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Abstract17

Sustainable river management often requires long-term morphological simulations. As18

the future is unknown, uncertainty needs to be accounted for, which may require prob-19

abilistic simulations covering a large parameter domain. Even for one-dimensional mod-20

els, the simulation times can be long. One of the strategies to speed up simulations is21

simplification of models by neglecting terms in the governing hydrodynamic equations.22

Examples are the quasi-steady model and the diffusive wave model, both widely used23

by scientists and practitioners. Here, we establish under which conditions these simpli-24

fied models are accurate. Based on the results of linear stability analyses of the St. Venant-25

Exner equations, we assess migration celerities and damping of infinitesimal, but long26

riverbed perturbations. We did this for the full dynamic model, i.e. no terms neglected,27

as well as for the simplified models. The accuracy of the simplified models was obtained28

from comparison between the characteristics of the riverbed perturbations for simplified29

models and the full dynamic model. We executed a spatial-mode and a temporal-mode30

linear analysis and compared the results with numerical modelling results for the full dy-31

namic and simplified models. The numerical results match best with the temporal-mode32

linear stability analysis. The analysis shows that the quasi-steady model is highly ac-33

curate for Froude numbers up to 0.7, probably even for long river reaches with large flood34

wave damping. Although the diffusive wave model accurately predicts flood wave mi-35

gration and damping, key morphological metrics deviate more than 5% (10 %) from the36

full dynamic model when Froude numbers exceed 0.2 (0.3).37

Plain Language Summary38

Human interference in rivers impact the transport of sediment in these rivers and39

cause aggradation and erosion of the riverbed. This may cause problems for navigation,40

flood safety, groundwater levels, nature, agriculture and stability of infrastructure in and41

along the river. The changes in the riverbed are called morphological changes, which de-42

velop slowly and may continue for hundreds or even thousands of years. For future plans43

in river basins, it is important to know what the impact of these plans may be on the44

riverbed development in the future. Numerical models are widely used for this. For sim-45

ulations of long river reaches and predictive horizons of decades or more, run times of46

these models can be very large. Shorter run times are possible with simplified models.47

However, it has remained unclear whether these simplified numerical models provide re-48

liable projections of the future riverbed development. This research provides a method49

to assess under which conditions of flow and sediment load in the river simplified numer-50

ical models can be applied. We prove that a widely used quasi-steady modelling approach51

yields accurate morphological predictions for a wide range of lowland rivers.52

1 Introduction53

Human interference in rivers can have large impacts on river morphology that man-54

ifests themselves often only after decades, or centuries. Global change and measures to55

mitigate them or anticipate on these changes (e.g. Haasnoot et al., 2013), have similar56

time scales. As examples of human induced morphological changes, Havinga (2020), Ylla Arbós57

et al. (2021), Habersack et al. (2016) and Harmar et al. (2005) describe incising trends58

in the rivers Rhine, Danube and Mississippi, caused by engineering measures over the59

past centuries. New (dynamic) equilibrium conditions have not yet been reached. De Vries60

(1975), Dade and Friend (1998) and Church and Ferguson (2015) show that for lowland61

rivers, it may take 103 to 105 years for the riverbed to adapt to permanent changes. This62

underlines the need for sustainable sediment management in rivers as advocated by Habersack63

et al. (2016), which requires long-term predictions of the morphological impact of global64

change and integrated river management strategies for long river reaches. Morpholog-65

ical numerical simulations for river reaches of tens of kilometers over several decades may66
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take hours to days, even for one-dimensional models. Siviglia and Crosato (2016) pro-67

vide a list with remaining challenges for numerical modelling of river morphodynamics,68

including the development of new and fast numerical morphodynamic codes and study69

of the uncertainty in the results of morphodynamic models. Such new developments will70

facilitate effective long-term morphological assessments and design of sustainable river71

management solutions for the next century.72

Barneveld et al. (2023) summarized several methods for fast morphological assess-73

ments, which include analytical methods, numerical modelling techniques and simpli-74

fied numerical models in which terms in the governing equations are neglected. They fo-75

cus on linear stability analyses as a rapid assessment tool for migration and damping of76

bed waves with spatial scales much larger than the water depth. In combination with77

numerical simulations and field data, Barneveld et al. (2023) show that especially for mod-78

erate and small Froude numbers (F ≤ 0.3) and bed waves with amplitudes smaller than79

10% of the water depth, the linear stability analyses provide a good indication of the mor-80

phodynamics of bed waves. The method was verified using field data of the Fraser River81

in Canada and the Waal River in the Netherlands.82

One-, two- and three-dimensional numerical models are potentially capable of sim-83

ulating long-term morphodynamic developments with a higher degree of resemblance to84

real-world river geometries than what can be achieved with stability analysis. This is at85

the cost of a simulation time, which increases with increasing dimension. Concerning tech-86

niques for faster numerical modelling techniques, De Vries (1965, 1973) first showed that87

for lowland rivers with small to moderate Froude numbers (F < 0.7), migration celer-88

ities of bed perturbations are negligible compared to celerities of hydrodynamic waves.89

The Saint-Venant equations for water flow and Exner equation for morphological devel-90

opment may then be solved uncoupled. This means that, rather than solving all vari-91

ables at the same time, one can first resolve the flow (either steady or unsteady) keep-92

ing the bed fixed and subsequently solve the bed level keeping the flow fixed. This en-93

ables faster simulations. Other researchers (e.g. Lyn, 1987; Morris & Williams, 1996; Lyn94

