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Introduction

This file contains complementary information to our main manuscript, principally de-

tails about the sensing instruments, methods, processing and some additional figures.

Text S1. Principle of Distributed Acoustic Sensing

Distributed Acoustic Sensing (DAS) systems make use of single optic fibers cased inside

(un)armored cables, for instance existing Telecommunication cables, to sense the envi-

ronment. So far, DAS systems require a dark fiber to operate. Coherent laser pulses are

regularly sent along the fiber and their Rayleigh back-scattered signature is used as a

proxy for temperature and strain perturbations affecting the optical path length (due to

local elongations and refractive index variations of the fiber) over specific sections of the

cable, which can be localized (López-Higuera, 2002; Hartog, 2017). These perturbations

are traced-back along the fiber by converting the two-way travel time of light to distances

with the known speed of light in silica. Measurements are averaged along a few meters of

cable (gauge length) at a defined distance step (spatial sampling). In contrast to DAS,

Distributed Temperature Sensing (DTS) is based on Raman-scattering, while Distributed

Temperature and Strain Sensing (DSTS) is based on Brillouin-scattering.

The DAS interrogator unit used for our main analysis is an ϕ-OTDR hDAS (High fidelity

distributed acoustic sensor) designed by Aragón Photonics, which provides measurements

in strain units. One specificity of the hDAS system is the fact that it sends a chirped

light signal. Details can be found in (Pastor-Graells et al., 2016; Fernández-Ruiz et al.,

2019). The sampling frequency was 100 Hz in the first couple days of the campaign and

then switched to 500 Hz.
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The DSTS system used to validate the simultaneous LF-DAS (indirect) measurements

was a Febus Optics G1-C set to record with a gauge length of 10 m and sampling resolution

of 2.0 m over 30 km. The temporal sampling was set to 15 min to keep the data noise level

at a reasonable level. The DAS system in this case was a Febus A1-R DAS interrogator

with gauge length of 10 m and sampling resolution of 4.8 m over 40 km of cable.

Text S2. Extracting the low-frequency component of DAS data

Because of the high sampling rates and large DAS data volumes acquired, a conven-

tional low-pass filtering approach was not possible to isolate the low-frequency content of

the raw data. Thus, a parallel-computing approach with a moving average was instead

implemented for efficiency in the reduction of the thousands of channels

We implemented a moving average windows of 5 minutes with 60% overlap indepen-

dently to each channel. This implies an output sampling frequency of ∼8.33 mHz and

a maximum resolvable frequency of ∼1.66 mHz (the latter is the inverse of twice the

averaging window and does not necessarily match the Nyquist-criterion frequency that

would be expected from the data point sampling rate). Our experience with different

windows showed this combination to be a good compromise between a smoothing that is

not excessive as to preserve the LF content, while being enough to remove spikes, high

frequency noise, and to reduce the data size by a considerable proportion

The original data acquired is automatically segmented in sections of several days due

to a laser refreshing procedure of the interrogator. Each segment has different trends,

large value offsets and most of the times gaps in between. We demean the first segment

and adjust the remaining segments with respect to the last value of the previous ones to
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ensure continuity between them and to smooth-out large data breaks. This is performed

for each channel separately. Although some of the consecutive segments show different

trends which are likely related to instrumental drift, we did not correct these to avoid

distorting and losing true signal, since an objective instrumental drift correction function

is unknown to us. The data gaps in the signal were filled using cubic interpolation between

segments. This allows for processing routines that require continuous time series (spectral

decomposition and filtering). In this exploratory stage, we do not filter out ”bad quality”

channels, given that a criteria to define their ”usefulness” (which may or may not be

related to ground-seabed coupling) is not yet completely understood. A last pre-processing

step is to remove the along channel mean amplitude temporal fluctuation from each sample

of the data (DAS temporal response or common-noise correction) using a band of channels

around a central channel to find each average. This procedure provides smoother time

series, while the effect of the laser time fluctuations and strong amplitude spikes/steps is

minimized. The data was highpass-filtered at 0.009 mHz prior to frequency-wavenumber

transformation using a 2D Direct Fourier Transform.

Text S3. Conversion of strain to temperature

As outlined in Ide, Araki, and Matsumoto (2021), at long time scales (low frequencies),

the apparent strain differences are expected to be caused by refractive index variations of

the fiber due to temperature changes in the environment, instead of being caused by LF

strain-related elongations on the fiber, since such LF strains could hardly couple energy

into the fiber and their effect is much smaller in magnitude than the temperature effect.

The formula that approximately describes this variations is:
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dϵ

dT
= nα +

dn

dT

where ϵ, T, n and α represent the observed (apparent) strain, the environment’s tem-

perature, silica’s refractive index (typically around 7 ·10−6 K−1 at room temperature) and

its thermal expansion coefficient, respectively. The authors explain that a typical value

for dn/dT is 10−5 (constant) while the nα term is expected to be much smaller, in the

order of 10−7. Under these assumptions, a ∆s = 1 nanostrain difference is approximately

equivalent to ∆T = 0.1 mK.

An absolute difference-normalization of each separate LF-DAS channel, i.e. between

zero and the maximum value of each channel, is applied before conversion to temperature

differences.

