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Introduction  

This supporting information contains two supplementary methods and one figure. Text S1 is 
the theory of identifying tail behavior for distributions of peak flows and flow maxima from 
hydrological dynamics. Text S2 is the method we used to test the power law hypothesis. Figure 
S1 is a reference map of the analyzed basins. 
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Text S1. Identifying tail behavior for distributions of peak flows and flow maxima from 
hydrological dynamics 

The probability distribution of ordinary peak flows (i.e., local flow peaks generated by 

streamflow-producing rainfall events (Zorzetto et al., 2016)) and flow maxima (i.e. maximum 
values in a specified time frame) can be analytically expressed as 𝑝𝑗(𝑞) and 𝑝𝑀(𝑞), respectively 

(Basso et al., 2016): 

𝑝𝑗(𝑞) = 𝐶2 ⋅ 𝑞1−𝑎 ⋅ 𝑒
−

𝑞2−𝑎

𝛼𝐾(2−𝑎) ⋅ 𝑒
𝑞1−𝑎

𝐾(1−𝑎) 

( S1 ) 

𝑝𝑀(𝑞) = 𝑝𝑗(𝑞) ⋅ λτ ⋅ 𝑒−λτ⋅𝐷𝑗(𝑞), 𝐷𝑗(𝑞) = ∫ 𝑝𝑗(𝑞)
∞

𝑞

𝑑𝑞 

( S2 ) 

where  𝜏[𝑑𝑎𝑦] is the duration of the specified time frame, 𝐶2 is normalization constants, and all 
the other notations have been listed in the main context. 

To analyze the tail behavior of these distributions, we take the limit of 𝑞 ⟶ +∞  for both 

Equations S1 and S2. Because lim
𝑞→∞

𝐷𝑗(𝑞) = ∫ 𝑝𝑗(𝑞)
∞

∞
𝑑𝑞 = 0, the Equations S1 and S2 can 

be transformed into: (set 𝐶3 = λτ𝐶2) 

 

lim
𝑞→∞

𝑝𝑗(𝑞) = {𝐶2 ⋅ 𝑞1−𝑎 ⋅ 𝑒
−

𝑞2−𝑎

𝛼𝐾(2−𝑎), 1 < 𝑎 < 2

𝐶2 ⋅ 𝑞1−𝑎, 𝑎 > 2
 

( S3 ) 

lim
𝑞→∞

𝑝𝑀(𝑞) = {𝐶3 ⋅ 𝑞1−𝑎 ⋅ 𝑒
−

𝑞2−𝑎

𝛼𝐾(2−𝑎), 1 < 𝑎 < 2

𝐶3 ⋅ 𝑞1−𝑎, 𝑎 > 2
 

( S4 ) 

For both of the cases, the tail behavior is determined by a power law term and an exponential 

term when 1 < 𝑎 < 2, which indicates the tail decreases slower than the exponential but faster 

than the power law tail; while the tail behavior is solely determined by a power law function, 

representing heavy-tailed flow distribution when 𝑎 > 2. Therefore, the hydrograph recession 
exponent (𝑎 > 2) is shown as an indicator of the heavy-tailed flood behavior. 
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Text S2. Testing the power law hypothesis 

Every empirical data distribution can be fitted by a power law model no matter what is the true 
distribution from which the data is drawn. To identify case studies for which the power law is a 

plausible distribution of the observed data, we test the power law hypothesis by means of the 
method of Clauset et al. (2009), which statistically confirms whether the power law distribution 
fitted on the empirical data provides a reliable description of those data. We compute this 
goodness-of-fit framework via the function test_pl in the python package plfit 1.0.3 

(https://pypi.org/project/plfit/). 

The challenge here is to discern the errors caused by the sampling randomness from those 
arising because the data might be actually drawn from another distribution rather than the 

power law. The principle of the approach is to first measure the error distance 𝜀𝑑  between the 
empirical data and the optimized power law model, which is the distance need to be tested. 

Secondly, we generate a number of synthetic data samples by randomly sampling from the 
optimized power law model. The error distance 𝜀𝑠  between the synthetic data and the 

optimized power law model is measured, indicating the fluctuation caused by randomness only. 
A power law hypothesis is accepted if 𝜀𝑑 < 𝜀𝑠  but rejected if 𝜀𝑑 > 𝜀𝑠.  

However, it is possible that non-power-law empirical data also has a smaller 𝜀𝑑  than 𝜀𝑠 . To 
address this issue, a great number 𝑛 of iterations via the Monte-Carlo test for this approach is 

needed. 

The Kolmogorov-Smirnov statistic is used to measure the error distance with 𝑛 = 1000 (as 

suggested by Clauset et al. (2009)). In the meanwhile, the 𝑝-value is defined as the frequency of 

𝜀𝑠 > 𝜀𝑑. The power law hypothesis is ruled out if 𝑝 ≤ 0.1 whereas it is confirmed as plausible if 

𝑝 > 0.1. We, therefore, term all the qualified cases (i.e., 𝑝 > 0.1) ‘confirmed heavy-tailed cases’ 
to indicate their empirical power law distributions are convincingly supported by the data, 

whereas the others are not.  

It is worth mentioning that, statistically, we cannot say those who does not qualify ‘are not’ 

power law distributions. There are at least two potential reasons for this result: (1) they are 
indeed not power law functions, or (2) The empirical data do not represent well the actual 
underlying distribution, often due to small sample sizes.  
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Figure S1. A reference map of 98 streamflow gauges across Germany. These river basins 

encompass a variety of climate and physiographic settings, without strong impact from snow 
dynamics. Their areas range from 110 to 23,843 km2 with a median value of 1,195 km2. The 
minimum, median, and maximum lengths of the daily streamflow records are 35, 58, and 63 

years (inbetween 1951 – 2013). 


