REFERENCES
Agrawal, V. P., Sastry, K. V., & Kaushab, S. K. (1975). Digestive
enzymes of three teleost fishes. Acta physiologica Academiae
Scientiarum Hungaricae, 46 (2), 93-98.
Bakke, A. M., Glover, C., & Krogdahl, Å. (2010). 2 - Feeding, digestion
and absorption of nutrients. In M. Grosell, A. P. Farrell, & C. J.
Brauner (Eds.), Fish Physiology (Vol. 30, pp. 57-110): Academic
Press.
Benson, A. K., Kelly, S. A., Legge, R., Ma, F., Low, S. J., Kim, J.,
Zhang, M., Oh, P. L., Nehrenberg, D., Hua, K., Kachman, S. D., Moriyama,
E. N., Walter, J., Peterson, D. A., & Pomp, D. (2010). Individuality in
gut microbiota composition is a complex polygenic trait shaped by
multiple environmental and host genetic factors. Proceedings of
the National Academy of Sciences, 107 (44), 18933-18938.
doi:https://doi.org/10.1073/pnas.1007028107
Bian, Y. H., Xu, X. Y., & Duan, Z. P. (2021). Effects of replacing fish
meal with yeast culture on growth performance, serum biochemical indices
and intestinal morphology of largemouth bass (Micropterus
salmoides ). Chinese Journal of Animal Nutrition, 33 (9),
5182-5192.
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast
all-in-one FASTQ preprocessor. Bioinformatics, 34 (17), i884-i890.
doi:https://doi.org/10.1093/bioinformatics/bty560
Clements, K. D., Angert, E. R., Montgomery, W. L., & Choat, J. H.
(2014). Intestinal microbiota in fishes: what’s known and what’s not.Molecular Ecology, 23 (8), 1891-1898.
doi:https://doi.org/10.1111/mec.12699
Day, R. D., Tibbetts, I. R., & Secor, S. M. (2014). Physiological
responses to short-term fasting among herbivorous, omnivorous, and
carnivorous fishes. Journal of Comparative Physiology B, 184 (4),
497-512. doi:10.1007/s00360-014-0813-4
Desai, A. R., Links, M. G., Collins, S. A., Mansfield, G. S., Drew, M.
D., Van Kessel, A. G., & Hill, J. E. (2012). Effects of plant-based
diets on the distal gut microbiome of rainbow trout (Oncorhynchus
mykiss ). Aquaculture, 350-353 , 134-142.
doi:https://doi.org/10.1016/j.aquaculture.2012.04.005
Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from
microbial amplicon reads. Nature Methods, 10 (10), 996-998.
doi:https://doi.org/10.1038/nmeth.2604
Fadrosh, D. W., Ma, B., Gajer, P., Sengamalay, N., Ott, S., Brotman, R.
M., & Ravel, J. (2014). An improved dual-indexing approach for
multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform.Microbiome, 2 (1), 6.
doi:https://doi.org/10.1186/2049-2618-2-6
Fan, Y., Wang, X., Wang, Y., Liu, H., Yu, X., Li, L., Ye, H., Wang, S.,
Gai, C., Xu, L., Diao, J., & Guo, P. (2021). Potential effects of
dietary probiotics with Chinese herb polysaccharides on the growth
performance, immunity, disease resistance, and intestinal microbiota of
rainbow trout (Oncorhynchus mykiss ). Journal of the World
Aquaculture Society, 52 (6), 1194-1208.
doi:https://doi.org/10.1111/jwas.12757
FAO. (2022). The State of World Fisheries and Aquaculture 2022.