& Altinakar, 2002; Cao et al., 2002) confirmed the results of De Vries, yet added the con-95

dition of moderate sediment transport as a prerequisite for decoupling.96

In addition to the decoupled solution of the set of equations, improvement of nu-97

merical solvers, improved CPU performances, parallelization technologies and speeding98

up of convergence of hydrodynamic computations (e.g. Yossef et al., 2008) are effective99

in reducing simulation times. Alternatively, one can resort to morphological accelera-100

tion factors such as MORFAC (e.g. Lesser et al., 2004; Roelvink, 2006) or MASSPEED101

(Carraro et al., 2018). These morphological acceleration factors were first introduced for102

coastal modelling scenarios with cyclical flow, but are also applied for rivers (e.g. Ed-103

monds, 2012; Schuurman & Kleinhans, 2015; Williams et al., 2016). In models using this104

technique, the bed level changes are multiplied by a non-unity factor after each hydro-105

dynamic time step, thereby extending the morphological time step and thus speeding106

up simulations.107

High computational demands have also motivated efforts to reduce the equations108

for hydrodynamics, which are typically based on the Saint-Venant equations. The hy-109

drodynamic regime subject to study determines which type of simplifications may be al-110

lowed. Grijsen and Vreugdenhil (1976) distinguish short inertial or gravity waves, in which111

friction is neglected, diffusive waves, where inertia is neglected, and kinematic waves, where112

inertia and non-uniformity are neglected. Ponce and Simons (1977) added the steady dy-113

namic wave, in which only the time derivative in the momentum equation of flow is ne-114

glected. The appropriateness of omitting terms in the equations of motion depends on115

the type of problem. For flood forecasting, kinematic wave models (e.g. Singh, 2001; Lee116

& Huang, 2012; Chen & Capart, 2020) and diffusive wave models (e.g. Cappelaere, 1997;117

Moussa & Bocquillon, 2009) are widely used. Teng et al. (2017) show that such simpli-118

fied modelling approaches are also applicable to 2D flood inundation modelling. Both119
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Grijsen and Vreugdenhil (1976) and Ponce and Simons (1977) apply linear stability anal-120

yses to assess the error of hydrodynamics of simplified models compared to models based121

on the full set of equations (unsteady or full-dynamic models). They prove, for exam-122

ple, that the diffusive wave model can accurately simulate the celerity and damping of123

flood waves in rivers.124

Simplified hydrodynamic models can be used in combination with the Exner equa-125

tion to form simplified morphological models. Examples of numerical morphological mod-126

els based on the diffusive wave approach are described in Fasolato et al. (2011) and Abril127

et al. (2012). One simplification has become particularly popular both in scientific lit-128

erature and in consultancy practice, which is referred to as the quasi-steady approach.129

Under this assumption, the flow can be considered steady during subsequent morpho-130

dynamic steps of the decoupled solution procedure. This implies that the time deriva-131

tives in both Saint-Venant equations are neglected. The discharge may still vary in time,132

but during one time step, the discharge is the same for the entire river.133

Although flood wave attenuation in long river models is not captured in a quasi-134

steady model, the quasi-steady approach has obtained a wide application domain. Cao135

et al. (2017) mention that quasi-steady flow models are frequently used by Chinese en-136

gineers for large-scale and long-duration cases such as the operation of the Three Gorges137

Reservoir in the Yangtze River. The quasi-steady approach is also implemented in com-138

mercial one-dimensional software packages such as HEC-RAS, MIKE 11 and SOBEK-139

RE. The advantage of the quasi-steady approach over the unsteady approach is related140

to the larger time step that can be used in the quasi-steady models. In the HEC-RAS141

manual (USACE, 2022) the quasi-steady model is described as more stable than the un-142

steady model. Although the unsteady flow engine is faster than the quasi-steady flow143

engine, a variable time step feature in HEC-RAS and stricter time step requirements for144

the stability of unsteady hydraulics lead to shorter quasi-steady model runs. Thanks to145

the backwater curve simulations for the flow in the quasi-steady mode, the Courant-Friedrichs-146

Lewy (CFL) condition may be based on the celerity of disturbances in the riverbed in147

both MIKE 11 and SOBEK-RE. As these celerities are much lower than celerities of wa-148

ter level disturbances, this allows for a much larger time step. The MIKE 11 manual (DHI,149

2017) states that the time step in the quasi-steady mode often will be limited only by150

the ability to resolve the boundary conditions.151

In SOBEK-RE of Deltares (the Netherlands) the hydrodynamics are calculated us-152

ing an implicit Preissmann scheme and the morphology scheme is explicit. Running the153

model in unsteady mode means that the time step is restricted by reproducing the bound-154

ary conditions and by accuracy. As a rule of thumb, simulations with a time step restrict-155

ing the hydraulic Courant number to a maximum value of 10 provide accurate and sta-156

ble results (pers. comm. C.J. Sloff, 2022). In the quasi-steady mode of SOBEK-RE, the157

celerity of riverbed disturbances determines the (morphological) Courant number. As158

the morphological celerities are generally low, the time step is restricted only by proper159

representation of the hydraulic wave in most cases. This time step is normally much larger160

than the time step for unsteady simulations, which is restricted by the criterion CFL <161

