References
Al, E., Iliopoulos, F., Forschack, N., Nierhaus, T., Grund, M., Motyka,
P., Gaebler, M., Nikulin, V. V., & Villringer, A. (2020). Heart–brain
interactions shape somatosensory perception and evoked potentials.Proceedings of the National Academy of Sciences , 117 (19),
10575–10584.https://doi.org/10.1073/pnas.1915629117
Baghdadi, G., & Nasrabadi, A. M. (2012). EEG phase synchronization
during hypnosis induction. Journal of Medical Engineering &
Technology , 36 (4), 222–229.https://doi.org/10.3109/03091902.2012.668262
Baranauskas, M., Grabauskaitė, A., Griškova-Bulanova, I.,
Lataitytė-Šimkevičienė, B., & Stanikūnas, R. (2021). Heartbeat evoked
potentials (HEP) capture brain activity affecting subsequent heartbeat.Biomedical Signal Processing and Control , 68 , 102731.https://doi.org/10.1016/j.bspc.2021.102731
Bocci, T., Barloscio, D., Parenti, L., Sartucci, F., Carli, G., &
Santarcangelo, E. L. (2017). High Hypnotizability Impairs the Cerebellar
Control of Pain. The Cerebellum , 16 (1), 55–61.https://doi.org/10.1007/s12311-016-0764-2
Coll, M.-P., Hobson, H., Bird, G., & Murphy, J. (2021). Systematic
review and meta-analysis of the relationship between the
heartbeat-evoked potential and interoception. Neuroscience &
Biobehavioral Reviews , 122 , 190–200.https://doi.org/10.1016/j.neubiorev.2020.12.012
De Pascalis, V., Bellusci, A., & Russo, P. M. (2000). Italian Norms for
the Stanford Hypnotic Susceptibility Scale, Form C. International
Journal of Clinical and Experimental Hypnosis , 48 (3), 315–323.https://doi.org/10.1080/00207140008415249
De Benedittis, G., Cigada, M., Bianchi, A., Signorini, M. G., &
Cerutti, S. (1994). Autonomic Changes During Hypnosis: A Heart Rate
Variability Power Spectrum Analysis as a Marker of Sympatho-Vagal
Balance. International Journal of Clinical and Experimental
Hypnosis , 42 (2), 140–152.https://doi.org/10.1080/00207149408409347
Deeley, Q., Oakley, D. A., Toone, B., Giampietro, V., Brammer, M. J.,
Williams, S. C. R., & Halligan, P. W. (2012). Modulating the Default
Mode Network Using Hypnosis. International Journal of Clinical and
Experimental Hypnosis , 60 (2), 206–228.https://doi.org/10.1080/00207144.2012.648070
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for
analysis of single-trial EEG dynamics including independent component
analysis. Journal of Neuroscience Methods , 134 (1), 9–21.https://doi.org/10.1016/j.jneumeth.2003.10.009
Delorme, A., Palmer, J., Onton, J., Oostenveld, R., & Makeig, S.
(2012). Independent EEG Sources Are Dipolar. PLoS ONE ,7 (2), e30135.https://doi.org/10.1371/journal.pone.0030135
Demertzi, A., Antonopoulos, G., Heine, L., Voss, H. U., Crone, J. S., de
Los Angeles, C., Bahri, M. A., Di Perri, C., Vanhaudenhuyse, A.,
Charland-Verville, V., Kronbichler, M., Trinka, E., Phillips, C., Gomez,
F., Tshibanda, L., Soddu, A., Schiff, N. D., Whitfield-Gabrieli, S., &
Laureys, S. (2015). Intrinsic functional connectivity differentiates
minimally conscious from unresponsive patients. Brain ,138 (9), 2619–2631.https://doi.org/10.1093/brain/awv169
Demertzi, A., Soddu, A., Faymonville, M.-E., Bahri, M. A., Gosseries,
O., Vanhaudenhuyse, A., Phillips, C., Maquet, P., Noirhomme, Q., Luxen,
A., & Laureys, S. (2011). Hypnotic modulation of resting state fMRI
default mode and extrinsic network connectivity. In Progress in
Brain Research (Vol. 193, pp. 309–322). Elsevier.https://doi.org/10.1016/B978-0-444-53839-0.00020-X
Desmedt, O., Luminet, O., & Corneille, O. (2018). The heartbeat
counting task largely involves non-interoceptive processes: Evidence
from both the original and an adapted counting task. Biological
Psychology , 138 , 185–188.https://doi.org/10.1016/j.biopsycho.2018.09.004
Diolaiuti, F., Huber, A., Ciaramella, A., Santarcangelo, E. L., &
Sebastiani, L. (2020). Hypnotisability-related interoceptive awareness
and inhibitory/activating emotional traits. Archives Italiennes de
Biologie , 4 , 111–119.https://doi.org/10.12871/00039829202042
Dionisio, S., Mayoglou, L., Cho, S.-M., Prime, D., Flanigan, P. M.,
Lega, B., Mosher, J., Leahy, R., Gonzalez-Martinez, J., & Nair, D.
