References
1. Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-507.
2. Zeng Z, Zhan J, Chen L, Chen H, Cheng S. Global, regional, and national dengue burden from 1990 to 2017: A systematic analysis based on the global burden of disease study 2017. EClinicalMedicine.2021;32:100712.
3. Xu Z, Bambrick H, Frentiu FD, et al. Projecting the future of dengue under climate change scenarios: Progress, uncertainties and research needs. PLoS neglected tropical diseases. 2020;14(3):e0008118.
4. WHO, ed Comprehensive guidelines for prevention and control of dengue fever and dengue haemorrhagic fever. SEARO, New Delhi, India: World Health Organization; 2011. SEARO Technical Publication Series; No. 60.
5. Malavige GN, Ogg GS. Pathogenesis of vascular leak in dengue virus infection. Immunology. 2017;151(3):261-269.
6. Silva T, Gomes L, Jeewandara C, Ogg GS, Malavige GN. Dengue NS1 induces phospholipase A2 enzyme activity, prostaglandins, and inflammatory cytokines in monocytes. Antiviral research.2022;202:105312.
7. Glasner DR, Ratnasiri K, Puerta-Guardo H, Espinosa DA, Beatty PR, Harris E. Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS pathogens.2017;13(11):e1006673.
8. Puerta-Guardo H, Glasner DR, Espinosa DA, et al. Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell reports. 2019;26(6):1598-1613 e1598.
9. Jeewandara C, Gomes L, Udari S, et al. Secretory phospholipase A2 in the pathogenesis of acute dengue infection. Immun Inflamm Dis.2017;5(1):7-15.
10. Jeewandara C, Gomes L, Wickramasinghe N, et al. Platelet activating factor contributes to vascular leak in acute dengue infection.PLoS neglected tropical diseases. 2015;9(2):e0003459.
11. Rathore APS, Senanayake M, Athapathu AS, et al. Serum chymase levels correlate with severe dengue warning signs and clinical fluid accumulation in hospitalized pediatric patients. Sci Rep.2020;10(1):11856.
12. St John AL, Rathore AP, Raghavan B, Ng ML, Abraham SN. Contributions of mast cells and vasoactive products, leukotrienes and chymase, to dengue virus-induced vascular leakage. Elife. 2013;2:e00481.
13. Malavige GN, Jeewandara C, Wijewickrama A, et al. Efficacy of rupatadine in reducing the incidence of dengue haemorrhagic fever in patients with acute dengue: A randomised, double blind, placebo-controlled trial. PLoS neglected tropical diseases.2022;16(6):e0010123.
14. National University Hospital S. Ketotifen as a Treatment for Vascular Leakage During Dengue Fever (KETODEN). ClinicalTrials.gov Identifier: NCT02673840 2016; https://clinicaltrials.gov/ct2/show/NCT02673840. Accessed 26th November 2022.
15. Reddy BS, Rao NR, Vijeepallam K, Pandy V. Phytochemical, Pharmacological and Biological Profiles of Tragia Species (Family: Euphorbiaceae). Afr J Tradit Complement Altern Med.2017;14(3):105-112.
16. Musa M, Jan G, Jan FG, et al. Pharmacological activities and gas chromatography-mass spectrometry analysis for the identification of bioactive compounds from Justicia adhatoda L. Frontiers in pharmacology. 2022;13:922388.
17. Wang F, Zhang S, Zhang J, Yuan F. Systematic review of ethnomedicine, phytochemistry, and pharmacology of Cyperi Rhizoma.Frontiers in pharmacology. 2022;13:965902.
18. Murakami M, Sato H, Miki Y, Yamamoto K, Taketomi Y. A new era of secreted phospholipase A(2). Journal of lipid research.2015;56(7):1248-1261.
19. Silva T, Jeewandara C, Gomes L, et al. Urinary leukotrienes and histamine in patients with varying severity of acute dengue. PloS one. 2021;16(2):e0245926.
20. Thusyanthan J, Wickramaratne NS, Senathilake KS, et al. Cytotoxicity against Human Hepatocellular Carcinoma (HepG2) Cells and Anti-Oxidant Activity of Selected Endemic or Medicinal Plants in Sri Lanka. Adv Pharmacol Pharm Sci. 2022;2022:6407688.
21. Duarte-Casar R, Romero-Benavides JC. Tragia L. Genus: Ethnopharmacological Use, Phytochemical Composition and Biological Activity. Plants (Basel). 2021;10(12).
22. Lindahl M, Tagesson C. Flavonoids as phospholipase A2 inhibitors: importance of their structure for selective inhibition of group II phospholipase A2. Inflammation. 1997;21(3):347-356.
23. Dey A, De JN. Traditional use of plants against snakebite in Indian subcontinent: a review of the recent literature. Afr J Tradit Complement Altern Med. 2012;9(1):153-174.
24. Corke C, Glenister K, Watson T. Circulating secretory phospholipase A2 in critical illness–the importance of the intestine. Crit Care Resusc. 2001;3(4):244-249.
25. Niessen HW, Krijnen PA, Visser CA, Meijer CJ, Erik Hack C. Type II secretory phospholipase A2 in cardiovascular disease: a mediator in atherosclerosis and ischemic damage to cardiomyocytes?Cardiovascular research. 2003;60(1):68-77.
26. Fonteh AN, Atsumi G, LaPorte T, Chilton FH. Secretory phospholipase A2 receptor-mediated activation of cytosolic phospholipase A2 in murine bone marrow-derived mast cells. J Immunol. 2000;165(5):2773-2782.
27. Takasaki J, Kawauchi Y, Masuho Y. Synergistic effect of type II phospholipase A2 and platelet-activating factor on Mac-1 surface expression and exocytosis of gelatinase granules in human neutrophils: evidence for the 5-lipoxygenase-dependent mechanism. J Immunol.1998;160(10):5066-5072.