Geomorphology , 122 (1–2), 65–77. https://doi.org/10.1016/j.geomorph.2010.05.014
Kirby, E., & Whipple, K. X. (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology , 44 , 54–75. https://doi.org/10.1016/j.jsg.2012.07.009
Kober, F., Zeilinger, G., Hippe, K., Marc, O., Lendzioch, T., Grischott, R., et al. (2015). Tectonic and lithological controls on denudation rates in the central Bolivian Andes. Tectonophysics , 657 , 230–244. https://doi.org/10.1016/j.tecto.2015.06.037
Lague, D. (2014). The stream power river incision model: Evidence, theory and beyond. Earth Surface Processes and Landforms ,39 (1), 38–61. https://doi.org/10.1002/esp.3462
Miller, S. R., Sak, P. B., Kirby, E., & Bierman, P. R. (2013). Neogene rejuvenation of central Appalachian topography: Evidence for differential rock uplift from stream profiles and erosion rates.Earth and Planetary Science Letters , 369370 (May), 1–12. https://doi.org/10.1016/j.epsl.2013.04.007
Molnar, P. (2001). Climate change, flooding in arid environments, and erosion rates. Geology , 29 (12), 1071–1074. https://doi.org/10.1130/0091-7613(2001)029<1071:CCFIAE>2.0.CO
Morell, K. D., Sandiford, M., Rajendran, C. P., Rajendran, K., Alimanovic, A., Fink, D., & Sanwal, J. (2015). Geomorphology reveals active décollement geometry in the central Himalayan seismic gap.Lithosphere , 7 (3), 247–256. https://doi.org/10.1130/L407.1
Murphy, B. P., Johnson, J. P. L., Gasparini, N. M., & Sklar, L. S. (2016). Chemical weathering as a mechanism for the climatic control of bedrock river incision. Nature , 532 (7598), 223–227. https://doi.org/10.1038/nature17449
Mutz, S. G., Ehlers, T. A., Werner, M., Lohmann, G., Stepanek, C., & Li, J. (2018). Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens. Earth Surface Dynamics , 6 (2), 271–301. https://doi.org/10.5194/esurf-6-271-2018
Neely, A. B., & DiBiase, R. A. (2020). Drainage area, bedrock fracture spacing, and weathering controls on landscape-scale patterns in surface sediment grain size. Earth and Space Science Open Archive , 1–22. https://doi.org/10.1002/essoar.10502617.1
Olen, S. M., Bookhagen, B., & Strecker, M. R. (2016). Role of climate and vegetation density in modulating denudation rates in the Himalaya.Earth and Planetary Science Letters , 445 , 57–67. https://doi.org/10.1016/j.epsl.2016.03.047
Ouimet, W. B., Whipple, K. X., & Granger, D. E. (2009). Beyond threshold hillslopes: Channel adjustment to base-level fall in tectonically active mountain ranges. Geology , 37 (7), 579–582. https://doi.org/10.1130/G30013A.1
Perron, J. T. (2017). Climate and the Pace of Erosional Landscape Evolution. Annual Review of Earth and Planetary Sciences ,45 (1), 561–591. https://doi.org/10.1146/annurev-earth-060614-105405
Portenga, E. W., Bierman, P. R., Duncan, C., Corbett, L. B., Kehrwald, N. M., & Rood, D. H. (2015). Erosion rates of the Bhutanese Himalaya determined using in situ-produced 10Be. Geomorphology ,233 , 112–126. https://doi.org/10.1016/j.geomorph.2014.09.027
Poulsen, C. J., Ehlers, T. A., & Insel, N. (2010). Onset of convective rainfall during gradual late miocene rise of the central andes.Science , 328 (5977), 490–493. https://doi.org/10.1126/science.1185078
Reinhardt, L. J., Bishop, P., Hoey, T. B., Dempster, T. J., & Sanderson, D. C. W. (2007). Quantification of the transient response to base-level fall in a small mountain catchment: Sierra Nevada, southern Spain. Journal of Geophysical Research: Earth Surface ,112 (3). https://doi.org/10.1029/2006JF000524
