References
Aharonov,
E., & Scholz, C. H. (2018). A physics‐based rock friction constitutive
law: Steady state friction. Journal of Geophysical Research: Solid
Earth , 123 (2), 1591-1614.
https://doi.org/10.1002/2016JB013829
Beeler, N. M., Tullis, T. E., & Weeks,
J. D. (1994). The roles of time and displacement in the evolution effect
in rock friction. Geophysical research letters , 21 (18),
1987-1990. https://doi.org/10.1029/94GL01599
Berthoud, P., Baumberger, T., G’sell,
C., & Hiver, J. M. (1999). Physical analysis of the state-and
rate-dependent friction law: Static friction. Physical Review B ,59 (22), 14,313–14,327.
https://doi.org/10.1103/PhysRevB.59.14313
Blanpied, M. L., Lockner, D. A.,
& Byerlee, J. D. (1995). Frictional slip of granite at hydrothermal
conditions. Journal of Geophysical Research , 100 (B7),
13,045–13,064. https://doi.org/10.1029/95JB00862
Blanpied, M. L., Tullis, T. E., &
Weeks, J. D. (1998). Effects of slip, slip rate, and shear heating on
the friction of granite. Journal of Geophysical Research: Solid
Earth , 103 (B1), 489-511. https://doi.org/10.1029/97JB02480
Bowden, F. P., & Tabor, D. (1964).The friction and lubrication of solids (Vol. 2, No. 2). Oxford:
Clarendon press.
Carlson, J. M., & Batista, A. A.
(1996). Constitutive relation for the friction between lubricated
surfaces. Physical Review E , 53 (4), 4153– 4165.
https://doi.org/10.1103/PhysRevE.53.4153
Di Toro, G., Goldsby, D. L., &
Tullis, T. E. (2004). Friction falls towards zero in quartz rock as slip
velocity approaches seismic rates. Nature , 427 (6973),
436–439. https://doi.org/10.1038/nature02249
Di Toro, G., Han, R., Hirose, T., De
Paola, N., Nielsen, S., Mizoguchi, K., … Shimamoto, T. (2011).
Fault lubrication during earthquakes. Nature , 471 (7339),
494–498. https://doi.org/10.1038/nature09838
Dieterich, J. H. (1972).
Time-dependent friction in rocks. Journal of Geophysical
Research , 77 (20), 3690–3697.
https://doi.org/10.1029/JB077i020p03690
Dieterich, J. H. (1978).
Time-dependent friction and the mechanics of stick-slip. Pure and
Applied Geophysics , 116 (4-5), 790–806.
https://doi.org/10.1007/BF00876539
Dieterich, J. H. (1979). Modeling
of rock friction: 1. Experimental results and constitutive equations.Journal of Geophysical Research , 84 (B5), 2161–2168.
https://doi.org/10.1029/JB084iB05p02161
Gräff, D., Walter, F. (2021). Changing
friction at the base of an Alpine glacier. Scientific Reports 11 ,
10872. https://doi.org/10.1038/s41598-021-90176-9
Heslot, F., Baumberger, T., Perrin, B.,
Caroli, B., & Caroli, C. (1994). Creep, stick-slip, and dry friction
dynamics: Experiments and a heuristic model. Physical Review E ,49 (6), 4973–4988. https://doi.org/10.1103/PhysRevE.49.4973
Hu, W., Huang, R., McSaveney, M., Zhang,
X. H., Yao, L., & Shimamoto, T. (2018). Mineral changes quantify
frictional heating during a large low-friction landslide.Geology , 46 (3), 223-226.
https://doi.org/10.1130/G39662.1
Hu, W., Xu, Q., McSaveney, M., Huang,
R., Wang, Y., Chang, C. S., … & Zheng, Y. (2022). The intrinsic
mobility of very dense grain flows. Earth and Planetary Science
Letters , 580 , 117389.
https://doi.org/10.1016/j.epsl.2022.117389
Iverson, N. R., Hooyer, T. S., &
Baker, R. W. (1998). Ring-shear studies of till deformation:
Coulomb-plastic behavior and distributed strain in glacier beds.Journal of Glaciology , 44 (148), 634-642.
https://doi.org/10.3189/s0022143000002136
Kilgore, B. D., Blanpied, M. L., &
Dieterich, J. H. (1993). Velocity dependent friction of granite over a
wide range of conditions. Geophysical Research Letters ,20 (10), 903–906. https://doi.org/10.1029/93GL00368
Kubo, T., & Katayama, I. (2015). Effect
of temperature on the frictional behavior of smectite and illite.Journal of Mineralogical and Petrological Sciences ,110 (6), 293-299. https://doi.org/10.2465/jmps.150421
Li, Y., (2021). Study on Unsaturated Soil
Model Based on Soil Water Characteristic Curve. North China University
of Water Resources and Electric Power.