(2019). Connectivity of the human insula: A cortico-cortical evoked
potential (CCEP) study. Cortex , 120 , 419–442.https://doi.org/10.1016/j.cortex.2019.05.019
Elkins, G. R., Barabasz, A. F., Council, J. R., & Spiegel, D. (2015).
Advancing Research and Practice: The Revised APA Division 30
Definition of Hypnosis . International Journal of Clinical and
Experimental Hypnosis , 63 (1), 1–9.https://doi.org/10.1080/00207144.2014.961870
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical
power analyses using G*Power 3.1: Tests for correlation and regression
analyses. Behavior Research Methods , 41 (4),
1149–1160. https://doi.org/10.3758/BRM.41.4.1149
Fields, E. C., & Kuperberg, G. R. (2020). Having your cake and eating
it too: Flexibility and power with mass univariate statistics for ERP
data. Psychophysiology , 57 (2).https://doi.org/10.1111/psyp.13468
Gentsch, A., Sel, A., Marshall, A. C., & Schütz‐Bosbach, S. (2019).
Affective interoceptive inference: Evidence from heart‐beat evoked brain
potentials. Human Brain Mapping , 40 (1), 20–33.https://doi.org/10.1002/hbm.24352
Hiltunen, S., Karevaara, M., Virta, M., Makkonen, T., Kallio, S., &
Paavilainen, P. (2021). No evidence for theta power as a marker of
hypnotic state in highly hypnotizable subjects. Heliyon ,7 (4), e06871.https://doi.org/10.1016/j.heliyon.2021.e06871
Huber, A., Lui, F., Duzzi, D., Pagnoni, G., & Porro, C. A. (2014).
Structural and Functional Cerebral Correlates of Hypnotic
Suggestibility. PLoS ONE , 9 (3), e93187.https://doi.org/10.1371/journal.pone.0093187
Ibáñez-Marcelo, E., Campioni, L., Phinyomark, A., Petri, G., &
Santarcangelo, E. L. (2019). Topology highlights mesoscopic functional
equivalence between imagery and perception: The case of hypnotizability.NeuroImage , 200 , 437–449.https://doi.org/10.1016/j.neuroimage.2019.06.044
Jensen, M. P., Adachi, T., Tomé-Pires, C., Lee, J., Osman, Z. J., &
Miró, J. (2015). Mechanisms of Hypnosis: Toward the Development of
a Biopsychosocial Model . International Journal of Clinical and
Experimental Hypnosis , 63 (1), 34–75.https://doi.org/10.1080/00207144.2014.961875
Jensen, M. P., Jamieson, G. A., Lutz, A., Mazzoni, G., McGeown, W. J.,
Santarcangelo, E. L., Demertzi, A., De Pascalis, V., Bányai, É. I.,
Rominger, C., Vuilleumier, P., Faymonville, M.-E., & Terhune, D. B.
(2017). New directions in hypnosis research: Strategies for advancing
the cognitive and clinical neuroscience of hypnosis. Neuroscience
of Consciousness , 2017 (1).https://doi.org/10.1093/nc/nix004
Jiang, H., White, M. P., Greicius, M. D., Waelde, L. C., & Spiegel, D.
(2017). Brain activity and functional connectivity associated with
hypnosis. Cerebral Cortex , 27 (8), 4083–4093.https://doi.org/10.1093/cercor/bhw220
Judah, M. R., Shurkova, E. Y., Hager, N. M., White, E. J., Taylor, D.