10. As the solvers for the unsteady and quasi-steady models are comparably efficient,162

the quasi-steady simulations with SOBEK-RE can be up to dozens of times faster than163

the unsteady simulations.164

Regarding the maximum time step for morphological simulations, Vreugdenhil (1994)165

proves that for large hydraulic Courant numbers implicit schemes are becoming less ac-166

curate. Vreugdenhil (1982) and Olesen (1981) show that the maximum Courant num-167

ber (and thus time step ∆t) depends on the numerical method, spatial discretization (∆x)168

and targeted morphological accuracy. They show that to maintain a certain degree of169

accuracy in implicit schemes, larger Courant numbers are possible, but with increasing170

Courant number, a higher spatial discretization (smaller ∆x) is required. Consequently171

also the time step is restricted. Van Buuren et al. (2001) performed numerical simula-172
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tions with a second-order implicit Crank–Nicolson scheme, and showed that for accept-173

able accuracy, the time step may be not more than 20 to 40 or even 80 times larger than174

the explicit stability time step following from the hydrodynamic CFL condition.175

The analysis of prevailing quasi-steady morphological numerical codes shows that176

although the solvers for the quasi-steady models are not faster than those of the unsteady177

models, simulations with quasi-steady models can be substantially faster due to the pos-178

sibility of larger time steps and a schematized hydrograph. However, quasi-steady mod-179

els do not simulate damping of flood waves, which may result in underestimation of mor-180

phological changes in long river models. In such cases, diffusive wave models better sim-181

ulate the flood wave dynamics and possibly also the morphological changes. Although182

for specific field cases unsteady and simplified models are sometimes compared (e.g. Hum-183

mel et al., 2012; Sloff, 2000), it remains unknown under which circumstances common184

simplified morphological models exactly apply. Here, we aim to establish under which185

conditions the quasi-steady model and diffusive wave model yield accurate morpholog-186

ical predictions, even when these rivers are very long. We perform linear stability anal-187

yses on the 1-dimensional set of equations and verify these with numerical simulations188

to assess the ranges of Froude numbers, sediment loads and bed wave dimensions for which189

simplified models (i.e. quasi-steady model and diffusive wave model) can be applied. In190

addition we perform numerical simulations to assess the importance of flood wave damp-191

ing in longer river stretches on the morphological predictions of quasi-steady models.192

The structure of the remainder of this paper is as follows. Section 2 describes the193

linear stability analyses, providing analytical expressions of migration celerity and damp-194

ing for the unsteady and simplified models. The same section describes the simulations195

performed with the numerical model ELV. Results of the linear stability analysis, the196

comparison with numerical results and assessment of the validity range of simplified nu-197

merical models are given in Section 3 and further discussed in Section 4. Section 5 sum-198

marizes the main conclusions.199

2 Methods200

2.1 Model Equations201

We consider unidirectional flow over an erodible bed and we interpret bed eleva-202

tion and sediment transport per unit width to be averaged over smaller bedforms (rip-203

ples and dunes) for which the impact on flow conditions is incorporated through a rough-204

ness parameter. We consider the development of large perturbations or bed waves in the205

riverbed, with wave lengths much larger than the water depth. For these conditions the206

one-dimensional governing equations describing flow and bed evolution read as:207

α1
∂u

∂t
+ α2u

∂u

∂x
+ g

∂h

∂x
+ g

∂z

∂x
= −g

u2

C2h
(1)208

β
∂h

δt
+ h

∂u

∂x
+ u

∂h

∂x
= 0 (2)209

∂z

∂t
+

∂s

∂x
= 0 (3)210

s = f(u) (4)211

Herein:212

t = time (s)213

x = longitudinal co-ordinate (m)214
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u = water velocity averaged in a cross-section (m/s)215

h = water depth (m)216

z = bed level (m)217

C = Chézy coefficient for hydraulic roughness (m1/2/s)218

s = sediment transport per unit of width (bulk volume) (m2/s)219

g = acceleration due to gravity (m/s2)220

αi (i = 1, 2) and β are flag integers that can take values of 0 and 1 only.221

This set of equations contains the 1D Saint-Venant equations for conservation of mass222

and momentum of water (Eq. 1 and Eq. 2), the continuity equation for sediment (Eq.223

3) and a capacity-limited sediment transport predictor (Eq. 4), implicitly assuming small224

bed slopes. The latter two equations together form the Exner equation. For the case of225

long bed waves, equilibrium sediment transport predictors such as Meyer-Peter and Müller226

(1948) or Engelund and Hansen (1967) are widely used. Here, we adopt the latter for-227

mula, which is especially suitable for lowland sand-bed rivers. It relates the equilibrium228

sediment transport capacity to the flow velocity (s = m un). The parameter m depends229

on the sediment properties (median grain diameter and density) and hydraulic rough-230

ness. The power n equals 5.231

For the full dynamic model all values of αi and β are equal to 1. When in the Saint-232

Venant equations the time derivatives are neglected (α1=β=0), Eq. 2 reduces to ∂q
∂x =233

0, representing steady flow conditions for every time step. In numerical models the dis-234

charge may still vary over time, hence the name quasi-steady model (e.g. De Vries, 1973;235

Sieben, 1996; Yossef et al., 2008; Paarlberg et al., 2015; Guerrero et al., 2015). Another236

often applied simplified model neglects both inertial terms in Eq. 1 (α1=α2=0). In flood237

routing and morphodynamics this is often called the diffusive wave model. This model238

has been known accurate for a long time in predicting migration and damping of flood239

waves in lowland rivers (e.g. Grijsen & Vreugdenhil, 1976; Ponce & Simons, 1977) and240

has been extensively analyzed (e.g. Cappelaere, 1997; Moussa & Bocquillon, 2009; Char-241

lier et al., 2019; Beg et al., 2022) and applied for hydrological studies since then (e.g. Fan242

