References
Aharonov, E., & Scholz, C. H. (2018). A physics‐based rock friction constitutive law: Steady state friction. Journal of Geophysical Research: Solid Earth , 123 (2), 1591-1614. https://doi.org/10.1002/2016JB013829
Beeler, N. M., Tullis, T. E., & Weeks, J. D. (1994). The roles of time and displacement in the evolution effect in rock friction. Geophysical research letters , 21 (18), 1987-1990. https://doi.org/10.1029/94GL01599
Berthoud, P., Baumberger, T., G’sell, C., & Hiver, J. M. (1999). Physical analysis of the state-and rate-dependent friction law: Static friction. Physical Review B ,59 (22), 14,313–14,327. https://doi.org/10.1103/PhysRevB.59.14313
Blanpied, M. L., Lockner, D. A., & Byerlee, J. D. (1995). Frictional slip of granite at hydrothermal conditions. Journal of Geophysical Research , 100 (B7), 13,045–13,064. https://doi.org/10.1029/95JB00862
Blanpied, M. L., Tullis, T. E., & Weeks, J. D. (1998). Effects of slip, slip rate, and shear heating on the friction of granite. Journal of Geophysical Research: Solid Earth , 103 (B1), 489-511. https://doi.org/10.1029/97JB02480
Bowden, F. P., & Tabor, D. (1964).The friction and lubrication of solids (Vol. 2, No. 2). Oxford: Clarendon press.
Carlson, J. M., & Batista, A. A. (1996). Constitutive relation for the friction between lubricated surfaces. Physical Review E , 53 (4), 4153– 4165. https://doi.org/10.1103/PhysRevE.53.4153
Di Toro, G., Goldsby, D. L., & Tullis, T. E. (2004). Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature , 427 (6973), 436–439. https://doi.org/10.1038/nature02249
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., … Shimamoto, T. (2011). Fault lubrication during earthquakes. Nature , 471 (7339), 494–498. https://doi.org/10.1038/nature09838
Dieterich, J. H. (1972). Time-dependent friction in rocks. Journal of Geophysical Research , 77 (20), 3690–3697. https://doi.org/10.1029/JB077i020p03690
Dieterich, J. H. (1978). Time-dependent friction and the mechanics of stick-slip. Pure and Applied Geophysics , 116 (4-5), 790–806. https://doi.org/10.1007/BF00876539
Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations.Journal of Geophysical Research , 84 (B5), 2161–2168. https://doi.org/10.1029/JB084iB05p02161
Gräff, D., Walter, F. (2021). Changing friction at the base of an Alpine glacier. Scientific Reports 11 , 10872. https://doi.org/10.1038/s41598-021-90176-9
Heslot, F., Baumberger, T., Perrin, B., Caroli, B., & Caroli, C. (1994). Creep, stick-slip, and dry friction dynamics: Experiments and a heuristic model. Physical Review E ,49 (6), 4973–4988. https://doi.org/10.1103/PhysRevE.49.4973
Hu, W., Huang, R., McSaveney, M., Zhang, X. H., Yao, L., & Shimamoto, T. (2018). Mineral changes quantify frictional heating during a large low-friction landslide.Geology , 46 (3), 223-226. https://doi.org/10.1130/G39662.1
Hu, W., Xu, Q., McSaveney, M., Huang, R., Wang, Y., Chang, C. S., … & Zheng, Y. (2022). The intrinsic mobility of very dense grain flows. Earth and Planetary Science Letters , 580 , 117389. https://doi.org/10.1016/j.epsl.2022.117389
Iverson, N. R., Hooyer, T. S., & Baker, R. W. (1998). Ring-shear studies of till deformation: Coulomb-plastic behavior and distributed strain in glacier beds.Journal of Glaciology , 44 (148), 634-642. https://doi.org/10.3189/s0022143000002136
Kilgore, B. D., Blanpied, M. L., & Dieterich, J. H. (1993). Velocity dependent friction of granite over a wide range of conditions. Geophysical Research Letters ,20 (10), 903–906. https://doi.org/10.1029/93GL00368
Kubo, T., & Katayama, I. (2015). Effect of temperature on the frictional behavior of smectite and illite.Journal of Mineralogical and Petrological Sciences ,110 (6), 293-299. https://doi.org/10.2465/jmps.150421
Li, Y., (2021). Study on Unsaturated Soil Model Based on Soil Water Characteristic Curve. North China University of Water Resources and Electric Power.
