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Abstract16

High quality citizen science can be instrumental in advancing science toward new dis-17

coveries and a deeper understanding of under-observed phenomena. However, the error18

structure of citizen scientist (CS) data must be well-defined. Within a citizen science pro-19

gram, the error types in submitted observations vary, and their occurrence may depend20

on a variety of CS-specific variables, such as motivation. This study develops a graph-21

ical Bayesian inference model of error types in CS data. The model assumes that: (1)22

each CS observation is subject to a specific error type, each with its own bias and noise;23

and (2) an observation’s error type depends on the error community of the CS, which24

in turn relates to characteristics of the CS submitting the observation. Given a set of25

CS observations and corresponding ground-truth values, the model can be calibrated for26

a specific application, yielding (i) number of error types and communities, (ii) bias and27

noise of each error type, (iii) error distribution of each community, and (iv) the commu-28

nity to which each CS belongs. The model, applied to Nepal CS rainfall observations,29

identifies seven error types and sorts CSs into four model-inferred communities. In the30

case study, 79% of CSs committed errors in fewer than 6.3% of their observations. The31

remaining tended to commit unit, meniscus, and unknown errors. A CS’s assigned com-32

munity, coupled with the model-inferred error probability, can identify observations that33

require verification. With such a system, the onus of validating CS data is partially trans-34

ferred from human effort to machine-learned algorithms.35

1 Introduction36

Communities worldwide face increasing uncertainty regarding extreme weather events37

engendered by climate change. Reliable weather forecasts allow a community to initi-38

ate proactive measures when anticipating an extreme event—measures that sometimes39

save hundreds, if not thousands of lives. Unfortunately, sparse weather data in many re-40

gions of the world inhibit coordinated response efforts of local and regional governments41

(Teague & Gallicchio, 2017, p. 218). Citizen science can help bridge such data gaps.42

Citizen science programs, organized efforts to collect scientific data from members43

of the public, have become increasingly popular as advances in technology have made44

the data collection and submission process more accessible (Bonney et al., 2009; New-45

man et al., 2012). Some traditional scientists, questioning the quality of data submit-46

ted by lay members of the public, have yet to accept the legitimacy of scientific discov-47
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eries advanced by citizen scientists (Hunter, Alabri, & van Ingen, 2013; Riesch & Pot-48

ter, 2014; Sheppard & Terveen, 2011). Others, however, have embraced citizen science49

as an effective means for increasing the spatial and temporal resolution of scientific data.50

Successful citizen science programs investigate the type and frequency of errors commit-51

ted by program participants and develop training initiatives designed to reduce errors52

(Bird et al., 2014; Crall et al., 2011; Davids et al., 2019).53

Most citizen scientist programs conduct quality control of the data submitted by54

their participants. For example, citizen scientists report when they feel an earthquake55

and rank its strength for the United States Geological Survey’s (USGS) Did You Feel56

It? program. The USGS removes outliers and aggregates reported intensities at zip code57

or city-level after processing the data through the Community Decimal Intensity algo-58

rithm (USGS, n.d.). While the USGS’s quality control measures are simple to implement59

and suitable for their program goals, some citizen scientist programs invest significant60

time and energy into assuring the quality of their data. For example, citizen scientists61

submit rainfall depth observations to the SmartPhones4Water-Nepal (S4W-Nepal) pro-62

gram. S4W-Nepal checks the value of each submitted rainfall observation against an ac-63

companying photograph of the rain gauge and manually corrects erroneous observations64

(Davids et al., 2019).65

Rainfall observations submitted by citizen scientists have immense potential to in-66

crease the scientific community’s understanding of rain events which are, by nature, highly67

heterogeneous in space and time. Currently, only about 1.6% of land on Earth lies within68

10 km of a rain gauge, and rain gauges are notoriously inconsistent (Kidd et al., 2017).69

So much so that rain gauges 4 km apart in the midwestern United States produced a cor-70

relation coefficient less than 0.5 for instantaneous rainfall (Habib, Krajewski, & Ciach,71

2001). Citizen science rainfall observation programs must contend with the systematic72

errors inherent in measuring rainfall as well as the tendency of citizen scientists to com-73

mit measurement errors. Detailed investigations into the errors committed by citizen sci-74

entists, such as the efforts of S4W-Nepal, can help increase the utility of citizen science75

data and inform future program development, and is the subject of this study.76

Motivated by the need to reduce the time-cost of performing quality control of cit-77

izen science data without sacrificing effectiveness, this study seeks to develop a reliable,78

semi-automated method for identifying citizen science observations that require addi-79
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tional verification. Most error analyses of citizen science data focus on identifying and80

removing outliers from a dataset. Trained filters flag outliers by identifying observations81

that do not fit within the expected range of values or classes, such as species range or82

allowable count (Bonter & Cooper, 2012; Wiggins, Newman, Stevenson, & Crowston, 2011).83

Some citizen science programs develop eligibility or trust rating procedures to identify84

users that are likely to submit correct observations (Delaney, Sperling, Adams, & Le-85

ung, 2008; Hunter et al., 2013). Ratings schemes that consider demographic and experience-86

related characteristics have potential for describing the variability in citizen science data87

reliability (Kosmala, Wiggins, Swanson, & Simmons, 2016). However, some individual88

citizen scientists do not submit enough observations to be accurately assigned a rating.89

To overcome such limitations, Venanzi, Guiver, Kazai, Kohli, and Shokouhi (2014) based90

their error analysis on four communities of citizen scientists, each with a distinctive pat-91

tern of errors. Machine learning algorithms and hierarchical, generalized linear, and mixed-92

effects models have also been employed by a variety of citizen science programs to iden-93

tify errors (Bird et al., 2014; Venanzi et al., 2014). Despite the wide range of existing94

research on citizen science errors, flexible methods for analyzing errors in quantitative95

citizen science data remains largely unexplored.96

The objective of this study is to inform quality control of quantitative citizen sci-97

ence data by developing a Bayesian inference model that discovers and explains the er-98

rors present in rainfall observations submitted by citizen scientists. A probabilistic graph-99

ical model was developed based on assumptions about the probabilistic relationships be-100

tween citizen scientists, their characteristics, and the magnitude of errors they commit.101