Riebe, C. S., Sklar, L. S., Lukens, C. E., & Shuster, D. L. (2015). Climate and topography control the size and flux of sediment produced on steep mountain slopes. Proceedings of the National Academy of Sciences of the United States of America , 112 (51), 15574–15579. https://doi.org/10.1073/pnas.1503567112
Rigon, R., Rodriguez-Iturbe, I., Maritan, A., Giacometti, A., Tarboton, D. G., & Rinaldo, A. (1996). On Hack’s Law. Water Resources Research , 32 (11), 3367–3374. https://doi.org/10.1029/96WR02397
Riihimaki, C. A., Anderson, R. S., & Safran, E. B. (2007). Impact of rock uplift on rates of late Cenozoic Rocky Mountain river incision.Journal of Geophysical Research: Earth Surface , 112 (3), 1–15. https://doi.org/10.1029/2006JF000557
Rinaldo, A., Dietrich, W. E., Rigon, R., Vogel, G. K., & Rodrlguezlturbe, I. (1995). Geomorphological signatures of varying climate. Nature , 374 (6523), 632–635. https://doi.org/10.1038/374632a0
Roe, G. H. (2005). Orographic Precipitation. Annual Review of Earth and Planetary Sciences , 33 (1), 645–671. https://doi.org/10.1146/annurev.earth.33.092203.122541
Roe, G. H., & Baker, M. B. (2006). Microphysical and geometrical controls on the pattern of orographic precipitation. Journal of the Atmospheric Sciences , 63 (3), 861–880. https://doi.org/10.1175/JAS3619.1
Roe, G. H., Montgomery, D. R., & Hallet, B. (2002). Effects of orographic precipitation variations on the concavity of steady-state river profiles. Geology , 30 (2), 143–146. https://doi.org/10.1130/0091-7613(2002)030<0143:EOOPVO>2.0.CO;2
Roe, G. H., Montgomery, D. R., & Hallet, B. (2003). Orographic precipitation and the relief of mountain ranges. Journal of Geophysical Research: Solid Earth , 108 (B6). https://doi.org/10.1029/2001jb001521
Roe, G. H., Whipple, K. X., & Fletcher, J. K. (2008). Feedbacks among climate, erosion, and tectonics in a critical wedge orogen.American Journal of Science , 308 (7), 815–842. https://doi.org/10.2475/07.2008.01
Royden, L., & Perron, J. T. (2013). Solutions of the stream power equation and application to the evolution of river longitudinal profiles. Journal of Geophysical Research: Earth Surface ,118 (2), 497–518. https://doi.org/10.1002/jgrf.20031
Safran, E. B., Bierman, P. R., Aalto, R., Dunne, T., Whipple, K. X., & Caffee, M. (2005). Erosion rates driven by channel network incision in the Bolivian Andes. Earth Surface Processes and Landforms ,30 (8), 1007–1024. https://doi.org/10.1002/esp.1259
Scherler, D., Bookhagen, B., & Strecker, M. R. (2014). Tectonic control on 10Be-derived erosion rates in the Garhwal Himalaya, India.Journal of Geophysical Research: Earth Surface , 119 (2), 83–105. https://doi.org/10.1002/2013JF002955
Scherler, D., DiBiase, R. A., Fisher, G. B., & Avouac, J. P. (2017). Testing monsoonal controls on bedrock river incision in the Himalaya and Eastern Tibet with a stochastic-threshold stream power model.Journal of Geophysical Research: Earth Surface , 122 (7), 1389–1429. https://doi.org/10.1002/2016JF004011
Schoenbohm, L. M., Whipple, K. X., Burchfiel, B. C., & Chen, L. (2004). Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China. Bulletin of the Geological Society of America , 116 (7–8), 895–909. https://doi.org/10.1130/B25364.1
Siler, N., & Roe, G. (2014). How will orographic precipitation respond to surface warming? An idealized thermodynamic perspective.Geophysical Research Letters , 41 (7), 2606–2613. https://doi.org/10.1002/2013GL059095
