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Hyperparameter tuning:  

We tune the CNN hyperparameters using one GCM (MPI-ESM1-2-LR) and five locations across 

the globe (Fig S1a). The goal is to find a set of hyperparameters that performs well across all 

locations, and to then use the same architecture for all CNNs. We select hyperparameters 

sequentially using the following steps. In step 1, we tune the learning rate; in step 2, we tune the 

number of dense layers and neurons; in step 3, we tune the number of convolutional layers and 

filters; and in step 4, we tune the dropout rate and activity regularization parameter. At each 

step, we use keras tuner to train CNNs with different hyperparameter configurations. We then 

select a combination of hyperparameters that performs well on the validation set across all five 

locations before moving to the next step of tuning. In general, we find similarities in the best 

parameter combinations for each location, which supports our approach of using the same CNN 

architecture for all grid cells. However, it is possible that higher accuracy could be achieved in 

certain regions by tuning the architecture for that specific location, and therefore our results 

may slightly underestimate predictability. The results of the hyperparameter tuning are shown in 

Fig. S1. We found similar results when using different initial starting hyperparameters (results 

not shown).   

 

CNN training:  

We use a categorical cross-entropy loss function with the Adam optimizer, a batch size of 32, 

and define an epoch as 100 steps. The initial learning rate is 0.0003, and we use a learning rate 

scheduler to decrease the learning rate by a factor of e-0.05 each epoch after the first 10 epochs. 

We use a dropout rate of 0.2 on the dense layer. We use early stopping to end training once the 

validation loss increases for at least 5 epochs. We train each CNN with three different random 

initializations, and we select the trained model that has lowest validation loss for later analyses.  
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Figure S1. Hyperparameter tuning results. Selected parameters are shown by the red dashed 

line in b), red markers in c) and d), and the black stars in e).  
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Figure S2. Same as Figure 2, but for ACCESS-ESM1-5.  
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Figure S3. Same as Figure 2, but for CanESM5. 
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Figure S4. Same as Figure 2, but for CNRM-CM6-1. 
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Figure S5. Same as Figure 2, but for GISS-E2-1-G. 
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Figure S6. Same as Figure 2, but for MIROC-ES2L. 
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Figure S7. Same as Figure 2, but for MIROC6. 
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Figure S8. Same as Figure 2, but for MPI-ESM1-2-LR. 
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Figure S9. Same as Figure 2, but for NorCPM1. 



 

 

 

12 

 

 

 

Figure S10. Accuracy of the persistence predictions for the three different lead times for 

ACCESS-ESM1-5, CanESM5, CNRM-CM6-1, GISS-E2-1-G, and IPSL-CM6A-LR. 
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Figure S11. Same as Figure S10, but for MIROC-ES2L, MIROC6, MPI-ESM1-2-LR, NorCPM1.  
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Figure S12. Same as Figure 3, but for year 1-3 predictions.  
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Figure S13. Same as Figure 3, but for year 3-7 predictions.  
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Figure S14. Accuracy of persistence predictions within ERSSTv5 observations for the three 

different lead times.   
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Table S1. Included CMIP6 models and simulations 

Model Training (22 simulations) Validation (3 

simulations) 

Testing (5 

simulations) 

ACCESS-ESM1-5 r4i1p1f1, r5i1p1f1, r6i1p1f1, r7i1p1f1, 
r8i1p1f1, r9i1p1f1, r10i1p1f1, r11i1p1f1, r12i1p1f1, 
r13i1p1f1, r15i1p1f1, r16i1p1f1, r17i1p1f1, 
r19i1p1f1, r20i1p1f1, r22i1p1f1, 
r23i1p1f1, r24i1p1f1, r25i1p1f1, r26i1p1f1, 
r27i1p1f1, r30i1p1f1 

r14i1p1f1, 
r21i1p1f1, 
r3i1p1f1 
 

r18i1p1f1, 
r1i1p1f1, 
r28i1p1f1, 
r29i1p1f1, 
r2i1p1f1 

CanESM5 r10i1p2f1, r11i1p2f1, r12i1p2f1, r13i1p2f1, 
r15i1p2f1, r16i1p2f1, r17i1p2f1, r19i1p2f1, 
r20i1p2f1, r22i1p2f1, r23i1p2f1, r24i1p2f1, 
r25i1p2f1, r26i1p2f1, r27i1p2f1, r30i1p2f1, r4i1p2f1, 
r5i1p2f1, r6i1p2f1, r7i1p2f1, r8i1p2f1, r9i1p2f1 

r14i1p2f1, 
r21i1p2f1, 
r3i1p2f1 
 

r18i1p2f1, 
r1i1p2f1, 
r28i1p2f1, 
r29i1p2f1, 
r2i1p2f1 

CNRM-CM6-1 r10i1p1f2, r11i1p1f2, r12i1p1f2, r13i1p1f2, 
r15i1p1f2,r16i1p1f2, r17i1p1f2, r19i1p1f2, r20i1p1f2, 
r22i1p1f2, r23i1p1f2, r24i1p1f2, r25i1p1f2, 
r26i1p1f2, r27i1p1f2, r30i1p1f2, r4i1p1f2, r5i1p1f2, 
r6i1p1f2, r7i1p1f2, r8i1p1f2, r9i1p1f2 