The model identifies unique error types within the S4W-Nepal citizen scientist rainfall102

observations, and groups citizen scientists into communities based on their character-103

istics and error profile. Each community has a distinct distribution of error types and104

describes the likelihood that a submitted observation should be reviewed further. Af-105

ter testing and training, the model was applied to investigate three practical issues: mul-106

tiple observations of a single rainfall event, observations submitted by citizen scientists107

with unknown characteristics, and the error evolution of citizen scientist data over time.108

2 Study Area109

SmartPhones4Water Nepal (S4W-Nepal) partners with citizen scientists across Nepal110

to collect rainfall observations (see Figure 1). Nepal provides an interesting background111
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for a citizen science rainfall initiative, because of the high spatial and temporal hetero-112

geneity in rainfall across the country. Average annual rainfall in Nepal varies from 250113

mm on the leeward side of the Himalayas to over 3,000 mm in the center of the coun-114

try near Pokhara, as seen in Figure 1 (Nayava, 1974). The South Asian summer mon-115

soon brings approximately 80% of Nepal’s annual precipitation during the months of June116

to September (Nayava, 1974). The majority of citizen scientists participating in S4W-117

Nepal’s rainfall data collection efforts reside in the Kathmandu Valley, home to about118

10% of Nepal’s population (Vibhāga, 2012). While the average annual precipitation is119

approximately 1,500 mm in the city of Kathmandu and 1,800 mm in the surrounding120

hills, it is highly variable and unpredictable (Thapa, Ishidaira, Pandey, & Shakya, 2017).121

Hetauda
 (n=2)

Pokhara
 (n=22)

Kathmandu
 (n=127)

Biratnagar and Dharan
 (n=2)

Nepal
Citizen Scientist

Annual Rainfall (mm)
High : 4950
Low : 195

±

0 260130 km

Figure 1. Locations of citizen scientists for which characteristics are known with the number

of citizen scientists at specified locations shown in parentheses. Average annual rainfall shown

from USAID Nepal.

3 Data122

SmartPhones4Water Nepal (S4W-Nepal) recruits citizen scientists to participate123

in a crowdsourced rainfall observation program in Nepal. S4W-Nepal collects the sub-124
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mitted observations via the Open Data Kit application for smart phones. Submitted ob-125

servations include geo-location data, time of measurement, citizen scientist-reported depth126

of rainfall in millimeters, and a photograph of the rain gauge. The program is ongoing127

and has collected over 24,500 observations from over 265 citizen scientists since 2016.128

3.1 Rain gauges129

The participants were given a rain gauge constructed by S4W-Nepal and provided130

instructions on the proper installation and recording of rainfall data. The rain gauges131

were constructed from a re-purposed clear plastic bottle with a 100 mm diameter. The132

bottle was filled with a few centimeters of concrete to provide stability and a level mea-133

suring surface. The lid of the bottle was cut off where the taper ends, inverted, and placed134

flush with the top of the bottle to reduce evaporation losses. Finally, a ruler with mil-135

limeter precision was attached to the bottle to assist the reading of the rainfall depth136

(Davids et al., 2019).137

3.2 Citizen characteristics138

During the recruitment process, S4W-Nepal recorded characteristic data for 153139

citizen scientists. Characteristics recorded were: motivation (paid/volunteer), recruit-140

ment method (personal connection, random site visit, social media, outreach), age (≤18,141

19-25, >25), education (<Bachelors, Bachelors, >Bachelors), place of residence (urban,142

semi-urban, rural), occupation (agriculture, student, other), and gender (male, female).143

Citizen scientist characteristics will be used here to relate individual citizen scientists144

with their tendency to commit errors.145

4 Methods146

4.1 Identification of erroneous observations147

To detect erroneous rainfall observations submitted by citizen scientists, S4W-Nepal148

checks the value of each submitted rainfall observation against the accompanying rain149

gauge photograph. If they detect an error, the correct rain depth is recorded while pre-150

serving the record of the original value submitted by the citizen scientist. This allows151

S4W-Nepal to track the types and frequencies of errors committed by the citizen scien-152

tists. The errors that S4W-Nepal has detected are unit errors, meniscus errors, and un-153
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known errors. Overall, approximately 9% of submitted rainfall observations are erroneous.154

Meniscus errors are the most common (58% of errors), followed by unknown errors (33%),155

and unit errors (8%) (Davids et al., 2019).156

4.2 Model development157

4.2.1 Assumptions and model structure158

A graphical Bayesian inference model is developed based on a number of assump-159

tions about the data being modeled. These assumptions are used to inform the relation-160

ships between the variables and ensure the model accurately represents the modeler’s161

understanding of the physical processes that underlie the data (Winn, Bishop, Diethe,162

Guiver, & Zaykov, 2020). The following assumptions inform the development of the cit-163

izen science errors inference model:164

1. Each citizen scientist belongs to a single community.165

2. A citizen scientist’s community is defined by their collective demographic and experience-166

related characteristics and the type and frequency of errors they have committed167

in prior submissions.168

3. Each citizen scientist in a particular community will submit an observation with169

a community-specific error type distribution.170

4. Each citizen scientist observation relates to an underlying true value with a sys-171

tematic bias and random noise level that depends on the error type of the obser-172

vation.173

These assumptions are translated into the following set of equations describing the174

probabilistic relationship between model variables. The community C to which citizen175

scientist s belongs is assumed to be drawn from a discrete distribution with probabil-176

ity vector ProbCommunity that specifies the probability of a community occurring within177

the citizen scientist population:178

Cs ∼ Discrete(ProbCommunity), (1)179

We use a lower case subscript to denote a random variable index (e.g. Cs indicates180

there is a community variable for each citizen scientist s), whereas square brackets are181
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used to denote dependence on a random variable. The value of citizen characteristic c182

for citizen scientist s is assumed to be drawn from a discrete distribution with proba-183

bility vector ProbCharacteristicc[Cs] that depends on the characteristic c under con-184

sideration and the community Cs the citizen scientist belongs to:185

CitizenCharacteristicc,s ∼ Discrete(ProbCharacteristicc[Cs]), (2)186

Equation 2 describes the conditional probability table between each citizen char-187

acteristic and each assigned community. Similarly, Equation 3, below, describes the con-188

ditional probability table for each error type and community. The error type Es,e of event189

e observed by citizen scientist s is assumed to be drawn from a discrete distribution with190

probability vector ProbError[Cs] that depends on community Cs the citizen scientist191

belongs to:192

Es,e ∼ Discrete(ProbError[Cs]), (3)193

As seen in Equations 1-3, the model assigns each citizen scientist to a single com-194

munity based on their characteristics and the type and frequency of errors they commit.195