L., & Grant, D. M. (2018). The relationship between social anxiety and
heartbeat evoked potential amplitude. Biological Psychology ,139 , 1–7.https://doi.org/10.1016/j.biopsycho.2018.09.013
Katkin, E. S., & Reed, S. D. (1988). Cardiovascular Asymmetries and
Cardiac Perception. International Journal of Neuroscience ,39 (1–2), 45–52.https://doi.org/10.3109/00207458808985692
Kramer, S., Zims, R., Simang, M., Rüger, L., & Irnich, D. (2014).
Hypnotic relaxation results in elevated thresholds of sensory detection
but not of pain detection. BMC complementary and alternative
medicine , 14 , 496.https://doi.org/10.1186/1472-6882-14-496
Kritzman, L., Eidelman-Rothman, M., Keil, A., Freche, D., Sheppes, G.,
& Levit-Binnun, N. (2022). Steady-state visual evoked potentials
differentiate between internally and externally directed attention.NeuroImage , 254 , 119133.https://doi.org/10.1016/j.neuroimage.2022.119133
Landry, M., Lifshitz, M., & Raz, A. (2017). Brain correlates of
hypnosis: A systematic review and meta-analytic exploration.Neuroscience & Biobehavioral Reviews , 81 , 75–98.https://doi.org/10.1016/j.neubiorev.2017.02.020
Lechinger, J., Heib, D. P. J., Gruber, W., Schabus, M., & Klimesch, W.
(2015). Heartbeat-related EEG amplitude and phase modulations from
wakefulness to deep sleep: Interactions with sleep spindles and slow
oscillations: Cardiac activity modulates brain oscillations.Psychophysiology , 52 (11), 1441–1450.https://doi.org/10.1111/psyp.12508
Luft, C. D. B., & Bhattacharya, J. (2015). Aroused with heart:
Modulation of heartbeat evoked potential by arousal induction and its
oscillatory correlates. Scientific Reports , 5 (1), 15717.https://doi.org/10.1038/srep15717
Makeig, S., Bell, A. J., Jung, T.-P., & Sejnowski, T. J. (1995).
Independent Component Analysis of Electroencephalographic Data. In D.
Touretzky, M. C. Mozer & M. Hasselmo (Eds.), Advances in Neural
Information Processing Systems 8 (pp. 145-151). MIT Press.
Malik, M. (1996). Heart Rate Variability.: Standards of Measurement,
Physiological Interpretation, and Clinical Use: Task Force of The
European Society of Cardiology and the North American Society for Pacing
and Electrophysiology. Annals of Noninvasive Electrocardiology ,1 (2), 151–181.https://doi.org/10.1111/j.1542-474X.1996.tb00275.x
McGeown, W. J., Mazzoni, G., Venneri, A., & Kirsch, I. (2009). Hypnotic
induction decreases anterior default mode activity. Consciousness
and Cognition , 18 (4), 848–855.https://doi.org/10.1016/j.concog.2009.09.001
Mullen, T., Kothe, C., Chi, Y. M., Ojeda, A., Kerth, T., Makeig, S.,
Cauwenberghs, G., & Tzyy-Ping Jung. (2013). Real-time modeling and 3D
visualization of source dynamics and connectivity using wearable EEG.2013 35th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC) , 2184–2187.https://doi.org/10.1109/EMBC.2013.6609968
Onton, J., Westerfield, M., Townsend, J., & Makeig, S. (2006). Imaging
human EEG dynamics using independent component analysis.Neuroscience & Biobehavioral Reviews , 30 (6), 808–822.https://doi.org/10.1016/j.neubiorev.2006.06.007
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011).
FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and
Invasive Electrophysiological Data. Computational Intelligence and
Neuroscience , 2011 , 1–9.https://doi.org/10.1155/2011/156869
Pan, J., & Tompkins, W. J. (1985). A Real-Time QRS Detection Algorithm.IEEE Transactions on Biomedical Engineering , BME-32 (3),
230–236.https://doi.org/10.1109/TBME.1985.325532
Parrinello, N., Napieralski, J., Gerlach, A. L., & Pohl, A. (2022).
