Referencs
1. Liu Z, Chen J, Cheng L, et al. Chinese Society of Allergy and Chinese
Society of Otorhinolaryngology-Head and Neck Surgery Guideline for
Chronic Rhinosinusitis. Allergy Asthma Immunol Res.2020;12(2):176-237.
2. Delemarre T, Bochner BS, Simon HU, Bachert C. Rethinking neutrophils
and eosinophils in chronic rhinosinusitis. J Allergy Clin
Immunol. 2021;148(2):327-335.
3. Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on
Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(Suppl
S29):1-464.
4. Akdis CA, Bachert C, Cingi C, et al. Endotypes and phenotypes of
chronic rhinosinusitis: a PRACTALL document of the European Academy of
Allergy and Clinical Immunology and the American Academy of Allergy,
Asthma & Immunology. J Allergy Clin Immunol.2013;131(6):1479-1490.
5. Gurrola J, 2nd, Borish L. Chronic rhinosinusitis: Endotypes,
biomarkers, and treatment response. J Allergy Clin Immunol.2017;140(6):1499-1508.
6. Matsuwaki Y, Ookushi T, Asaka D, et al. Chronic rhinosinusitis: risk
factors for the recurrence of chronic rhinosinusitis based on 5-year
follow-up after endoscopic sinus surgery. Int Arch Allergy
Immunol. 2008;146 Suppl 1:77-81.
7. Nakayama T, Yoshikawa M, Asaka D, et al. Mucosal eosinophilia and
recurrence of nasal polyps - new classification of chronic
rhinosinusitis. Rhinology. 2011;49(4):392-396.
8. Vlaminck S, Vauterin T, Hellings PW, et al. The importance of local
eosinophilia in the surgical outcome of chronic rhinosinusitis: a 3-year
prospective observational study. Am J Rhinol Allergy.2014;28(3):260-264.
9. Kim JW, Hong SL, Kim YK, Lee CH, Min YG, Rhee CS. Histological and
immunological features of non-eosinophilic nasal polyps.Otolaryngol Head Neck Surg. 2007;137(6):925-930.
10. Sakuma Y, Ishitoya J, Komatsu M, et al. New clinical diagnostic
criteria for eosinophilic chronic rhinosinusitis. Auris Nasus
Larynx. 2011;38(5):583-588.
11. Wang X, Zhang N, Bo M, et al. Diversity of T(H) cytokine profiles in
patients with chronic rhinosinusitis: A multicenter study in Europe,
Asia, and Oceania. J Allergy Clin Immunol. 2016;138(5):1344-1353.
12. Shin SH, Ye MK, Kim JK, Cho CH. Histological characteristics of
chronic rhinosinusitis with nasal polyps: Recent 10-year experience of a
single center in Daegu, Korea. Am J Rhinol Allergy.2014;28(2):95-98.
13. Wang W, Gao Y, Zhu Z, et al. Changes in the clinical and
histological characteristics of Chinese chronic rhinosinusitis with
nasal polyps over 11 years. Int Forum Allergy Rhinol.2019;9(2):149-157.
14. Croft M, Benedict CA, Ware CF. Clinical targeting of the TNF and
TNFR superfamilies. Nat Rev Drug Discov. 2013;12(2):147-168.
15. Clark EA, Ledbetter JA. Activation of human B cells mediated through
two distinct cell surface differentiation antigens, Bp35 and Bp50.Proc Natl Acad Sci U S A. 1986;83(12):4494-4498.
16. Kawabe T, Naka T, Yoshida K, et al. The immune responses in
CD40-deficient mice: impaired immunoglobulin class switching and
germinal center formation. Immunity. 1994;1(3):167-178.
17. Fries KM, Sempowski GD, Gaspari AA, Blieden T, Looney RJ, Phipps RP.
CD40 expression by human fibroblasts. Clin Immunol Immunopathol.1995;77(1):42-51.
18. Hollenbaugh D, Mischel-Petty N, Edwards CP, et al. Expression of
functional CD40 by vascular endothelial cells. J Exp Med.1995;182(1):33-40.
19. Tan J, Town T, Mori T, et al. CD40 is expressed and functional on
neuronal cells. EMBO J. 2002;21(4):643-652.
20. Ohkawara Y, Lim KG, Xing Z, et al. CD40 expression by human
peripheral blood eosinophils. J Clin Invest.1996;97(7):1761-1766.
21. Cao PP, Zhang YN, Liao B, et al. Increased local IgE production
induced by common aeroallergens and phenotypic alteration of mast cells
in Chinese eosinophilic, but not non-eosinophilic, chronic
rhinosinusitis with nasal polyps. Clin Exp Allergy.2014;44(5):690-700.