Next, we quantify systematic (bias) and random (noise) differences between observations196

and underlying true values by means of a linear regression model parameterized by an197

error-type specific slope a, offset b and precision (inverse variance) τ :198

Obss,e ∼ N (a[Es,e]Truee + b[Es,e], τ [Es,e]), (4)199

where Obss,e represents observed value of rainfall event e submitted by citizen scientist200

s, and Truee is the corresponding true rainfall value for event e. Given the error type201

of an observation, the observed value is thus drawn from a Gaussian distribution with202

mean equal to an error-type specific linear function of the true value and an error-type203

specific variance. Square brackets indicate a, b, and τ depend on error type Es,e. It fol-204

lows that unconditionally, i.e. without knowing the error type, the relation between ob-205

served and true value is a mixture of error-type specific Gaussians, with the weight of206

each Gaussian in the mixture given by probability of the corresponding error type.207
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4.2.2 Model implementation208

We implemented the probabilistic model formulated in the previous section using209

Microsoft Research’s open source Infer.NET software framework (Minka et al., 2018).210

Infer.NET’s framework provides adaptable tools to develop and run Bayesian inference211

for graphical models. The modeler must define the variables, the relationships between212

variables, and provide prior distributions for the variables upon which inference will be213

performed. Infer.NET then automatically generates a computationally efficient code for214

the inference algorithm. Three primary message-passing algorithms for performing in-215

ference are built into Infer.NET: expectation propagation, variational message passing,216

and Gibbs sampling. The model developed here employs the expectation propagation217

algorithm.218

For implementation in Infer.NET, Equations 1-4 are translated into the factor graph219

shown in Figure 2. The factor graph includes observed and inferred variables, factor nodes,220

edges, plates, and gates. Variables are depicted by shaded or unfilled ellipses. A shaded221

variable is observed; an unfilled variable is inferred. Factor nodes are the small black boxes222

connected to variables, describing the relation between variables connected to the fac-223

tor. Edges connect factor nodes to variables and identify child and parent-child relation-224

ships, as indicated by directional arrows. The value of a child variable is defined rela-225

tive to the value of a parent variable. (Winn et al., 2020).226

Plates. Plates are the large gray boxes surrounding portions of the factor graph.227

Plates are a simplified way to express repeated structures. The number of times said struc-228

ture will be repeated is based on the index variable shown in the bottom right corner229

of the plate (Winn et al., 2020). For example, in Figure 2, the structure within the char-230

acteristics plate is repeated nine times, because the model considers nine different CS231

characteristics: motivation, recruitment, age, education, place of residence, occupation,232

gender, performance, and experience.233

Gates. Gates are indicated by a dashed box, as seen around the Regression factor234

node in Figure 3. Gates essentially act as a switch, turning on and off depending on the235

value of the selector variable, which is the error type here (Minka & Winn, 2008). When236

gates are used to define a distribution, that distribution is mixed, as in Equation 4. In-237

fer.NET approximates mixture distributions as a single mode distribution, which will238

be discussed further in Section 5.4.239
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ProbCommunity

Community, 
𝐶

Discrete
(Eq. 1)

SubmittedObservation, 
𝑂𝑏𝑠

s: citizen scientists

TrueValue, 
𝑇𝑟𝑢𝑒

E

e: events

Regression 
(Eq. 4)CitizenCharacteristic

c: characteristics

ProbCharacteristic[C]

Error, 
𝐸

ProbError[C]

Discrete
(Eq. 2)

Discrete
(Eq. 3)

error types

Figure 2. The citizen science error model depicted as a factor graph. A factor node is rep-

resented by small filled box. A variable is named in an oval, with shading identifying observed

variables. Edges depict parent-child relationships. A gate is represented by a dashed box. Plates

are represented by gray rectangles with rounded corners. Symbols adopted from Winn et al.

(2020).

4.2.3 Training and testing the model240

The inference model was trained and tested to ensure model performance was con-241

sistent across different groups of data. During training and testing, the following char-242

acteristics were known for each citizen scientist: motivation, recruitment, age, education,243

place of residence, occupation, gender, performance, and experience. The first seven char-244

acteristics were recorded by S4W-Nepal and are explained in Section 3. The last two char-245

acteristics, performance and experience, were defined based on the observations submit-246

ted by each citizen scientist. Performance is simply the percentage of observations sub-247

mitted by a citizen scientist that did not require correction. A performance of 90% in-248

dicates that 90% of that citizen scientist’s submitted observations matched the true value249

shown in the associated photograph. Experience is a count of how many observations250

a citizen scientist submitted through the 2018 monsoon season. Performance and expe-251

rience rates were split into three levels based on the distribution of values.252

Splitting the data. Rainfall observations submitted by citizen scientists with known253

characteristics from 2016 to 2018 were randomly split into a training data set and a test-254
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ing data set. The training set consisted of 92% of available observations, representing255

6,091 observations submitted by 152 citizen scientists. The citizen scientists in the train-256

ing set submitted anywhere from 1 to 159 observations, with the average number of sub-257

missions being 43.5. The testing set consisted of the remaining 8% of available obser-258

vations, representing 528 observations from 110 citizen scientists. The citizen scientists259

in the testing set submitted anywhere from 1 to 159 observations, with the average num-260

ber of submissions being 57.4. Of the 110 citizen scientists in the testing set, 109 were261

also in the training set. Note that the individual observations were unique between the262

groups.263

Training the model. Before training the model, prior distributions were set for the264

variables that will be inferred. Uniform prior distributions were set for the citizen char-265

acteristics (see Equation A.1), community (see Equation A.2), and error (see Equation A.3).266