Marone, C. (1998). Laboratory-derived
Friction Laws and Their Application to Seismic Faulting. Annual
Review of Earth and Planetary Sciences , 26 (1), 643–696.
https://doi.org/10.1146/annurev.earth.26.1.643
Miao, H., & Wang, G. (2021). Effects of
clay content on the shear behaviors of sliding zone soil originating
from muddy interlayers in the Three Gorges Reservoir, China.Engineering Geology , 294 , 106380.
https://doi.org/10.1016/j.enggeo.2021.106380
Morrow, C. A., Moore, D. E., & Lockner,
D. A. (2000). The effect of mineral bond strength and adsorbed water on
fault gouge frictional strength. Geophysical Research Letters ,27 (6), 815-818. https://doi.org/10.1029/1999gl008401
Pei, X., Zhang, X., Guo, B., Wang, G., &
Zhang, F. (2017). Experimental case study of seismically induced loess
liquefaction and landslide. Engineering Geology , 223 ,
23-30. https://doi.org/10.1016/j.enggeo.2017.03.016
Prakash, V. (1998). Frictional response
of sliding interfaces subjected to time varying normal pressures.Journal of Tribology , 120 (1), 97– 102.
https://doi.org/10.1115/1.2834197
Pranger, C., Sanan, P., May, D. A., Le
Pourhiet, L., & Gabriel, A.-A. (2022). Rate and state friction as a
spatially regularized transient viscous flow law. Journal of
Geophysical Research: Solid Earth , 127 (6), e2021JB023511.
https://doi.org/10.1029/2021JB023511
Renner, J., & Steeb, H. (2015).
Modeling of fluid transport in geothermal research. Handbook of
Geomathematics , 1443-1500.
http://doi.org/10.1007/978-3-642-27793-1_81-2
Ronsin, O., & Coeyrehourcq, K. L.
(2001). State, rate and temperature–dependent sliding friction of
elastomers. Proceedings of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences , 457 (2010),
1277-1294. https://doi.org/10.1098/rspa.2000.0718
Ruina, A. (1983). Slip instability and
state variable friction laws. Journal of Geophysical Research:
Solid Earth , 88 (B12), 10359-10370.
https://doi.org/10.1029/JB088iB12p10359
Scholz, C. H. (1998). Earthquakes
and friction laws. Nature , 391 (6662), 37-42.
https://doi.org/10.1038/34097
Scholz, C. H. (2019). The
mechanics of earthquakes and faulting . Cambridge university press.
Scholz, C. H., & Engelder, T.
(1976). Role of asperity indentation and ploughing in rock friction.International Journal of Rock Mechanics and Mining Sciences ,13 (5), 149–154.
https://doi.org/10.1016/0148-9062(76)90819-6
Schulz, W. H., & Wang, G. (2014).
Residual shear strength variability as a primary control on movement of
landslides reactivated by earthquake‐induced ground motion: Implications
for coastal Oregon, US. Journal of Geophysical Research: Earth
Surface , 119 (7), 1617-1635.
https://doi.org/10.1002/2014jf003088
Shroff, S. S., Ansari, N., Robert
Ashurst, W., & de Boer, M. P. (2014). Rate-state friction in
microelectromechanical systems interfaces: experiment and theory.Journal of Applied Physics , 116 (24), 244902.
https://doi.org/10.1063/1.4904060
Thøgersen, K., Gilbert, A.,
Schuler, T. V., & Malthe-Sørenssen, A. (2019). Rate-and-state friction
explains glacier surge propagation. Nature Communications ,10 (1), 2823. https://doi.org/10.1038/s41467-019-10506-4
Tsutsumi, A., & Shimamoto, T. (1997).
High-velocity frictional properties of gabbro. Geophysical
Research Letters , 24 (6), 699-702.
https://doi.org/10.1029/97gl00503
Wang, G., Suemine, A., & Schulz, W.
H. (2010). Shear‐rate‐dependent strength control on the dynamics of
rainfall‐triggered landslides, Tokushima Prefecture, Japan. Earth
Surface Processes and Landforms, 35(4), 407-416.
https://doi.org/10.1002/esp.1937
Wang, G., Suemine, A., Zhang, F.,
Hata, Y., Fukuoka, H., & Kamai, T. (2014). Some fluidized landslides
triggered by the 2011 Tohoku earthquake (Mw 9.0), Japan. Geomorphology,
208, 11- 21. https://doi.org/10.1016/j.geomorph.2013.11.009
Wang, Y. F., Dong, J. J., & Cheng, Q.
G. (2018). Normal stress‐dependent frictional weakening of large rock
avalanche basal facies: Implications for the rock avalanche volume
effect. Journal of Geophysical Research: Solid Earth, 123(4), 3270-3282.
https://doi.org/10.1002/2018jb015602
Wibberley, C. A. J. (2002). Hydraulic
diffusivity of fault gouge zones and implications for thermal
pressurization during seismic slip. Earth, Planets and Space, 54(11),
1153-1171. https://doi.org/10.1186/BF03353317