r14i1p1f2, 
r21i1p1f2, 
r3i1p1f2 
 

r18i1p1f2, 
r1i1p1f2, 
r28i1p1f2, 
r29i1p1f2, 
r2i1p1f2 

GISS-E2-1-G r101i1p1f1, r102i1p1f1, r10i1p1f1, r10i1p3f1, 
r1i1p1f2,r1i1p3f1, r1i1p5f1, r2i1p1f2, r2i1p3f1, 
r3i1p3f1, r3i1p5f1, r4i1p1f1, r4i1p5f1, r5i1p1f1, 
r5i1p1f2, r5i1p3f1, r6i1p1f1, r6i1p3f1, r7i1p1f1, 
r8i1p1f1, r8i1p3f1, r9i1p1f1 

r2i1p5f1, 
r3i1p1f1, 
r4i1p3f1 
 

r1i1p1f1, 
r2i1p1f1, 
r3i1p1f2, 
r4i1p1f2, 
r9i1p3f1 

IPSL-CM6A-LR r10i1p1f1, r11i1p1f1, r12i1p1f1, r13i1p1f1, 
r15i1p1f1, r16i1p1f1, r17i1p1f1, r19i1p1f1, 
r20i1p1f1, r22i1p1f1, r23i1p1f1, r24i1p1f1, 
r25i1p1f1, r26i1p1f1, r27i1p1f1, r30i1p1f1, r4i1p1f1, 
r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1, r9i1p1f1 

r14i1p1f1, 
r21i1p1f1, 
r3i1p1f1 
 

r18i1p1f1, 
r1i1p1f1, 
r28i1p1f1, 
r29i1p1f1, 
r2i1p1f1 

MIROC-ES2L r10i1p1f2, r11i1p1f2, r12i1p1f2, r13i1p1f2, 
r15i1p1f2, r16i1p1f2, r17i1p1f2, r19i1p1f2, 
r20i1p1f2, r22i1p1f2, r23i1p1f2, r24i1p1f2, 
r25i1p1f2, r26i1p1f2, r27i1p1f2, r30i1p1f2, r4i1p1f2, 
r5i1p1f2, r6i1p1f2, r7i1p1f2, r8i1p1f2, r9i1p1f2 

r14i1p1f2, 
r21i1p1f2, 
r3i1p1f2 
 

r18i1p1f2, 
r1i1p1f2, 
r28i1p1f2, 
r29i1p1f2, 
r2i1p1f2 

MIROC6 r10i1p1f1, r11i1p1f1, r12i1p1f1, r13i1p1f1, 
r15i1p1f1, r16i1p1f1, r17i1p1f1, r19i1p1f1, 
r20i1p1f1, r22i1p1f1, r23i1p1f1, r24i1p1f1, 
r25i1p1f1, r26i1p1f1, r27i1p1f1, r30i1p1f1, r4i1p1f1, 
r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1, r9i1p1f1 

r14i1p1f1, 
r21i1p1f1, 
r3i1p1f1 
 

r18i1p1f1, 
r1i1p1f1, 
r28i1p1f1, 
r29i1p1f1, 
r2i1p1f1 

MPI-ESM1-2-LR r10i1p1f1, r11i1p1f1, r12i1p1f1, r13i1p1f1, 
r15i1p1f1,r16i1p1f1, r17i1p1f1, r19i1p1f1, r20i1p1f1, 
r22i1p1f1, r23i1p1f1, r24i1p1f1, r25i1p1f1, 
r26i1p1f1, r27i1p1f1, r30i1p1f1, r4i1p1f1, r5i1p1f1, 
r6i1p1f1, r7i1p1f1, r8i1p1f1, r9i1p1f1 

r14i1p1f1, 
r21i1p1f1, 
r3i1p1f1 
 

r18i1p1f1, 
r1i1p1f1, 
r28i1p1f1, 
r29i1p1f1, 
r2i1p1f1 

NorCPM1 r10i1p1f1, r11i1p1f1, r12i1p1f1, r13i1p1f1, 
r15i1p1f1, r16i1p1f1, r17i1p1f1, r19i1p1f1, 
r20i1p1f1, r22i1p1f1, r23i1p1f1, r24i1p1f1, 
r25i1p1f1, r26i1p1f1, r27i1p1f1, r30i1p1f1, r4i1p1f1, 
r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1, r9i1p1f1 

r14i1p1f1, 
r21i1p1f1, 
r3i1p1f1 
 

r18i1p1f1, 
r1i1p1f1, 
r28i1p1f1, 
r29i1p1f1, 
r2i1p1f1 

 