The prior distribution for the true value parameter was a Gaussian distribution with a267

mean equal to the value of the submitted observation and a large variance (see Equa-268

tion A.4). The prior distributions for the Gaussian mixture parameters (a, b, and τ) were269

assigned based on the magnitude of errors reasonably expected for rain gauge observa-270

tions.271

While running the model in the training phase, the characteristics for each citizen272

scientist, the submitted observations, and the true values were set as observed variables273

in the model. The community for each citizen scientist, the error type for each submit-274

ted observation, the conditional probability tables for each characteristic and error type,275

and parameters for the Gaussian mixture were inferred (see Equations 2-4 and Figure 2).276

The training phase provided posterior distributions that were then used while testing277

the model.278

Testing the model. To test the model, prior distributions for unobserved variables279

were set to the associated posterior distribution calculated by Infer.NET during train-280

ing. The characteristics for each citizen scientist and the values of the submitted obser-281

vations were observed. The model inferred the community for each citizen scientist, the282

probable error type for each observation, and provided a posterior distribution for the283

true value of the submitted observation. The performance of the model was assessed based284

on the whether the inferred posterior distribution of true value covered the true value285
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identified in the accompanying photograph submitted by the citizen scientist and whether286

the mode of the true value posterior matched the actual true value.287

5 Results and Discussion288

5.1 Number of communities and error types289

To select the appropriate number of communities to capture the differences among290

the citizen scientists, model evidence was used. Model evidence indicates which model291

best explains the data relative to the model’s complexity (MacKay, 2003, p. 343-386).292

Too many communities may lead to overfitting, whereas too few communities may lead293

to underfitting. The model evidence automatically makes this trade-off and identifies the294

optimal number of communities. Model evidence was computed for models with one to295

ten communities. The number of communities that produced the largest model evidence296

was selected as the correct number of communities for the model and data. Similarly,297

model evidence was used to determine how many error types were present in the data.298

Model evidence was computed for one to twelve error types while using the optimal num-299

ber of communities. The number of error types that resulted in the largest model ev-300

idence was selected as the number of error types for the model and data. After select-301

ing the number of error types, model evidence was again checked to verify that the op-302

timal number of communities remained constant.303

Model evidence indicated that there are four communities and seven error types304

present in the data, given the model structure (see Figure 3). In comparison, S4W-Nepal305

identified four error types in the data based on visual inspection of the submitted ob-306

servations. The inference model, however, is a much more powerful tool for uncovering307

nuances in the data than graphical techniques. Therefore, the number of communities308

and error types inferred from the model were used for the remaining analysis. The model309

developed here and model evidence are, together, a powerful tool for identifying distinct310

error types in quantitative citizen science observations.311

5.2 Error analysis312

Parameters for the error-specific linear regressions were inferred for the seven er-313

ror types in the submitted rainfall observations (see Table 1). The inferred parameters314

included the mean and precision, τ , of the Gaussian distribution, where the mean is based315
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Figure 3. Model Evidence for selecting a. number of communities and b. number of error

types present in the data given the model structure.

on a linear regression a, b, and True as shown in Equation 4. Five of the seven error types316

align well with the error types identified by Davids et al. (2019): none, unit, meniscus,317

big meniscus, and unknown. Davids et al. (2019) only identified one meniscus error type,318

but the model separated this type of error into meniscus (b=2.00 mm) and big menis-319

cus (b=3.78 mm) error types. Meniscus errors occur when a citizen scientist reports the320

top of a concave meniscus rather than the bottom of the meniscus. Unit errors indicate321

instances where a citizen scientist submitted an observation in units of centimeters rather322

than millimeters, resulting in a unit error slope, a, of 0.10. Unknown errors do not present323

a discernible pattern that would explain their origin, as indicated by the low inferred pre-324

cision (0.01) for this error type.325

The inference model identified two error types that were overlooked during the Davids326

et al. (2019) analysis of errors in the Nepal citizen science data: slope outliers and in-327

tercept outliers. Slope outliers signify a case where the citizen scientist’s reported ob-328

servation was approximately ten times greater than the true value evident in the accom-329

panying photograph of the rainfall gauge. Intercept outliers occur when a citizen scien-330

tist submits an observation that is about ten millimeters less than the true value iden-331

tified by S4W-Nepal during quality control. The underlying cause of outlier errors is un-332

clear, but these outliers can likely be attributed to typos (e.g. adding an additional zero)333

or general carelessness on the part of the citizen scientist. Of the 6,091 observations in-334

cluded in the training data, only 9 were labelled as slope (n=2) or intercept (n=7) out-335

liers.336
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Table 1. Inferred regression parameters for the different error types

Error Type Slope, a Intercept, b Precision, τ

None 1.0 0.0 55750.5

Unit 0.1 0.1 37.1

Meniscus 1.0 2.0 1906.9

Big Meniscus 1.0 3.8 0.8

Unknown 0.9 2.4 0.00

Slope Outlier 10.3 -0.4 5.0

Intercept Outlier 1.6 -10.4 3.2

5.2.1 Error distribution within communities337

The distribution of errors committed by citizen scientists varied depending on the338

assigned community, as seen in Table 2. Each community was named based on its re-339

spective error distribution: Few, Few-MUn, Mensicus, and Unit-MUn. The Few com-340

munity commits very few errors—only 2.8% of submitted observations are erroneous. Of341

the erroneous submissions, members in the Few community are most likely to commit342

small and big meniscus errors (2.0%). The Few-MUn community also commits relatively343

few errors but does so at a rate of 6.3%. Members of the Few-MUn community are al-344

most equally likely to commit small and big meniscus errors (3.1%) and unknown errors345