Marone, C. (1998). Laboratory-derived Friction Laws and Their Application to Seismic Faulting. Annual Review of Earth and Planetary Sciences , 26 (1), 643–696. https://doi.org/10.1146/annurev.earth.26.1.643
Miao, H., & Wang, G. (2021). Effects of clay content on the shear behaviors of sliding zone soil originating from muddy interlayers in the Three Gorges Reservoir, China.Engineering Geology , 294 , 106380. https://doi.org/10.1016/j.enggeo.2021.106380
Morrow, C. A., Moore, D. E., & Lockner, D. A. (2000). The effect of mineral bond strength and adsorbed water on fault gouge frictional strength. Geophysical Research Letters ,27 (6), 815-818. https://doi.org/10.1029/1999gl008401
Pei, X., Zhang, X., Guo, B., Wang, G., & Zhang, F. (2017). Experimental case study of seismically induced loess liquefaction and landslide. Engineering Geology , 223 , 23-30. https://doi.org/10.1016/j.enggeo.2017.03.016
Prakash, V. (1998). Frictional response of sliding interfaces subjected to time varying normal pressures.Journal of Tribology , 120 (1), 97– 102. https://doi.org/10.1115/1.2834197
Pranger, C., Sanan, P., May, D. A., Le Pourhiet, L., & Gabriel, A.-A. (2022). Rate and state friction as a spatially regularized transient viscous flow law. Journal of Geophysical Research: Solid Earth , 127 (6), e2021JB023511. https://doi.org/10.1029/2021JB023511
Renner, J., & Steeb, H. (2015). Modeling of fluid transport in geothermal research. Handbook of Geomathematics , 1443-1500. http://doi.org/10.1007/978-3-642-27793-1_81-2
Ronsin, O., & Coeyrehourcq, K. L. (2001). State, rate and temperature–dependent sliding friction of elastomers. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences , 457 (2010), 1277-1294. https://doi.org/10.1098/rspa.2000.0718
Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research: Solid Earth , 88 (B12), 10359-10370. https://doi.org/10.1029/JB088iB12p10359
Scholz, C. H. (1998). Earthquakes and friction laws. Nature , 391 (6662), 37-42. https://doi.org/10.1038/34097
Scholz, C. H. (2019). The mechanics of earthquakes and faulting . Cambridge university press.
Scholz, C. H., & Engelder, T. (1976). Role of asperity indentation and ploughing in rock friction.International Journal of Rock Mechanics and Mining Sciences ,13 (5), 149–154. https://doi.org/10.1016/0148-9062(76)90819-6
Schulz, W. H., & Wang, G. (2014). Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake‐induced ground motion: Implications for coastal Oregon, US. Journal of Geophysical Research: Earth Surface , 119 (7), 1617-1635. https://doi.org/10.1002/2014jf003088
Shroff, S. S., Ansari, N., Robert Ashurst, W., & de Boer, M. P. (2014). Rate-state friction in microelectromechanical systems interfaces: experiment and theory.Journal of Applied Physics , 116 (24), 244902. https://doi.org/10.1063/1.4904060
Thøgersen, K., Gilbert, A., Schuler, T. V., & Malthe-Sørenssen, A. (2019). Rate-and-state friction explains glacier surge propagation. Nature Communications ,10 (1), 2823. https://doi.org/10.1038/s41467-019-10506-4
Tsutsumi, A., & Shimamoto, T. (1997). High-velocity frictional properties of gabbro. Geophysical Research Letters , 24 (6), 699-702. https://doi.org/10.1029/97gl00503
Wang, G., Suemine, A., & Schulz, W. H. (2010). Shear‐rate‐dependent strength control on the dynamics of rainfall‐triggered landslides, Tokushima Prefecture, Japan. Earth Surface Processes and Landforms, 35(4), 407-416. https://doi.org/10.1002/esp.1937
Wang, G., Suemine, A., Zhang, F., Hata, Y., Fukuoka, H., & Kamai, T. (2014). Some fluidized landslides triggered by the 2011 Tohoku earthquake (Mw 9.0), Japan. Geomorphology, 208, 11- 21. https://doi.org/10.1016/j.geomorph.2013.11.009
Wang, Y. F., Dong, J. J., & Cheng, Q. G. (2018). Normal stress‐dependent frictional weakening of large rock avalanche basal facies: Implications for the rock avalanche volume effect. Journal of Geophysical Research: Solid Earth, 123(4), 3270-3282. https://doi.org/10.1002/2018jb015602
Wibberley, C. A. J. (2002). Hydraulic diffusivity of fault gouge zones and implications for thermal pressurization during seismic slip. Earth, Planets and Space, 54(11), 1153-1171. https://doi.org/10.1186/BF03353317