Towards Blue Transformation . Retrieved from Rome, Italy:
Ghanbari, M., Kneifel, W., & Domig, K. J. (2015). A new view of the
fish gut microbiome: Advances from next-generation sequencing.Aquaculture, 448 , 464-475.
doi:https://doi.org/10.1016/j.aquaculture.2015.06.033
Hidalgo, M. C., Urea, E., & Sanz, A. (1999). Comparative study of
digestive enzymes in fish with different nutritional habits. Proteolytic
and amylase activities. Aquaculture, 170 (3), 267-283.
doi:https://doi.org/10.1016/S0044-8486(98)00413-X
Ingerslev, H. C., von Gersdorff Jørgensen, L., Lenz Strube, M., Larsen,
N., Dalsgaard, I., Boye, M., & Madsen, L. (2014). The development of
the gut microbiota in rainbow trout (Oncorhynchus mykiss ) is
affected by first feeding and diet type. Aquaculture, 424-425 ,
24-34. doi:https://doi.org/10.1016/j.aquaculture.2013.12.032
Kuang, T., He, A., Lin, Y., Huang, X., Liu, L., & Zhou, L. (2020).
Comparative analysis of microbial communities associated with the gill,
gut, and habitat of two filter-feeding fish. Aquaculture Reports,
18 , 100501. doi:https://doi.org/10.1016/j.aqrep.2020.100501
Kumar, S., Sahu, N. P., Pal, A. K., Choudhury, D., Yengkokpam, S., &
Mukherjee, S. C. (2005). Effect of dietary carbohydrate on haematology,
respiratory burst activity and histological changes in L. rohitajuveniles. Fish & Shellfish Immunology, 19 (4), 331-344.
doi:https://doi.org/10.1016/j.fsi.2005.03.001
Larsen, A. M., Mohammed, H. H., & Arias, C. R. (2014). Characterization
of the gut microbiota of three commercially valuable warmwater fish
species. Journal of Applied Microbiology, 116 (6), 1396-1404.
doi:https://doi.org/10.1111/jam.12475
Li, H., Wu, S., Wirth, S., Hao, Y., Wang, W., Zou, H., Li, W., & Wang,
G. (2016). Diversity and activity of cellulolytic bacteria, isolated
from the gut contents of grass carp (Ctenopharyngodon idellus )
(Valenciennes) fed on Sudan grass (Sorghum sudanense ) or
artificial feedstuffs. Aquaculture Research, 47 (1), 153-164.
doi:https://doi.org/10.1111/are.12478
Li, S., Liu, H., Tan, B., Dong, X., Yang, Q., Chi, S., & Zhang, S.
(2015a). Effects of dietary carbohydrate levels on the gene expression
and the activity of PEPCK in marine fishes with different food habits.Acta Hydrobiologica Sinica, 39 (1), 80-89.
Li, T., Long, M., Gatesoupe, F.-J., Zhang, Q., Li, A., & Gong, X.
(2015b). Comparative analysis of the intestinal bacterial communities in
different species of carp by pyrosequencing. Microbial Ecology,
69 (1), 25-36. doi:https://doi.org/10.1007/s00248-014-0480-8
Li, X. S., Zhu, X. M., & Han, D. (2012). Comparative studies on
carbohydrate utilization by three fishes of different food habits.
Abstracts of Papers Presented at the Annual Conference of Chinese
Fisheries Association .
Li, Z., Zhang, X., Aweya, J. J., Wang, S., Hu, Z., Li, S., & Wen, X.
(2019). Formulated diet alters gut microbiota compositions in marine
fish Nibea coibor and Nibea diacanthus . Aquaculture
Research, 50 (1), 126-138. doi:https://doi.org/10.1111/are.13874
Limbu, S. M., Zhou, L., Sun, S.-X., Zhang, M.-L., & Du, Z.-Y. (2018).
Chronic exposure to low environmental concentrations and legal
aquaculture doses of antibiotics cause systemic adverse effects in Nile
tilapia and provoke differential human health risk. Environment
International, 115 , 205-219.
doi:https://doi.org/10.1016/j.envint.2018.03.034
Liu, H., Guo, X., Gooneratne, R., Lai, R., Zeng, C., Zhan, F., & Wang,
W. (2016). The gut microbiome and degradation enzyme activity of wild
freshwater fishes influenced by their trophic levels. Scientific
Reports, 6 (1), 24340. doi:https://doi.org/10.1038/srep24340
Liu, H., & Zhang, Y. (2001). The anatomy on the digestive system ofSilurus meridionalis . Journal of Quanzhou Normal College,
19 (6), 75-79.