& Li, 2006; Cimorelli et al., 2018; Fenton, 2019; Mitsopoulos et al., 2022).243

2.2 Linear Stability Analysis244

Barneveld et al. (2023) present linear stability analyses that are valid for bed waves245

with wave lengths much larger than the water depth. The analyses are based on equa-246

tions 1 through 4 with all values of αi and β equal to 1 (full dynamic model), and small247

perturbations of water depth, flow velocity and bed level:248

h = ho + h′
249

u = uo + u′
250

z = zo + z′251

The subscript o indicates the steady uniform reference situation and the superscript ′
252

indicates a small perturbation to the steady uniform reference situation. Substituting253

these expressions for h, u and z in equations 1 through 4 and assuming a periodic so-254

lution such as255

u′

h′

z′

 =

ûĥ
ẑ

 eikx−iωt (5)256

yields a set of equations for which solutions are given by257
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∣∣∣∣∣∣
Ar + iAi Dr + iDi Fr + iFi

Br + iBi Er + iEi 0
Cr + iCi 0 Gr + iGi

∣∣∣∣∣∣ = 0 (6)258

where259

Ar = α1ωi − α2uoki + 2
gio
uo

Ai = −α1ωr + α2uokr

Br = −hoki Bi = hokr

Cr = b− qso
uo

ki Ci = b
qso
uo

kr

Dr = −gki −
gio
ho

Di = gkr

Er = βωi − uoki Ei = −βωr + uokr

Fr = −gki Fi = gkr

Gr = ωi Gi = −ωr

and260

û, ĥ, ẑ = velocity, depth, bed level amplitude function (-)261

k = complex wave number (m-1)262

ω= complex frequency (s-1)263

i =
√
−1264

To solve Eq. 6, two approaches are possible, a spatial-mode linear stability anal-265

ysis or a temporal-mode linear stability analysis. In the spatial-mode analysis, the wave266

number k in the periodic solution is assumed complex and the wave frequency ω in the267

periodic solution is real and equal to ωr = 2π
T , where T is the wave period. In the temporal-268

mode analysis, the frequency ω is assumed complex and the wave number is real and equal269

to kr = 2π
L , where L is the wave length. The complex roots, i.e. either ω or k, deter-270

mine the propagation and damping of perturbations in the flow and at the riverbed.271

A spatial-mode analysis fits best to a model in which oscillating boundary condi-272

tions exert an influence on the modelling domain of interest. Temporal-mode analyses273

are appropriate for systems with initial conditions in infinitely long domains (i.e. Drazin274

& Reid, 2004) or at least for reaches far away from boundaries. Both situations are rel-275

evant for river systems, so we explore both methods.276

In Barneveld et al. (2023), a similar method has been described in which the lin-277

earized expressions for h, u and z were inserted in equations 1 through 4 before combin-278

ing these four equations into a single equation in one of the parameters. The resulting279

third order equation (for the full dynamic model) can again be solved analytically by as-280

suming a periodic solution (like Eq. 5).281

For the spatial-mode analysis of the full dynamic model, Barneveld et al. (2023)282

derived a third-order algebraic equation in the dimensionless wave number k̂ (Eq. 12 in283

Barneveld et al. (2023), for the case α1=α2=β=1):284

Ψ

2πF 3E
(k̂)3 +

1

F 3E
(1− α2F

2 + βΨ)(k̂)2 − α1 + α2β

2

4π

FE
k̂ + 3ik̂ − α1β

4π2

FE
+ 4πi = 0 (7)285

where:286

k̂ = k̂r + ik̂i = kxo (−) (8)287

–7–



manuscript submitted to Water Resources Research

xo =
QoT

Boho
= uoT (m) = characteristic length scale (9)288

Herein, Qo is the undisturbed water discharge, and Bo is the undisturbed width. This289

method identifies the three governing dimensionless parameters F , Ψ and E:290

F =
uo√
gho

= Froude number (10)291

Ψ = n
so
qo

= dimensionless transport parameter (11)292

E =

√
g3T 2

C4h
= dimensionless flow variation parameter (12)293

The parameter E expresses the influence of unsteadiness and non-uniformity of the flow294

on a scale larger than the local flow depth.295

The three roots of Eq. 7 determine the characteristic wave properties (migration296

celerity c and damping length Ld) of water and bed waves:297

c = −2πuo

k̂r
(13)298

Ld =
uoT

k̂i
=

uoEC2h1/2

k̂ig3/2
(14)299

where Ld is defined as the distance over which the amplitude of a wave is damped by300

a factor e−1. As in subcritical conditions the migration celerity of bed waves is much lower301

than the one of water waves, the morphodynamic root can easily be identified.302

For the temporal-mode analysis of the full dynamic model, Barneveld et al. (2023)303

presented a third-order algebraic equation in the dimensionless complex frequency ω̂ (Eq.304