(2.8%). The two remaining communities, Meniscus and Unit-MUn, are much more prone346

to submitting erroneous rainfall observations. The Meniscus community submits erro-347

neous observations at a rate of 21.4%. These observations are largely erroneous due to348

citizen scientists reading the meniscus of the water incorrectly (19.3%). Lastly, the Unit-349

MUn community commits the most errors, with 27.4% of its observations requiring cor-350

rection. While the Unit-MUn community commits primarily unit errors (10.8%), menis-351

cus (7.2%) and unknown (7.7%) errors still claim a large portion of the erroneous sub-352

missions. Members of the Unit-MUn community are prone to committing a wide vari-353

ety of errors.354

The Few community members have a high degree of scientific literacy and gener-355

ally take great care in submitting their observations. The Few-MUn community mem-356

bers likely also have high scientific literacy but are occasionally careless. Citizen scien-357
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Table 2. Distribution of errors committed by citizen scientists in each community

Community None Unit Meniscus Big

Meniscus

Unknown Slope

Outlier

Intercept

Outlier

Few (0.54) 0.972 0.001 0.015 0.005 0.005 0.000 0.001

Few-MUn (0.25) 0.937 0.003 0.021 0.010 0.028 0.001 0.002

Meniscus (0.16) 0.786 0.006 0.083 0.110 0.011 0.002 0.001

Unit-MUn (0.05) 0.726 0.108 0.038 0.035 0.077 0.003 0.012

Note : The probability of each community is shown in parentheses after the community name. Bold

values indicate the most common error type(s) for each community.

tists that were initially error prone but were able to correct their misunderstandings based358

on the feedback provided by S4W-Nepal could also be assigned to the Few-MUn com-359

munity. The Meniscus community largely misunderstands how to correctly read the depth360

of water in the rain gauge. The Unit-MUn community has several misunderstandings361

that cross multiple error types, therefore leading citizen scientists in this community to362

commit a random mix of errors.363

The distribution of errors within each community is a useful tool not only for se-364

lecting which submitted observations might require verification, but also for identifying365

opportunities to improve the overall accuracy of submitted observations. Citizen science366

project organizers can use targeted training to help specific communities improve their367

performance or to maintain their motivation for submitting frequent observations (Budde368

et al., 2017; Sheppard & Terveen, 2011). For example, S4W-Nepal could occasionally send369

feedback messages to the meniscus community members reminding them to read the rain-370

fall depth from the bottom of the meniscus. As another example, members in the Few371

community might positively respond to feedback messages acknowledging their strong372

record of accurate observations. After receiving such feedback, the Few community might373

be motivated to continue active participation in the citizen science initiative. Knowing374

the error structure of observations submitted by different communities can help improve375

the overall effectiveness of citizen science programs.376
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5.3 Community composition377

The model grouped citizen scientists into four distinct communities with a unique378

combination of characteristics and probability of committing errors. The Few commu-379

nity is the largest with 54% of citizen scientists in the training group assigned to this com-380

munity (see Table 2). The Unit-MUn community is the smallest with only 5% of citi-381

zen scientists classified into this group. The remaining citizen scientists are grouped into382

the Few-MUn (25%) and Meniscus (16%) communities. Overall, only 21% of participat-383

ing citizen scientists are likely to commit errors in more than 6.3% of their submitted384

observations.385

The probability that a citizen scientist will belong to a specific community depends,386

in part, on the unique characteristics of that citizen scientist. Figure 4 provides the in-387

ferred posterior probability that a citizen scientist with a particular characteristic would388

belong to each community, offering insight into the characteristic composition of each389

community. Singular characteristics may have a large impact on the tendency of a cit-390

izen scientist to commit errors, and therefore to be assigned to a specific community. How-391

ever, it is also true that any combination of characteristics could contribute to the prob-392

ability of a citizen scientist being assigned to a community. In some cases, citizen sci-393

entists are likely to possess a similar combination of characteristics, which surfaces in394

the community distributions. For example, Figure 4 indicates that citizen scientists re-395

cruited during a random visit, older than 25 years of age, holding less than a bachelor’s396

degree, and with an “other” occupation have a similar community distribution. Twenty397

percent of the citizen scientists older than 25 years of age were also recruited during a398

random visit, have less than a bachelor’s degree, and have an “other” occupation. While399

community assignment trends for singular characteristics can be enlightening, the im-400

pact of multiple citizen scientists with a similar combination of characteristics must be401

acknowledged.402

Motivation. Citizen scientists motivated by payment are more likely to commit er-403

rors than volunteer citizen scientists. This, however, does not necessarily indicate that404

paying a citizen scientist reduces their accuracy. Most paid citizen scientists (92%) live405

in rural or semi-urban areas and were recruited through random visits. Conversely, many406

volunteers were recruited through social media, personal connections, and outreach pro-407

grams organized at secondary schools and universities. The scientific literacy of paid cit-408
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Outreach (40%)

PersConnect (34%)

RandomVisit (19%)

SocialMedia (7%)

Recruitment

0% 50% 100%

<=18 (12%)

19-25 (69%)

>25 (19%)
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0% 50% 100%
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Bachelors (71%)

>Bachelors (8%)

Education

0% 50% 100%

Agriculture (3%)

Student (82%)

Other (15%)

Occupation

0% 50% 100%

Rural (9%)

Semi-Urban (65%)

Urban (26%)

Place of Residence

0% 50% 100%

Female (39%)

Male (61%)

Gender

0% 50% 100%

<70% (4%)

70-90% (24%)

>90% (72%)

Performance

0% 50% 100%

<28 (46%)

27-53 (23%)

>53 (31%)

Experience

Figure 4. Community composition for each characteristic. The percentage of participating

citizen scientists with the associated characteristic is shown in parenthesis.