22. Gevaert P, Holtappels G, Johansson SG, Cuvelier C, Cauwenberge P,
Bachert C. Organization of secondary lymphoid tissue and local IgE
formation to Staphylococcus aureus enterotoxins in nasal polyp tissue.Allergy. 2005;60(1):71-79.
23. Gevaert P, Nouri-Aria KT, Wu H, et al. Local receptor revision and
class switching to IgE in chronic rhinosinusitis with nasal polyps.Allergy. 2013;68(1):55-63.
24. Baba S, Kondo K, Toma-Hirano M, et al. Local increase in IgE and
class switch recombination to IgE in nasal polyps in chronic
rhinosinusitis. Clin Exp Allergy. 2014;44(5):701-712.
25. Hulse KE, Norton JE, Suh L, et al. Chronic rhinosinusitis with nasal
polyps is characterized by B-cell inflammation and EBV-induced protein 2
expression. J Allergy Clin Immunol. 2013;131(4):1075-1083, 1083
e1071-1077.
26. Worm M, Henz BM. Molecular regulation of human IgE synthesis.J Mol Med (Berl). 1997;75(6):440-447.
27. Punnonen J, Aversa G, Cocks BG, et al. Interleukin 13 induces
interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by
human B cells. Proc Natl Acad Sci U S A. 1993;90(8):3730-3734.
28. Jabara HH, Fu SM, Geha RS, Vercelli D. CD40 and IgE: synergism
between anti-CD40 monoclonal antibody and interleukin 4 in the induction
of IgE synthesis by highly purified human B cells. J Exp Med.1990;172(6):1861-1864.
29. Gascan H, Gauchat JF, Aversa G, Van Vlasselaer P, de Vries JE.
Anti-CD40 monoclonal antibodies or CD4+ T cell clones and IL-4 induce
IgG4 and IgE switching in purified human B cells via different signaling
pathways. J Immunol. 1991;147(1):8-13.
30. McAdam AJ, Greenwald RJ, Levin MA, et al. ICOS is critical for
CD40-mediated antibody class switching. Nature.2001;409(6816):102-105.
31. Yong PF, Salzer U, Grimbacher B. The role of costimulation in
antibody deficiencies: ICOS and common variable immunodeficiency.Immunol Rev. 2009;229(1):101-113.
32. Cao PP, Li HB, Wang BF, et al. Distinct immunopathologic
characteristics of various types of chronic rhinosinusitis in adult
Chinese. J Allergy Clin Immunol. 2009;124(3):478-484, 484
e471-472.
33. Yao Y, Yang C, Yi X, Xie S, Sun H. Comparative analysis of
inflammatory signature profiles in eosinophilic and noneosinophilic
chronic rhinosinusitis with nasal polyposis. Biosci Rep.2020;40(2).
34. Okada N, Nakayama T, Asaka D, et al. Distinct gene expression
profiles and regulation networks of nasal polyps in eosinophilic and
non-eosinophilic chronic rhinosinusitis. Int Forum Allergy
Rhinol. 2018;8(5):592-604.
35. Hamilos DL, Leung DY, Wood R, et al. Eosinophil infiltration in
nonallergic chronic hyperplastic sinusitis with nasal polyposis (CHS/NP)
is associated with endothelial VCAM-1 upregulation and expression of
TNF-alpha. Am J Respir Cell Mol Biol. 1996;15(4):443-450.
36. Karmann K, Hughes CC, Schechner J, Fanslow WC, Pober JS. CD40 on
human endothelial cells: inducibility by cytokines and functional
regulation of adhesion molecule expression. Proc Natl Acad Sci U S
A. 1995;92(10):4342-4346.
37. Galy AHM, Spits H. Cd40 Is Functionally Expressed on Human Thymic
Epithelial-Cells. Journal of Immunology. 1992;149(3):775-782.
38. Swallow MM, Wallin JJ, Sha WC. B7h, a novel costimulatory homolog of
B7.1 and B7.2, is induced by TNFalpha. Immunity.1999;11(4):423-432.
39. Khayyamian S, Hutloff A, Buchner K, et al. ICOS-ligand, expressed on
human endothelial cells, costimulates Th1 and Th2 cytokine secretion by
memory CD4+ T cells. Proc Natl Acad Sci U S A.2002;99(9):6198-6203.
40. Richter G, Hayden-Ledbetter M, Irgang M, et al. Tumor necrosis
factor-alpha regulates the expression of inducible costimulator receptor
ligand on CD34(+) progenitor cells during differentiation into antigen
presenting cells. J Biol Chem. 2001;276(49):45686-45693.
41. Clutterbuck E, Shields JG, Gordon J, et al. Recombinant human
interleukin 5 is an eosinophil differentiation factor but has no
activity in standard human B cell growth factor assays. Eur J
Immunol. 1987;17(12):1743-1750.