21 in Barneveld et al. (2023), when α1=α2=β=1):305

α1βF
2(ω̂)3+(2i−2

α1 + α2β

2
L̂F 2)(ω̂)2+(−3L̂i−(L̂)2(1−α2F

2+βΨ))ω̂+(L̂)3Ψ = 0 (15)

where:306

L̂ = 2πLo

L (-)307

Lo = ho

io
(m)308

L = wave length of disturbance (m)309

Herein, ω̂ = ω̂r + iω̂i = dimensionless complex frequency (-)310

Clearly in the temporal-mode analysis the governing parameters are Froude number F ,311

transport parameter Ψ and bed wave length L. Solving Eq. 15 again provides the roots312

determining propagation and damping of disturbances of flow and the bed.313

ω̂r determines the migration celerity of the waves (water and bed waves), according to:314

c =
L

T
=

ω̂ruo

k̂
. (16)

and ω̂i determines the damping of water and bed waves:315

Ld = − c

ω̂i
(17)
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For the quasi-steady model Eq. 7 and Eq. 15 provide, with α1=β=0 and α2=1,316

a second order equation. For the diffusive wave model, with α1=α2=0 and β=1, a (sim-317

plified) third order equation results.318

Solving these equations, or directly solving the matrix in Eq. 6, yields roots for the319

complex wave number (spatial-mode analysis) or complex frequency (temporal-mode anal-320

ysis) for the different models. With equations 13 and 14 for the spatial-mode analysis321

and equations 16 and 17 for the temporal-mode analysis, the migration celerity and damp-322

ing length of bed waves can be determined. The ratio of parameters for the simplified323

models and those of the full dynamic model determine how accurate the simplified mod-324

els are, using that the full dynamic model provides the proper values for migration celer-325

ity and damping. These ratios are defined as follows for the spatial-mode analysis:326

cb =
csimplified

cfull dynamic
=

k̂r,full dynamic

k̂r,simplified

(18)327

Lb =
Lsimplified

Lfull dynamic
=

k̂i,full dynamic

k̂i,simplified

(19)328

For the temporal-mode analysis the ratios are329

cb =
ω̂r,simplified

ω̂r,full dynamic
(20)330

Lb =
ω̂i,full dynamic

ω̂i,simplified
(21)331

2.3 Numerical Model Simulations332

2.3.1 Introduction333

To verify whether the results of the linear stability analysis can be used to assess334

the applicability of simplification of hydrodynamics in morphological models, numeri-335

cal model simulations are performed for both infinitesimal perturbations and large-amplitude336

perturbations in the riverbed. The cases performed in Barneveld et al. (2023) form the337

starting point for the simulations. For this study, these cases were also performed with338

the quasi-steady model and the diffusive wave model.339

2.3.2 Model Description340

Barneveld et al. (2023) selected the numerical modelling code ELV (Chavarŕıas, Stecca,341

et al., 2019), which is a Matlab code for modelling morphodynamic processes on a one-342

dimensional domain. ELV has been applied successfully in various studies and proved343

stable and accurate (Arkesteijn et al., 2019, 2021; Blom et al., 2017; Chavarŕıas, Arkesteijn,344

& Blom, 2019). The full set of equations (1 through 4) are solved in an uncoupled way,345

with an implicit Preissmann scheme for flow and a first-order forward Euler upwind scheme346

for morphology. In Barneveld et al. (2023) the results of the full dynamic model have347

already been presented and for validation compared with the extensively tested and widely348

applied SOBEK-RE model. ELV also provides code for the simplified quasi-steady and349

diffusive wave models.350

2.3.3 Model Set-Up351

The model set-up is identical to and extensively described in Barneveld et al. (2023),352

with a one-branch model for which the geometry is inspired on the Meuse River in the353

Netherlands (Table 1).354
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Table 1. Model set-up for simulation with ELV, ranges of parameters depending on cases

simulated (Barneveld et al., 2023)

Characteristic Value/description

model length 10-25 km
channel width (no floodplains) B 100 m
hydraulic roughness, Chézy value C 40 m1/2/s
bed slope ib 0.0001 to 0.0022 (giving Froude numbers up to 0.6)
space step ∆x 2.5-25 m
time step ∆t 1-5 s
sediment transport s uniform sediment, transport predictor of Engelund

and Hansen (1967)
grain diameter D50 0.002 to 0.35 m (to maintain constant Ψ)
upstream boundary conditions time series for discharge with base flow of 500 m3/s

and equilibrium sediment transport
downstream boundary condition uniform flow conditions (stage-discharge relation

for uniform flow)

2.3.4 Performed Simulations355

The simulations performed are taken from Barneveld et al. (2023), which are valid356

for conditions in lowland rivers. The Froude number F varies between 0.1 and 0.6. For357

the dimensionless transport parameter Ψ a constant value of 5.15 ·10-5 was set, which358

means that for increasing Froude number the grain size increases. The parameter E is359

determined by the wave period of the flood wave, which we set at 25 days in a 45 days360

time domain.361

The first set of simulations is based on combinations of the parameters F , E, Ψ362

for which a value of the wave length of (low) bed perturbations was selected, matching363

the spatial-mode linear stability analysis. The wave lengths of these low bed perturba-364

tion vary from 107 m (F=0.1) to 446 m (F=0.6). In further sets of the simulations the365

wave length (set 2) and the amplitude of the bed perturbations were increased (set 3).366

The set of simulations performed is shown in Table 2.367

Table 2. Numerical simulations performed to validate results from the linear stability analysis

(Barneveld et al., 2023).