For the comparison of LF-DAS with the thermistor chain in Fig. 2, the best-matching

cable channel was found via cross-correlation maxima search. The maximum correlations

were found with the deepest, 50 m deep, temperature sensor of Cap Vieux, which is almost

touching the seafloor and better replicates the FO cable configuration. We note, however,

that the maximum normalized correlations have spread maxima at roughly 60%, i.e. the

highest correlations near zero-lag were similar over a range of a few tens of channels;

this result is expected given that both sensors are not collocated but separated by a

few kilometers. The best-matching LF-DAS channel is located ∼4 km away from the

thermistor chain.

As outlined in the main text, the FO inside the Toulon cable is relatively loose and

can creep inside the cable when deformed slowly, at very low-frequencies. When rapidly
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deformed by e.g. high-frequency seismic or acoustic waves, it responds proportionally to

the stresses without creeping. This further contributes to explain why at LF, the effect

of temperature is dominant whereas strains appears negligible.

Text S4. Inertial variability

The inertial period Tc at a given latitude θ reflects the variability time scale of important

mesoscale to large scale oceanographic processes. This period is determined by the Coriolis

effect due to the angular momentum conservation for traveling objects that are subjected

to the earth’s rotation centrifugal force and can be estimated via:

Tc = fc
−1 = (2Ω sin θ)−1

where fc is known as the Coriolis frequency and Ω is the rotation rate of the earth

(∼ 7.29 × 10−5 rad/s). This translates into an inertial period of ∼17.5h at the mean

latitude of the Toulon cable (43◦N).

Text S5. Empirical Mode Decomposition and Hilbert-Huang Transform Pa-

rameters

EMD and HHT analyses (Huang et al., 1998) were performed by using the EMD Python

package developed by Quinn, Lopes-dos Santos, Dupret, Nobre, and Woolrich (2021). Sev-

eral of the examples and built-in functions of the package were implemented in our study.

The mask sifting (mode separation) scheme (Deering & Kaiser, 2005) produced the best

results for the LF-DAS data. This approach allows us to obtain a set of well-behaved

Intrinsic Mode Functions (IMFs) that represent generalized spectral components or em-

pirical modes of the input signal. A proper sifting leads to IMFs that are purely oscillatory

functions with zero reference levels from which instantaneous amplitude and frequency
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attributes are obtained by means of a Hilbert-Huang Transform (HHT) (Huang & Wu,

2008). The masks are monochromatic signals introduced into the Intrinsic Mode Function

(IMF) under consideration to avoid mixing of modes with very different frequencies: as

the high frequency components are always captured and separated first during the sift-

ing, a mask signal with a frequency higher than a long period oscillation in the signal

contributes to separate the latter correctly from the other higher frequency components.

Most of the default mask sifting parameters of the package were the basis of our process-

ing. The amplitude of these masks were uniformly computed as ratios of the standard

deviation of the input for all IMFs; their frequency successively increasing at factors of 2.

Four masks were applied to each IMF and the sift threshold was set to 10−8. Eight IMFs

were calculated in total.

The instantaneous attributes (amplitude and frequency) of each IMF were found via

amplitude-normalized Hilbert transform (NHT) as in (Huang et al., 2009). Channels

with anomalous extrema were muted under a 3-standard deviation outlier criterium. We

applied a logarithmic binning of 1000 grid points between 0.001 and 1.0 mHz to ensure

enough spectral resolution. Amplitudes were stacked to obtain the binned HHT. The

HHT spectra were normalized as power spectral density (divided by fsampling · Nsamples).

To obtain the HHT spectra, we averaged all the instantaneous attributes of each IMF over

a selected range of channels. This results in a stacked spectrogram-like output representing

the dominant spectral power spectral density over a section of cable. The LF-DAS time

series were pre-filtered with a highpass at 0.0007 mHz (equivalent to nearly 16 days - the

total duration of the deployment) and pre-averaged every two consecutive channels to
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increase their SNR. The final images were smoothed using a Gaussian kernel convolution

filter with one standard deviation. For Figs 3b,c, each IMF is weighted by its instantaneous

amplitude, so to obtain an image analogous to a spectrogram that captures the time-

evolution of the spectral components.

Care was taken to select a timespan for analysis with no large data breaks and to reject

channels with anomalously uniform or large values or spikes (as seen from Fig. 2a,b),

as these artifacts can largely affect the EMD (Stallone et al., 2020). Furthermore, the

averaging of the instantaneous attributes of each IMFs across a sufficiently long cable

range helps to balance out such undesired effects, in case that artifacts may remain at

some channels. Supplementary Figure S1 shows an example of such decomposition for a

selected channel using the EMD Python package.
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Figure S1. Sample Intrinsic Mode Functions (IMFs) for a selected LF-DAS channel.

November 16, 2022, 4:00pm



D
ra
ft

X - 12 :

(a)

(b)

Figure S2. Collocated DSTS and LF-DAS measurements in Toulon, June 2022 -

Filtered ensemble comparison. Lowpassed DSTS (a) and LF-DAS (b)
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(c)

(d)

Figure S2. (cont.) collocated DSTS and LF-DAS measurements in Toulon, June 2022

- Filtered ensemble comparison. Highpassed DSTS (c) and LF-DAS (d).

November 16, 2022, 4:00pm