izen scientists is likely lower than their unpaid counterparts (Davids et al., 2019). De-409

spite this, paid citizen scientists committed fewer random errors (Unit-MUn community)410

than unpaid citizen scientists.411

Recruitment. Citizen scientists recruited via outreach are the most likely to be in412

the Few community, while those recruited through random visits are almost equally likely413

to be assigned to the Few-MUn or Unit-MUn communities. Little differentiates the com-414

munity assignments of citizen scientists recruited via social media or through personal415

connections. Interestingly, however, those recruited through social media were the least416

likely to be in the Few or Few-MUn communities, despite being the most active unpaid417

citizen scientists per Davids et al. (2019). This indicates that a high rate of submitting418

observations is not necessarily correlated with the accuracy of those observations.419

Age. Citizen scientists between the ages of 19 and 25 were the most likely to be420

in the Few community. The community distributions for those outside of this age range421

were similar, but those 18 and younger were slightly more likely to be in the Few com-422

–17–



manuscript submitted to Water Resources Research

munity and less susceptible to random errors than their counterparts older than 25 years423

of age. Those older than 25 years are the farthest removed from formal education and424

are more likely to have many responsibilities, reducing the time and care they can ded-425

icate to collecting and submitting rainfall observations. This trend of less reliable older426

citizen scientists may be unique to citizen science projects in developing countries. Adult427

workers in developing countries generally have less leisure time to pursue non-work-related428

activities than those in developed countries (Jones & Klenow, 2016).429

Education. The community distribution for different educational levels largely mir-430

rors the trend seen in the age community distributions, with one exception. Citizen sci-431

entists with less than a bachelor’s degree are more prone to committing random errors432

than citizen scientists that are younger than 18 years of age. The community distribu-433

tion for those with the highest level of education and those with the lowest level of ed-434

ucation are almost identical, indicating that education alone does not result in more ac-435

curate citizen science observations.436

Place of residence. Citizen scientists in urban and semi-urban areas are almost equally437

likely to be assigned to any of the four communities. However, citizen scientists living438

in rural areas are much more error prone. Those living in rural areas may have the low-439

est scientific literacy. Also, only 9% of the participating citizen scientists lived in rural440

areas, so this small sample may not be representative.441

Occupation. Students are equally likely to be in the Few and Mensicus communi-442

ties. Conversely, citizen scientists with an “other” occupation are equally likely to be in443

the Few-MUn and Unit-MUn communities. Of the three occupation categories recorded,444

those in the agriculture sector are the most likely to commit many random errors (Unit-445

MUn community). However, like those in rural areas, agriculture workers only make up446

3% of the citizen scientists involved in the project. This, again, may not be a represen-447

tative sample.448

Gender. Overall, men are less likely to submit erroneous observations than women,449

with over half of the men being assigned to the Few or Few-MUn communities. How-450

ever, women are more likely to be in the Few community than men. This trend is an in-451

dication that scientifically literate women may take more care than men in submitting452

observations.453
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Performance. Unsurprisingly, citizen scientists that submit correct observations more454

than 90% of the time are most likely to be in the Few or Few-MUn error communities.455

Citizen scientists with a performance level between 70 and 90% are likely to be in the456

Meniscus community. The poorest performers (<70%) are generally assigned to the Unit-457

MUn community.458

Experience. No trend is particularly evident in the community distributions for cit-459

izen scientists at different experience levels. Citizen scientists with a high participation460

rate generally have the same likelihood of being in any community as those that submit461

fewer observations. However, those with a high level of participation are slightly less likely462

to be in the Few or Few-MUn communities, simply because they have more opportuni-463

ties to commit errors.464

5.4 Testing the model’s ability to infer the true value of a submitted ob-465

servation466

In addition to providing insight into the error structure of the submitted observa-467

tions and the relationship between citizen scientist characteristics and error tendencies,468

the model provides information about the true value of submitted observations. Test-469

ing the model reveals the ability of the model to infer a previously unknown true value470

based solely on the value of the submitted observation and the characteristics of the cit-471

izen scientist. In most cases, the actual true value of the submitted observation falls within472

the range of the posterior distribution inferred for the true value variable as seen in Fig-473

ure 5. However, as Figure 5b,c show, the mode of the Infer.NET posterior distribution474

is not always a good estimate of the actual true value.475

To increase the computational efficiency of an inference algorithm that sometimes476

needs to consider thousands of variables, Infer.NET approximates a multi-mode poste-477

rior distribution with a single-mode distribution (Minka et al., 2018) by minimizing the478

Kullback-Leibler divergence between the two (Minka, 2005). In many applications, this479

method works very well. However, here, the mixture distribution covers values ranging480

from 10% (unit error) of the true value up through 1,000% (outlier error) of the true value.481

Such a wide range of possible true values results in an Infer.NET predicted true value482

posterior with high variance and a mode that is often shifted left or right of the true value483

(see Figure 5). Informing the true value prior distribution with the value of the submit-484
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Figure 5. Exact Gaussian mixture distributions for the true value posterior and the

Infer.NET-estimated Gaussian distribution of the true value posterior based on informed and

uninformed priors; a. Infer.NET correctly infers true value; b. Infer.NET incorrectly infers true

value, and Gaussian mixture correctly identifies true value; c. Infer.NET and Gaussian mixture

incorrectly identify true value

ted observation rather than using an uninformed prior can shift the mode of Infer.NET’s485

predicted true value posterior toward the actual true value, but this is not always the486

case (see Figure 5c).487

While Infer.NET’s predicted true value posterior distribution often does not esti-488

mate the actual true value very well, the mode of the exact Gaussian mixture posterior489

often estimates the actual true value quite well (see Figure 5a,b). In other cases, as shown490

in Figure 5c, the actual true value is equal to the value at a local peak. Of the error types,491

the unit error presents the most difficulty when estimating the true value based on the492

mode of the mixture distribution. This is attributed to the small values of observations493

submitted with a unit error coupled with the high precision of the no error contribution494

to the Gaussian mix. For example, Figure 5c depicts an instance where a citizen scien-495

tist committed a unit error by submitting an observation of 1 mm while the true value496

was 10 mm. The inferred posterior error distribution for this observation indicated that497

there was a 97.3% probability that the submitted observation had a unit error, and a498