Set Qbasea

(m3/s)
Qtopb

(m3/s)
Heightc

(m)
Lengthd (m) Run du-

ration
(yr)

Comment

1 500 505 0.005 matching to
flow (107-
446 m)

1 base set

2 500 505 0.005 3000 3 long bed wave
3 500 1500 0.1-0.5 3000 3 large flow and bed

waves

abase flow boundary condition
bpeak flow boundary condition
cheight of bed perturbation (bed wave)
dwave length of bed perturbation (bed wave)
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The impact of flood wave damping on the morphological effects is not captured by368

the quasi-steady model. In case of strong damping of the flood wave, the quasi-steady369

model will overestimate the peak discharge and underestimate the duration of the flood370

wave in downstream reaches. This may alter the morphological response. With the quasi-371

steady model we performed test simulations with an original and attenuated flood wave,372

having the same water volume, to assess this impact.373

3 Results374

3.1 Migration Celerity of Bed Perturbations375

For the spatial-mode analysis, the ratio of migration celerity for simplified and full376

dynamic models can be assessed with Eq. 18 for combinations of the parameters E, F377

and Ψ. For the temporal-mode analysis, Eq. 20 provides this ratio for combinations of378

the parameters F , Ψ and L. These ratios can be assessed as well with the numerical sim-379

ulation results for the same combinations of parameters. From the numerical results the380

migration celerities are taken from the propagation of the top of the perturbation. Fig-381

ure 1 shows an example of the migration of perturbations for the alternative numerical382

models and Figure 2 shows the matching average migration celerities according to the383

three models.384

Figure 1. Simulation results for three models Dyn=Full Dynamic Wave model; Diff.Wave=

diffusive wave model and the quasi-steady model for the case of F=0.5, Ψ = 5.15 · 10−5 and

sediment perturbation of 2 cm high and 3 km long.

The results from the linear stability analyses and the numerical results for the in-385

finitesimal perturbations (set 1 in Table 2) are shown in Figure 3. For the quasi-steady386

model, the results from the linear stability analyses match perfectly well. Clearly, the387

numerical results for the initial celerities (t=0 yr) are in good agreement with the spatial-388

mode analysis in the area delimited by the lines for E=10,000 (F=0.1) and E=30,000389

(F=0.6). Also, the numerical results are in line with the temporal-mode analysis.390

–11–



manuscript submitted to Water Resources Research

Figure 2. Migration celerity of the riverbed perturbation for the three models shown in Fig-

ure 1. The lines show the average celerities of the peak of the perturbation after x days.

Figure 3. Ratio of celerity of simplified models to full dynamic model for linear stability

analyses and numerical results of simulations of small riverbed perturbations, Ψ = 5.15 · 10−5.

When longer bed perturbations with a wave length of 3,000 m are considered, with391

the amplitude still chosen small (set 2 in Table 2), Figure 3 changes to Figure 4. The392

numerical results for the diffusive wave model fit better to the temporal-mode linear sta-393

bility analysis. For the diffusive wave model, the ratio according to the spatial-mode anal-394

ysis is always smaller than unity, while the temporal-mode analysis follows the numer-395

ical results in the change of the ratio from below 1 to over 1, when F increases.396
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Figure 4. Ratio of celerity of simplified models to full dynamic model for linear stability

analyses and numerical results for 3,000 m long but still low amplitude (≤ 0.025 m) bed pertur-

bations, Ψ = 5.15 · 10−5.

Figure 5. Ratio of celerity of simplified models to full dynamic model for linear stability

analyses and numerical results for long and large bed perturbations under a flood wave regime,

Ψ = 5.15 · 10−5.

When the amplitude of the perturbations also increases (to a maximum of 0.5 m)397

and a flood wave with a period of 25 days and peak discharge of 1,500 m3/s is resolved,398
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the figure further evolves to Figure 5 (note the change in vertical scale compared to Fig-399

ure 4). Although the ratio of initial migration celerities from the numerical models de-400

viate more from the temporal-mode analysis, the results after three years of simulation401

are quite similar. Apparently, the temporal-mode analysis is again closer to the numer-402

ical results for the diffusive wave model. However, for the quasi-steady model, both ap-403

proaches in linear stability analysis yield accurate metrics for the accuracy estimate of404

that simplified model (blue lines and markers).405

3.2 Damping of bed perturbations406

Figure 1 shows how in subcritical conditions a bed wave dampens when migrat-407

ing downstream. Such damping in the numerical model is also described by the spatial-408

mode analysis (Eq. 14) and temporal-mode analysis (Eq. 17). Combining the results of409

the linear stability analyses (Eq. 19 respectively Eq. 21) and the numerical results from410

the cases in Figure 3 and Figure 5 provides Figure 6. This figure shows the ratio of damp-411

ing length of the simplified models to the damping length of the full dynamic model. Again,412

the results of the linear stability analyses for the quasi-steady model overlap.413

Figure 6. Ratio of damping length of simplified models to full dynamic model for linear sta-

bility analyses and numerical results for small bed perturbations (filled markers) as well as for

long and large bed perturbations under a flood wave regime (open markers). Thin lines repre-

sent the spatial-mode analysis and the thick dotted lines provide temporal-mode analysis results,

Ψ = 5.15 · 10−5.