Liu, M., Guo, W., Wu, F., Qu, Q., Tan, Q., & Gong, W. (2017). Dietary
supplementation of sodium butyrate may benefit growth performance and
intestinal function in juvenile grass carp (Ctenopharyngodon
idellus ). Aquaculture Research, 48 (8), 4102-4111.
doi:https://doi.org/10.1111/are.13230
Liu, Y., Li, X., Li, J., & Chen, W. (2021). The gut microbiome
composition and degradation enzymes activity of black Amur bream
(Megalobrama terminalis ) in response to breeding migratory
behavior. Ecology and Evolution, 11 (10), 5150-5163.
doi:https://doi.org/10.1002/ece3.7407
Liu, Y. Z., He, G., & Zhou, H. H. (2014). Substitution system of animal
and plant protein source in aquatic feed and its relationship with
feeding habits of cultured fish. Hebei Fisheries, 8 , 54-57.
McFall-Ngai, M. J. (2015). The development of cooperative associations
between animals and bacteria: Establishing détente among domains1.American Zoologist, 38 (4), 593-608.
doi:https://doi.org/10.1093/icb/38.4.593
Meng, H., Zhang, Y., Zhao, L., Zhao, W., He, C., Honaker, C. F., Zhai,
Z., Sun, Z., & Siegel, P. B. (2014). Body weight selection affects
quantitative genetic correlated responses in gut microbiota. PLoS
ONE, 9 (3), e89862.
doi:https://doi.org/10.1371/journal.pone.0089862
Meng, X., & Nie, G. (2019). Advances of intestinal microbiota and lipid
metabolism of fish. Journal of Fishery Sciences of China, 26 ,
1221–1229.
Miyake, S., Ngugi, D. K., & Stingl, U. (2015). Diet strongly influences
the gut microbiota of surgeonfishes. Molecular Ecology, 24 (3),
656-672. doi:https://doi.org/10.1111/mec.13050
Pan, Q., Guo, G., Fang, Z., & Li, Z. (1996). The comparative anatomy
studies on digestive system of 6 fish species of stomach-containing
teleost in freshwater. Journal Huazhong Agricultural University,
15 (5), 463-469.
Pan, W., Qin, C., Zuo, T., Yu, G., Zhu, W., Ma, H., & Xi, S. (2021). Is
metagenomic analysis an effective way to analyze fish feeding habits? A
case of the yellowfin sea bream Acanthopagrus latus (Houttuyn) in
Daya Bay. Frontiers in Marine Science, 8 .
doi:https://doi.org/10.3389/fmars.2021.634651
Parrizas, M., Planas, J., Plisetskaya, E. M., & Gutierrez, J. (1994).
Insulin binding and receptor tyrosine kinase activity in skeletal muscle
of carnivorous and omnivorous fish. American Journal of
Physiology-Regulatory, Integrative and Comparative Physiology, 266 (6),
R1944-R1950. doi:https://doi.org/10.1152/ajpregu.1994.266.6.R1944
Roeselers, G., Mittge, E. K., Stephens, W. Z., Parichy, D. M.,
Cavanaugh, C. M., Guillemin, K., & Rawls, J. F. (2011). Evidence for a
core gut microbiota in the zebrafish. The ISME journal, 5 (10),
1595-1608. doi:https://doi.org/10.1038/ismej.2011.38
Shen, Y., Li, H., Zhao, J., Tang, S., Zhao, Y., Bi, Y., & Chen, X.
(2021). The digestive system of mandarin fish (Siniperca chuatsi )
can adapt to domestication by feeding with artificial diet.Aquaculture, 538 , 736546.
doi:https://doi.org/10.1016/j.aquaculture.2021.736546
Shi, X., Luo, Z., Chen, F., Wei, C.-C., Wu, K., Zhu, X.-M., & Liu, X.