Sklar, L. S., Riebe, C. S., Marshall, J. A., Genetti, J., Leclere, S., Lukens, C. L., & Merces, V. (2017). The problem of predicting the size distribution of sediment supplied by hillslopes to rivers.Geomorphology , 277 , 31–49. https://doi.org/10.1016/j.geomorph.2016.05.005
Tucker, G E, & Whipple, K. X. (2002). Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison.Journal of Geophysical Research: Solid Earth , 107 (B9), ETG 1-1-ETG 1-16. https://doi.org/10.1029/2001jb000162
Tucker, Gregory E., & Slingerland, R. (1997). Drainage basin responses to climate change. Water Resources Research , 33 (8), 2031–2047. https://doi.org/10.1029/97WR00409
Vanacker, V., von Blanckenburg, F., Govers, G., Molina, A., Campforts, B., & Kubik, P. W. (2015). Transient river response, captured by channel steepness and its concavity. Geomorphology , 228 , 234–243. https://doi.org/10.1016/j.geomorph.2014.09.013
Ward, D. J., & Galewsky, J. (2014). Exploring landscape sensitivity to the Pacific Trade Wind Inversion on the subsiding island of Hawaii.Journal of Geophysical Research: Earth Surface , 119 (9), 2048–2069. https://doi.org/10.1002/2014JF003155
Whipple, K. X. (2001). Fluvial landscape response time: How plausible is steady-state denudation? American Journal of Science ,301 (4–5), 313–325. https://doi.org/10.2475/ajs.301.4-5.313
Whipple, K. X., & Meade, B. J. (2006). Orogen response to changes in climatic and tectonic forcing. Earth and Planetary Science Letters , 243 (1–2), 218–228. https://doi.org/10.1016/j.epsl.2005.12.022
Whipple, K. X., & Tucker, G. E. (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth , 104 (B8), 17661–17674. https://doi.org/10.1029/1999jb900120
Whipple, K. X., & Tucker, G. E. (2002). Implications of sediment-flux-dependent river incision models for landscape evolution.Journal of Geophysical Research , 107 (B2), 2039. https://doi.org/10.1029/2000jb000044
Whittaker, A. C. (2012). How do landscapes record tectonics and climate?Lithosphere , 4 (2), 160–164. https://doi.org/10.1130/RF.L003.1
Whittaker, A. C., Cowie, P. A., Attal, M., Tucker, G. E., & Roberts, G. P. (2007). Bedrock channel adjustment to tectonic forcing: Implications for predicting river incision rates. Geology , 35 (2), 103–106. https://doi.org/10.1130/G23106A.1
Willenbring, J. K., Gasparini, N. M., Crosby, B. T., & Brocard, G. (2013). What does a mean mean? The temporal evolution of detrital cosmogenic denudation rates in a transient landscape. Geology ,41 (12), 1215–1218. https://doi.org/10.1130/G34746.1
Wittmann, H., Malusà, M. G., Resentini, A., Garzanti, E., & Niedermann, S. (2016). The cosmogenic record of mountain erosion transmitted across a foreland basin: Source-to-sink analysis of in situ 10Be, 26Al and 21Ne in sediment of the Po river catchment. Earth and Planetary Science Letters , 452 , 258–271. https://doi.org/10.1016/j.epsl.2016.07.017
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., et al. (2006). Tectonics from topography: Procedures, promise, and pitfalls. Special Paper of the Geological Society of America , 398 (04), 55–74. https://doi.org/10.1130/2006.2398(04)
Yang, R., Willett, S. D., & Goren, L. (2015). In situ low-relief landscape formation as a result of river network disruption.Nature , 520 (7548), 526–529. https://doi.org/10.1038/nature14354
Zachos, J., Pagani, H., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present.Science , 292 (5517), 686–693. https://doi.org/10.1126/science.1059412