Figure 6 shows that spatial-mode and temporal-mode analyses closely align when414

the Froude number F is less than or equal to 0.4. The numerical results show that the415

distance over which the amplitude of a wave is damped by a factor e−1 is not clearly de-416

pendent on the height of the bed perturbation. Finally, the linear stability analyses re-417

sults are close to the numerical simulation results, especially in case of the temporal-mode418

analysis. For the diffusive wave model, the spatial-mode analysis with values of E be-419
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ing well over 100,000 (as indicated by Barneveld et al. (2023)), underestimates the damp-420

ing length ratio compared to the numerical results, especially for Froude numbers larger421

than 0.4.422

3.3 Impact of flood wave damping on quasi-steady model results423

Figure 7 shows boundary conditions for the simulations with original and atten-424

uated flood waves and the corresponding morphological changes simulated with the quasi-425

steady model. The case represents a typical flood wave attenuation in the Meuse River426

in the Netherlands. Figure 7 (b) shows that the lines for the two simulations overlap,427

so the resulting morphodynamics appear to be identical for this case.428

4 Discussion429

4.1 Spatial-Mode or Temporal-Mode Analysis430

In Barneveld et al. (2023) it was shown that the spatial-mode linear stability anal-431

ysis of one-dimensional riverbed evolution provides accurate information on the initial432

migration celerities of small bed perturbations (several hundreds of meters long and low433

amplitude) in case of the full dynamic model. They also showed that for longer and higher434

bed perturbations the spatial-mode analysis still describes the initial migration celeri-435

ties well, but overestimates the long-term migration celerities when F is larger than 0.3.436

In this context the temporal-mode analysis performs better. These ranges are also re-437

flected in the ratios of migration celerities of bed waves as presented in Figures 3, 4 and438

5. For both types of reduced equations models, the ratios of initial migration celerities439

are well-described by the spatial-mode analysis for F≤0.3. For larger Froude numbers,440

the spatial-mode analysis underestimates the ratio for migration celerities in case of the441

diffusive wave model, even at the initial stage. This underestimation grows with increas-442

ing Froude number.443

The convective (or advective) acceleration term (u ∂u
∂x ) in the hydrodynamic mo-444

mentum equation (Eq. 1), which is neglected in the diffusive wave model (α2=0), ap-445

pears to be important for proper calculation of the migration celerity of bed waves. Grijsen446

and Vreugdenhil (1976) and Ponce and Simons (1978) showed that for flood wave con-447

ditions in rivers, the convective acceleration term does not have important impact on the448

celerity and damping of flood waves over a flat riverbed. In combination with a bed wave,449

the term does become important for the morphodynamics of that bed wave. In the spatial-450

mode analysis, neglecting the convective acceleration term causes an overestimation of451

the diffusion coefficient D = houo

2io
(1− α2F

2 + β
ho

∂f(u)
∂u

∣∣∣
o
) in Eq. 5 of Barneveld et al.452

(2023) as α2=0. This overestimation grows with increasing F and manifests itself ap-453

parently in an underestimation of the celerity in the diffusive wave approach. Accord-454

ing to the numerical modelling results, the ratio of migration celerity of the diffusive wave455

model and the celerity of the full dynamic model changes from less than 1 to over 1 when456

the value of F increases. This change from underestimation of the celerity to overesti-457

mation of the celerity by the diffusive wave approach does not proceed from the spatial-458

mode analysis. However, the change in this range of F matches the range in which the459

spatial-mode analysis overestimates the migration celerity, in case of the full dynamic460

model. For F > 0.3, the temporal-mode linear stability analysis predicts the bed wave461

celerity of the full dynamic model progressively better than the spatial-mode linear sta-462

bility analysis . For these conditions, plausibly, the temporal-mode analysis also better463

predicts the celerity ratio of the simplified models.464

For the quasi-steady model the results from both the spatial-mode analysis and the465

temporal-mode analysis are close to the numerical results. The errors in the spatial-mode466

analysis for the full dynamic model and the quasi-steady model for F > 0.3 are appar-467

ently equally large.468
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Figure 7. Simulations with the quasi-steady model for different flood waves as an upstream

boundary condition. (a) original and attenuated flood wave with equal flood volume, (b) morpho-

logical response after 2, 3 and 10 years of simulation, with F=0.2 and Ψ = 5.15 · 10−5

.

Regarding the damping of bed perturbations the results of the temporal-mode anal-469

ysis are in line with numerical modelling results (Figure 6). For the spatial-mode anal-470

ysis this is also true for the quasi-steady approach. For the diffusive wave approach, the471
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underestimation of the damping is only partly captured by the spatial mode analysis for472

values of F larger than 0.4. Again, the deviation of the spatial-mode linear stability anal-473

ysis estimates from numerical results for the full dynamic model in this range can ex-474

plain this.475

4.2 Quasi-Steady and Diffusive Wave Model476

Overall, we conclude that the temporal-mode linear stability analysis results de-477

scribe migration celerity and damping of bed waves in lowland rivers better than the spatial-478

mode equivalents. Based on this, a design graph can be constructed to assess the error479

of simplified models for various combinations of the parameters Froude number F , wave480

length L and transport parameter Ψ, as presented in Figure 8. Values of Ψ in a range481

from 0.005 to 5·10-5 are adopted. In case of the Engelund-Hansen sediment transport482

predictor the range for the ratio so/qo is then 0.001-1·10-5. The highest value could be483

considered a maximum. For the Yellow River the ratio is for example around 0.006. For484

lowland rivers such as the Meuse River, the Rhine River and the Po River the values of485

the ratio so/qo are typically in the order of 1·10-5.486

Figure 8 shows that the quasi-steady model proves accurate for all combinations487

of these parameters. Only at the high values of Ψ a small deviation from 1 of the ratio488

for migration celerity and damping value can be observed. The diffusive wave model, which489

appears to be accurate for flood wave dynamics, deviates more than 5% from the full dy-490

namic model for both migration and damping of bed waves when the Froude number is491

0.2 or larger. The figure further shows that for this model (1) the results are insensitive492

to the magnitude of the sediment transport, (2) the wave length of the bed perturba-493

tion influences the ratio for the migration celerity, but not for the damping, and (3) the494

deviation from the full dynamic model increases with increasing Froude number.495