(2017). Effect of fish meal replacement by Chlorella meal with dietary
cellulase addition on growth performance, digestive enzymatic
activities, histology and myogenic genes’ expression for crucian carpCarassius auratus . Aquaculture Research, 48 (6), 3244-3256.
doi:https://doi.org/10.1111/are.13154
Spor, A., Koren, O., & Ley, R. (2011). Unravelling the effects of the
environment and host genotype on the gut microbiome. Nature
Reviews Microbiology, 9 (4), 279-290.
doi:https://doi.org/10.1038/nrmicro2540
Sullam, K. E., Essinger, S. D., Lozupone, C. A., O’connor, M. P., Rosen,
G. L., Knight, R., Kilham, S. S., & Russell, J. A. (2012).
Environmental and ecological factors that shape the gut bacterial
communities of fish: a meta-analysis. Molecular Ecology, 21 (13),
3363-3378. doi:https://doi.org/10.1111/j.1365-294X.2012.05552.x
Sun, Y. X., Dong, H. B., & Duan, Y. F. (2019). Progresses in stress
damage and protection studies on fish intestine. Transactions of
Oceanology and Limnology, 3 , 174-183.
Valdes, A. M., Walter, J., Segal, E., & Spector, T. D. (2018). Role of
the gut microbiota in nutrition and health. BMJ, 361 , k2179.
doi:https://doi.org/10.1136/bmj.k2179
Wang, A. R., Ran, C., Ringø, E., & Zhou, Z. G. (2018). Progress in fish
gastrointestinal microbiota research. Reviews in Aquaculture,
10 (3), 626-640. doi:https://doi.org/10.1111/raq.12191
Xu, B. H., Wang, Y. N., & Xiao, D. Y. (2011). The comparative histology
studies on digestive system of four species of economic freshwater
fishes. Chinese Agricultural Science Bulletin, 27 (32), 47-55.
Youngblut, N. D., Reischer, G. H., Walters, W., Schuster, N., Walzer,
C., Stalder, G., Ley, R. E., & Farnleitner, A. H. (2019). Host diet and
evolutionary history explain different aspects of gut microbiome
diversity among vertebrate clades. Nature Communications, 10 (1),
2200. doi:https://doi.org/10.1038/s41467-019-10191-3
Zeng, D., & Ye, Y. (1998). Studies on digestive system and different
feeding habits of some fishes in freshwater. Journal of Southwest
Agricultural University, 20 (4), 361-364.
Zhang, C., Zheng, X., Ren, X., Li, Y., & Wang, Y. (2019). Bacterial
diversity in gut of large yellow croaker Larimichthys crocea and
black sea bream Sparus macrocephalus reared in an inshore net
pen. Fisheries Science, 85 (6), 1027-1036.
doi:https://doi.org/10.1007/s12562-019-01349-5
Zhang, Y., Wen, B., Meng, L.-J., Gao, J.-Z., & Chen, Z.-Z. (2021).
Dynamic changes of gut microbiota of discus fish (Symphysodon
haraldi ) at different feeding stages. Aquaculture, 531 , 735912.
doi:https://doi.org/10.1016/j.aquaculture.2020.735912
Zheng, Z., Yu, E., Li, Z., Ou, H., & Wang, G. (2016). The complete
mitochondrial genome of Shizothorax grahami (Cypriniformes:
Cyprinidae). Mitochondrial DNA Part B, 1 (1), 775-776.
doi:https://doi.org/10.1080/23802359.2016.1238757
Zhou, L., Lin, K.-T., Gan, L., Sun, J.-J., Guo, C.-J., Liu, L., &
Huang, X.-D. (2019). Intestinal microbiota of grass carp fed faba beans:
A comparative study. Microorganisms, 7 (10), 465.
doi:https://doi.org/10.3390/microorganisms7100465
Zhou, Y.-L., He, G.-L., Jin, T., Chen, Y.-J., Dai, F.-Y., Luo, L., &
Lin, S.-M. (2021). High dietary starch impairs intestinal health and
microbiota of largemouth bass, Micropterus salmoides .Aquaculture, 534 , 736261.
doi:https://doi.org/10.1016/j.aquaculture.2020.736261