42. Clutterbuck EJ, Hirst EM, Sanderson CJ. Human interleukin-5 (IL-5)
regulates the production of eosinophils in human bone marrow cultures:
comparison and interaction with IL-1, IL-3, IL-6, and GMCSF.Blood. 1989;73(6):1504-1512.
43. Clutterbuck EJ, Sanderson CJ. Regulation of human eosinophil
precursor production by cytokines: a comparison of recombinant human
interleukin-1 (rhIL-1), rhIL-3, rhIL-5, rhIL-6, and rh
granulocyte-macrophage colony-stimulating factor. Blood.1990;75(9):1774-1779.
44. Tsukahara K, Nakao A, Hiraguri M, et al. Tumor necrosis factor-alpha
mediates antiapoptotic signals partially via p38 MAP kinase activation
in human eosinophils. Int Arch Allergy Immunol. 1999;120 Suppl
1:54-59.
45. Shi LL, Xiong P, Zhang L, et al. Features of airway remodeling in
different types of Chinese chronic rhinosinusitis are associated with
inflammation patterns. Allergy. 2013;68(1):101-109.
46. Bureau F, Seumois G, Jaspar F, et al. CD40 engagement enhances
eosinophil survival through induction of cellular inhibitor of apoptosis
protein 2 expression: Possible involvement in allergic inflammation.J Allergy Clin Immunol. 2002;110(3):443-449.
47. Gauchat JF, Henchoz S, Fattah D, et al. CD40 ligand is functionally
expressed on human eosinophils. Eur J Immunol.1995;25(3):863-865.
48. Lederman S, Yellin MJ, Krichevsky A, Belko J, Lee JJ, Chess L.
Identification of a novel surface protein on activated CD4+ T cells that
induces contact-dependent B cell differentiation (help). J Exp
Med. 1992;175(4):1091-1101.
49. Noelle RJ, Roy M, Shepherd DM, Stamenkovic I, Ledbetter JA, Aruffo
A. A 39-kDa protein on activated helper T cells binds CD40 and
transduces the signal for cognate activation of B cells. Proc Natl
Acad Sci U S A. 1992;89(14):6550-6554.
50. Xiong G, Xie X, Wang Q, et al. Immune cell infiltration and related
core genes expression characteristics in eosinophilic and
non-eosinophilic chronic rhinosinusitis with nasal polyps. Exp
Ther Med. 2020;20(6):180.
51. Hutloff A, Dittrich AM, Beier KC, et al. ICOS is an inducible T-cell
co-stimulator structurally and functionally related to CD28.Nature. 1999;397(6716):263-266.
52. Yoshinaga SK, Whoriskey JS, Khare SD, et al. T-cell co-stimulation
through B7RP-1 and ICOS. Nature. 1999;402(6763):827-832.
53. Richter G, Burdach S. ICOS: A new costimulatory ligand/receptor pair
and its role in T-cell activion. Onkologie. 2004;27(1):91-95.
54. Tojima I, Shimizu T. Group 2 innate lymphoid cells and eosinophilic
chronic rhinosinusitis. Curr Opin Allergy Clin Immunol.2019;19(1):18-25.
55. Gion Y, Okano M, Koyama T, et al. Clinical Significance of
Cytoplasmic IgE-Positive Mast Cells in Eosinophilic Chronic
Rhinosinusitis. Int J Mol Sci. 2020;21(5).
56. Baba S, Kondo K, Suzukawa M, Ohta K, Yamasoba T. Distribution,
subtype population, and IgE positivity of mast cells in chronic
rhinosinusitis with nasal polyps. Ann Allergy Asthma Immunol.2017;119(2):120-128.
57. Ono N, Kusunoki T, Ikeda K. Relationships between IL-17A and
macrophages or MUC5AC in eosinophilic chronic rhinosinusitis and
proposed pathological significance. Allergy Rhinol (Providence).2012;3(2):e50-54.
58. Kagoya R, Kondo K, Kishimoto-Urata M, Shimizu Y, Kikuta S, Yamasoba
T. A murine model of eosinophilic chronic rhinosinusitis using the
topical application of a vitamin D3 analog. Allergy.2021;76(5):1432-1442.
59. Hu Y, Cao PP, Liang GT, Cui YH, Liu Z. Diagnostic significance of
blood eosinophil count in eosinophilic chronic rhinosinusitis with nasal
polyps in Chinese adults. Laryngoscope. 2012;122(3):498-503.
60. Zuo K, Guo J, Chen F, et al. Clinical characteristics and surrogate
markers of eosinophilic chronic rhinosinusitis in Southern China.Eur Arch Otorhinolaryngol. 2014;271(9):2461-2468.
61. Honma A, Takagi D, Nakamaru Y, Homma A, Suzuki M, Fukuda S.
Reduction of blood eosinophil counts in eosinophilic chronic
rhinosinusitis after surgery. J Laryngol Otol.2016;130(12):1147-1152.