2.3% probability that it had no error. Despite this discrepancy in error probabilities, the499

mode of the mixture distribution still presents at the no error value (1 mm), because of500

the high precision associated with the none error type (see Table 1). The Gaussian mix-501

ture posterior distribution calculated from Infer.NET’s posterior distributions of the er-502

ror, regression, and precision parameters provides a more accurate estimate of the true503
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value of a submitted observation than the approximate Gaussian posterior distribution504

obtained by Infer.NET.505

5.5 Further model applications506

The trained model was tested for three different unique applications that provide507

insight into the utility of the model in practical applications and the error structure of508

citizen science data over time.509

5.5.1 Multiple observations of a single event510

Analyzing multiple observations of a single rainfall event can improve the accuracy511

of the predicted true value of rainfall. To determine which submitted observations con-512

stituted multiple observations of a single event, k-means clustering was employed (Hadi,513

Yudistira, Anggraeni, & Hasan, 2018). K-means clustering of the observations submit-514

ted on a single day was performed on the dimensions of latitude, longitude, elevation,515

time of day, and the value of the submitted observation (Hadi et al., 2018). The num-516

ber of clusters, k, or single events was determined by calculating the Pseudo-F statis-517

tic for k values ranging from 1 to 15. Once the single events (clusters) were identified,518

the true value prior distribution for an event was set to a Gaussian distribution with a519

mean and variance equal to those of the corresponding cluster. If each observation in a520

cluster actually refers to the same underlying event, a Gaussian distribution estimated521

from individual posteriors would provide a reliable true value posterior for that event.522

Thus, to quantify the uncertainty in predicting the true value of the event, a true value523

Gaussian distribution was estimated from the true value posterior distributions for in-524

dividual observations in the event.525

K-means clustering determined that the 22 rainfall observations submitted on May526

30, 2019 were observations of 9 distinct events (see Table 3). The inferred true value pos-527

teriors for each event often failed to cover the range of submitted observations and tended528

to skew towards the value of one of the submitted observations. Table 3 shows that the529

number of observations submitted for each event ranged from 1 to 4—likely too few ob-530

servations to accurately predict the actual true value of the event. The prediction of the531

true value for most events is highly uncertain, as evidenced by variances up to 132 mm2
532

from the Gaussian distributions estimated from the true value posteriors inferred for in-533
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Table 3. True Value Estimated from Multiple Observations

Gaussian Estimator

Event Size Mean Variance

1 3 43.1 132.0

2 4 35.0 71.9

3 1 37.5 2.9

4 2 15.9 1.9

5 4 26.4 92.7

6 2 113.4 43.8

7 1 61.9 1.1

8 2 28.8 20.2

9 3 20.6 67.7

dividual observations. More than 4 observations of a single event are likely needed to nar-534

row down the prediction of the true value of a rainfall event, especially in a region, such535

as Nepal, where rainfall is highly heterogeneous in space and time.536

5.5.2 Citizen scientists with unknown characteristics537

As citizen scientist programs expand, recording complete characteristics data for538

each participating citizen scientist can become challenging. The model’s ability to in-539

fer the correct community for citizen scientists with unknown characteristics and the cor-540

rect true value for the observations they submit was investigated. The characteristics541

for each unknown citizen scientist were drawn from a discrete distribution estimated from542

the characteristics data of citizen scientists observed during training. The community543

for each citizen scientist and the true values of their submitted observations were inferred544

and compared to the communities and true values inferred when the characteristics were545

known precisely.546

The model performed quite well while inferring the community of unknown citi-547

zen scientists and the true values of observations submitted by unknown citizen scien-548

tists. Known citizen scientist communities were correctly predicted 11.8% more than un-549

known citizen scientist communities. The coefficient of determination between the ac-550
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tual true values and predicted true values was 0.015 higher for known citizen scientists551

than for unknown citizen scientists. While the predicted true values for known and un-552

known citizen scientists were similar, the uncertainty of the true values predicted from553

observations submitted by unknown citizen scientists was higher. The average variance554

of the inferred true value posteriors was 68.5 mm2 for unknown citizen scientists and 53.8555

mm2 for known citizen scientists. Overall, the value of submitted observations has greater556

influence on the inferred true values of rainfall than the characteristics of the associated557

citizen scientist. While knowing the characteristics of all citizen scientists increases the558

accuracy of predicting the true value of submitted observations, it is not essential.559

5.5.3 Evolution of error structure within communities560

The change in error distribution over time within each community was studied. The561

observations submitted by citizen scientists with known characteristics were divided into562

years 2017, 2018, and 2019. The same communities assigned to each citizen scientist dur-563

ing training were assigned, and the a, b, and τ for each error type inferred during train-564

ing were made static. In addition, a uniform prior was set for the community error dis-565

tributions to reduce skew in the posterior distribution. Then, the inference model was566

run to infer the error distribution for each community during each year.567

The probability that a citizen scientist in each community would commit a type568

of error changed from the 2017 to 2018 to 2019 S4W-Nepal program years (see Figure 6).569

In 2017, only 16 citizen scientists for whom characteristics are known submitted obser-570

vations (see Table 4). The 2017 community error distributions, particularly the Menis-571

cus and Unit-MUn communities, are highly uncertain due to the small sample size. Over-572

all, citizen scientists became increasingly active as S4W-Nepal’s program progressed through573

the years. Citizen scientists submitted an average of just over 8 observations in 2017, grow-574

ing to nearly 80 by 2019. In the first full year of rainfall submissions (2017), most cit-575

izen scientists were assigned to the Few-MUn community. In the following two years, ac-576

tive citizen scientists were most often in the Few community, followed by the Few-MUn577

community. In all three years of S4W-Nepal’s program, the Unit-MUn community rep-578

resented the smallest fraction of active citizen scientists.579

As S4W-Nepal gained experience in operating a citizen science program, the par-580

ticipating citizen scientists also gained skills in collecting and submitting accurate rain-581
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Table 4. Yearly Observations and Community Sizes

2017 2018 2019

Number of Observations

Min. 1 1 1

Max. 30 216 409

Average 8.1 46.7 80.0

Std. Dev. 9.6 47.6 93.0

Total 130 6,916 4878

Community Probability (Count)