4.3 Quasi-Steady Approach in Practise496

Figure 7 shows that the impact of neglect of flood wave damping on morpholog-497

ical changes with the quasi-steady model may be small. This result is supported by sim-498

ulations with a morphological model of the Meuse River, based on the numerical model499

SOBEK-RE. Sloff (2000) presented simulations for an extreme flood wave period with500

both the unsteady model and the quasi-steady model. Over 225 km of length the flood501

wave damping is moderate in the upstream 70 km long and relatively steep part of the502

river. In the transition area of around 20 km long, between steep and gentle longitudi-503

nal slope, large artificial lakes in the floodplains, created by sediment mining in the past,504

affect the shape of flood waves. Especially short spiky and average shaped flood waves505

are strongly dampened here. In Sloff (2000) the upstream model boundary was chosen506

just upstream of the transition area indicated above, so that the flood wave attenuation507

is included in the model. The unsteady model predicted bed level changes up to 1 m.508

The quasi-steady simulation for a 150 km long reach of the Meuse River could be per-509

formed using a 1 day time step instead of the 1/2 hour time step in the unsteady model.510

The run time of the quasi-steady model was consequently approximately 20 times shorter,511

but provided almost identical morphological effects in the main channel compared to the512

unsteady run (only few centimeters difference in some of the large peaks of morpholog-513

ical change). Apparently sediment transport gradients and morphological changes in the514

main channel at discharges exceeding bankfull conditions are hardly affected by the damp-515

ing of flood waves. Due to the wide floodplains of the Meuse River and associated large516

conveyance capacity, the flow velocities in the main channel only increase to a limited517

extent above bankfull flow conditions. The sediment transport capacity in the main chan-518

nel thus remains almost constant above bankfull flow and only the duration of exceedance519

of bankfull conditions is of importance. These results and the simulations described in520

Section 3.3 do not provide a generic indication of the applicability of quasi-steady mod-521

els for long river reaches. For each application of a quasi-steady numerical model test522
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Figure 8. Ratio of migration celerities (left) and ratio damping length of simplified models

to full dynamic model for different values of the sediment transport parameter Ψ: 5·10−3 (top),

5·10−4 (middle), 5·10−5 (bottom).

simulations with both full dynamic model and quasi-steady model can help to decide whether523

the results with the simplified model are appropriate. If not, application of a quasi-steady524

model might still be feasible by simulating the flood wave attenuation with internal (bound-525

ary) conditions. An internal condition could take the form of lateral water inflow and526

extraction to represent the flood wave attenuation. Such an application of the quasi-steady527

model requires tailor-made assessment of the (internal) boundary conditions, especially528

when considering that the wave damping depends on the shape and peak value of each529

flood wave. For this assessment, the dimensions of the characteristics of the floodplains530

are also of importance (see example above for the Meuse River). With the above con-531

sideration in mind, the design graph of Figure 8 can be used to assess what kind of sim-532

plified model is accurate enough to be applied in general for the river reach considered.533

In case of the quasi-steady model some test simulations should be performed to deter-534

mine whether (internal) boundary conditions should be implemented, so as to simulate535

the hydrodynamics in the complete model in such a way that the bed level evolution is536

accurately reproduced.537
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4.4 Other applications538

The approach as presented is focused on one-dimensional river models, but could539

be applied to two- or three-dimensional models as well. In addition, it could be applied540

to other situations in which simplified models are often used, such as landscape evolu-541

tion models. Tucker and Hancock (2010), Temme et al. (2013) and Nones (2020) for ex-542

ample describe that also for landscape evolution quasi-steady and diffusive wave mod-543

els are often applied. The approach presented here with linear stability analyses and nu-544

merical modelling could indicate the applicability range of the simplified landscape evo-545

lution models as well.546

5 Conclusions547

The results of linear stability analyses and numerical simulations with ELV are com-548

pared to assess which type of linear stability analysis (temporal mode or spatial mode)549

best describes the impact of reducing the Saint Venant equations in morphodynamic sim-550

ulations. The temporal-mode linear stability analysis outperforms the spatial-mode lin-551

ear stability analysis in terms of predicting the the migration celerity of river bed waves.552

The same can be concluded for the damping length. The linear stability analysis results553

and the numerical simulations show that the quasi-steady model provides riverbed evo-554

lution results deviating less than 1% from the results with the full dynamic model for555

Froude numbers between 0.1 to 0.7, wave lengths of the bed waves up to 25,000 m and556

the non-dimensional sediment transport parameter Ψ from 0.005 to 5·10-5. Previous cal-557

culations with high-complexity numerical models for long river sections indicate that,558

despite the neglect of attenuation of flood waves in quasi-steady models, morphological559

effects are well-predicted.560

Although diffusive wave models are well-capable of simulating migration and damp-561

ing of flood waves in lowland rivers, they underestimate or overestimate the migration562

celerity of bed waves. Especially the neglect of the convective acceleration term in this563

model causes this error. The degree of deviation is controlled by the Froude number F564

and the wave length of the bed perturbation L. Especially when F increases, diffusive565

wave models underestimate the damping of bed waves. Generally speaking, the migra-566

tion celerity and damping of bed perturbations from the diffusive wave model deviate567

less than 5% from the full dynamic model when Froude numbers are 0.2 or less. To achieve568

at least 10% accuracy, the Froude number should not exceed 0.3.569
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