62. Simpson TR, Quezada SA, Allison JP. Regulation of CD4 T cell
activation and effector function by inducible costimulator (ICOS).Curr Opin Immunol. 2010;22(3):326-332.
63. Paulos CM, Carpenito C, Plesa G, et al. The inducible costimulator
(ICOS) is critical for the development of human T(H)17 cells. Sci
Transl Med. 2010;2(55):55ra78.
64. Tan AH, Goh SY, Wong SC, Lam KP. T helper cell-specific regulation
of inducible costimulator expression via distinct mechanisms mediated by
T-bet and GATA-3. J Biol Chem. 2008;283(1):128-136.
65. Hao H, Nakayamada S, Tanaka Y. Differentiation, functions, and roles
of T follicular regulatory cells in autoimmune diseases. Inflamm
Regen. 2021;41(1):14.
66. Panneton V, Chang J, Witalis M, Li J, Suh WK. Inducible T-cell
co-stimulator: Signaling mechanisms in T follicular helper cells and
beyond. Immunol Rev. 2019;291(1):91-103.
67. Yun Y, Kanda A, Kobayashi Y, et al. Increased CD69 expression on
activated eosinophils in eosinophilic chronic rhinosinusitis correlates
with clinical findings. Allergol Int. 2020;69(2):232-238.
68. Kountakis SE, Arango P, Bradley D, Wade ZK, Borish L. Molecular and
cellular staging for the severity of chronic rhinosinusitis.Laryngoscope. 2004;114(11):1895-1905.
69. Brescia G, Parrino D, Zanotti C, et al. Blood Eosinophil and
Basophil Values Before and After Surgery for Eosinophilic-type Sinonasal
Polyps. Am J Rhinol Allergy. 2018;32(3):194-201.
70. Takeno S, Hirakawa K, Ishino T. Pathological mechanisms and clinical
features of eosinophilic chronic rhinosinusitis in the Japanese
population. Allergol Int. 2010;59(3):247-256.
71. Wang ET, Zheng Y, Liu PF, Guo LJ. Eosinophilic chronic
rhinosinusitis in East Asians. World J Clin Cases.2014;2(12):873-882.
72. Shah SA, Ishinaga H, Takeuchi K. Pathogenesis of eosinophilic
chronic rhinosinusitis. J Inflamm (Lond). 2016;13:11.
73. Wong CK, Zhang JP, Ip WK, Lam CW. Activation of p38
mitogen-activated protein kinase and nuclear factor-kappaB in tumour
necrosis factor-induced eotaxin release of human eosinophils. Clin
Exp Immunol. 2002;128(3):483-489.
74. Temkin V, Levi-Schaffer F. Mechanism of tumour necrosis factor alpha
mediated eosinophil survival. Cytokine. 2001;15(1):20-26.
75. Fujieda S, Imoto Y, Kato Y, et al. Eosinophilic chronic
rhinosinusitis. Allergology International. 2019;68(4):403-412.
76. Bachert C, Sousa AR, Lund VJ, et al. Reduced need for surgery in
severe nasal polyposis with mepolizumab: Randomized trial. J
Allergy Clin Immunol. 2017;140(4):1024-1031 e1014.
77. Takabayashi T, Asaka D, Okamoto Y, et al. A Phase II, Multicenter,
Randomized, Placebo-Controlled Study of Benralizumab, a Humanized
Anti-IL-5R Alpha Monoclonal Antibody, in Patients With Eosinophilic
Chronic Rhinosinusitis. Am J Rhinol Allergy. 2021;35(6):861-870.
78. Nick JA, Avdi NJ, Young SK, et al. Selective activation and
functional significance of p38alpha mitogen-activated protein kinase in
lipopolysaccharide-stimulated neutrophils. J Clin Invest.1999;103(6):851-858.
79. Bergmann M, Hart L, Lindsay M, Barnes PJ, Newton R. IkappaBalpha
degradation and nuclear factor-kappaB DNA binding are insufficient for
interleukin-1beta and tumor necrosis factor-alpha-induced
kappaB-dependent transcription. Requirement for an additional activation
pathway. J Biol Chem. 1998;273(12):6607-6610.
80. Wesselborg S, Bauer MK, Vogt M, Schmitz ML, Schulze-Osthoff K.
Activation of transcription factor NF-kappaB and p38 mitogen-activated
protein kinase is mediated by distinct and separate stress effector
pathways. J Biol Chem. 1997;272(19):12422-12429.
81. Krzesz R, Wagner AH, Cattaruzza M, Hecker M. Cytokine-inducible CD40
gene expression in vascular smooth muscle cells is mediated by nuclear
factor kappaB and signal transducer and activation of transcription-1.FEBS Lett. 1999;453(1-2):191-196.