Few 0.31 (5) 0.55 (82) 0.41 (25)

Few-MUn 0.50 (8) 0.23 (24) 0.30 (18)

Meniscus 0.13 (2) 0.17 (25) 0.25 (15)

Unit-MUn 0.06 (1) 0.05 (7) 0.05 (3)

Note : The number of citizen scientists in each

community is shown in parentheses.

fall observations. The Few-MUn and Meniscus communities had an increasing proba-582

bility of submitting correct observations in each year after 2017 (see Figure 6). This trend583

also holds for the Few and Unit-MUn communities for 2018, but both communities saw584

a decrease in the probability of submitting correct observations in 2019. As the years585

progressed, all communities submitted successively fewer meniscus and big meniscus er-586

rors. Similarly, unit errors tended to decrease or remain the same as citizen scientists587

gained experience. Interestingly, while meniscus type errors and unit errors decreased588

over time, 2019 saw relatively high rates of unknown errors. The reason for an increase589

in unknown errors is difficult to diagnose but may be due to an evolution in the mag-590

nitude of errors committed. For example, if the regression parameters for this analysis591

are inferred rather than held constant, the unknown error b decreases from 2.6 in 2017592

to 1.5 in 2019. The error structure of observations submitted by citizen scientists is evolv-593

ing as both S4W-Nepal and the participating citizen scientists gain experience, a com-594

mon trend in citizen science programs (Kosmala et al., 2016).595
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S4W-Nepal uses various training techniques and feedback methods to increase the596

scientific literacy of citizen scientists (Davids et al., 2019). Their methods have been ef-597

fective in reducing the magnitude and frequency of errors committed by the citizen sci-598

entists. Perhaps the best evidence for this change is the reduction in meniscus and big599

meniscus errors committed by citizen scientists in the Meniscus community. From 2018600

to 2019, the probability of meniscus or big meniscus errors in the Meniscus community601

decreased from 17.9 to 4.2%. Similarly, unit errors committed by those in the Unit-MUn602

community decreased from 10.2% in 2018 to 5.8% in 2019. While a trend in reduced menis-603

cus and unit errors over two years is promising, additional analysis after multiple years604

of collecting citizen scientist observations would provide more conclusive evidence for in-605

creased scientific literacy of the participants.606

0% 20% 40% 60% 80% 100%

Unit-MUn

Meniscus

Few-MUn

Few

None Unit Meniscus BigMeniscus Unknown SlopeOutlier InterceptOutlier

2017
2018
2019

Figure 6. Change in the distribution of errors for each community over time. Note that the

2017 error distributions for the Meniscus and Unit-MUn communities are poorly informed due to

the low number of active citizen scientists assigned to those communities.

6 Summary and conclusions607

This study developed a Bayesian inference model to investigate the type and fre-608

quency of errors present in citizen science data. The model assigns citizen scientists to609

a community based on the characteristics of the citizen scientist and their tendency to610
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submit erroneous observations. This helps to target manual corrections of CS data. The611

model then infers a posterior distribution of the true value of a submitted observation612

from the value of the observation and the community of the participating citizen scien-613

tist. Designed thus, the model can be adapted to a wide array of citizen science datasets.614

Analysis of the error structure in citizen scientist rainfall observations revealed that615

individuals fall into one of four error patterns: not error prone, mostly not error prone,616

meniscus error prone, and random or various error prone. While the Bayesian inference617

model developed here used communities to relate citizen scientist characteristics to er-618

ror tendencies, the magnitude and type of errors committed is the crux of every com-619

munity assignment. The distribution of characteristics within each community is use-620

ful for investigating potential reasons for committing errors rather than for identifying621

individuals who might be particularly error prone.622

The Bayesian inference model developed using Infer.NET’s software framework un-623

covered seven error types and their probability distribution within each of the four error-624

based communities. The community assignments are a useful tool for discerning which625

citizen scientists are more likely to submit erroneous observations that require further626

review. In addition, community-specific training and feedback messages could be a pow-627

erful tool for increasing the quality and frequency of submissions.628

While the Bayesian inference model was unable to regularly predict the true value629

of a submitted observation, the model did extrapolate useful error probabilities for each630

observation. These error probabilities, in conjunction with the model’s inferred error-631

specific regression and precision parameters, can be used to calculate a true Gaussian632

mixture distribution that predicts the true value of submitted observations with more633

accuracy than Infer.NET’s single-mode true value prediction. As citizen science programs634

expand to include multiple participants submitting observations of a single event, the635

model’s ability to predict the true value for that event will likely increase. However, the636

model’s potential may be limited in regions where the target parameter is highly het-637

erogeneous in space and time.638

As a graphical, assumption-based Bayesian inference model, the citizen science er-639

ror model presented here has immense potential for adaptation to other citizen science640

programs with diverse data types. The implementation of error-based communities pro-641

vides a simple, yet effective method for tracking changes in the types and frequency of642
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errors committed by citizen scientists. The communities also provide targeted training643

and feedback opportunities to improve citizen science data at the point of collection, rather644

than at the point of correction. Improving the quality of citizen science data at every645

step enables increasingly more citizen scientist-supported decision-making and discov-646

eries.647

A Prior Distributions648

The prior distribution for each inferred model variable was a uniform Dirichlet dis-649

tribution, with the exception of the true value prior. The prior distribution for true value650

was a Gaussian distribution with a mean equal to the value of the submitted observa-651

tion and the variance set to 600. The variance for the true value prior was selected based652

on the variance of the entire true value dataset.653

ProbCharachteristicc[C] ∼ Dirichlet(Uniform), (A.1)654

ProbCommunity ∼ Dirichlet(Uniform), (A.2)655

ProbError[C] ∼ Dirichlet(Uniform), (A.3)656

Truee ∼ N (Obss,e, 600), (A.4)657

Notation658

Dirichlet Dirichlet distribution659

Discrete Discrete distribution660

N Gaussian distribution661

c characteristic662

s citizen scientist663

E error type664

e event665

C Community666

E Error type667
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