Embodied feelings–A meta-analysis on the relation of emotion intensity
perception and interoceptive accuracy. Physiology & Behavior ,254 , 113904.https://doi.org/10.1016/j.physbeh.2022.113904
Park, H.-D., & Blanke, O. (2019a). Coupling Inner and Outer Body for
Self-Consciousness. Trends in Cognitive Sciences , 23 (5),
377–388.https://doi.org/10.1016/j.tics.2019.02.002
Park, H.-D., & Blanke, O. (2019b). Heartbeat-evoked cortical responses:
Underlying mechanisms, functional roles, and methodological
considerations. NeuroImage , 197 , 502–511.https://doi.org/10.1016/j.neuroimage.2019.04.081
Pekala, R., Kumar, V. K., Maurer, R., Elliott-Carter, N., & Moon, E.
(2006). “How Deeply Hypnotized Did I Get?” Predicting Self-Reported
Hypnotic Depth from a Phenomenological Assessment Instrument.International Journal of Clinical and Experimental Hypnosis ,54 (3), 316–339.https://doi.org/10.1080/00207140600691344
Pekala, R. J., Baglio, F., Cabinio, M., Lipari, S., Baglio, G.,
Mendozzi, L., Cecconi, P., Pugnetti, L., & Sciaky, R. (2017). Hypnotism
as a Function of Trance State Effects, Expectancy, and Suggestibility:
An Italian Replication. The International journal of clinical and
experimental hypnosis , 65 (2), 210–240.https://doi.org/10.1080/00207144.2017.1276365
Petzschner, F. H., Weber, L. A., Wellstein, K. V., Paolini, G., Do, C.
T., & Stephan, K. E. (2019). Focus of attention modulates the heartbeat
evoked potential. NeuroImage , 186 , 595–606.https://doi.org/10.1016/j.neuroimage.2018.11.037
Piccione, C., Hilgard, E. R., & Zimbardo, P. G. (1989). On the degree
of stability of measured hypnotizability over a 25-year period.Journal of Personality and Social Psychology , 56 (2),
289–295.https://doi.org/10.1037/0022-3514.56.2.289
Picerni, E., Santarcangelo, E., Laricchiuta, D., Cutuli, D., Petrosini,
L., Spalletta, G., & Piras, F. (2019). Cerebellar Structural Variations
in Subjects with Different Hypnotizability. The Cerebellum ,18 (1), 109–118.https://doi.org/10.1007/s12311-018-0965-y
Pollatos, O., Kirsch, W., & Schandry, R. (2005). Brain structures
involved in interoceptive awareness and cardioafferent signal
processing: a dipole source localization study. Human brain
mapping , 26 (1), 54–64.https://doi.org/10.1002/hbm.20121
Quadt, L., Critchley, H. D., & Garfinkel, S. N. (2018). The
neurobiology of interoception in health and disease: Neuroscience of
interoception. Annals of the New York Academy of Sciences ,1428 (1), 112–128.https://doi.org/10.1111/nyas.13915
Rashid, A., Santarcangelo, E. L., & Roatta, S. (2022). Cerebral Blood
Flow in Healthy Subjects with Different Hypnotizability Scores.Brain Sciences , 12 (5), 558.https://doi.org/10.3390/brainsci12050558
Raz, A. (2005). Attention and Hypnosis: Neural Substrates and
Genetic Associations of Two Converging Processes . International
Journal of Clinical and Experimental Hypnosis , 53 (3), 237–258.https://doi.org/10.1080/00207140590961295
Rho, G., Callara, A. L., Petri, G., Nardelli, M., Scilingo, E. P.,
Greco, A., & Pascalis, V. D. (2021). Linear and Nonlinear Quantitative
EEG Analysis during Neutral Hypnosis following an Opened/Closed Eye
Paradigm. Symmetry , 13 (8), 1423.https://doi.org/10.3390/sym13081423
Rosati, A., Belcari, I., Santarcangelo, E. L., & Sebastiani, L. (2021).
Interoceptive Accuracy as a Function of Hypnotizability.International Journal of Clinical and Experimental Hypnosis ,69 (4), 441–452.https://doi.org/10.1080/00207144.2021.1954859
Santarcangelo, E. L., & Carli, G. (2021). Individual Traits and Pain
Treatment: The Case of Hypnotizability. Frontiers in
Neuroscience , 15 , 683045.https://doi.org/10.3389/fnins.2021.683045
Santarcangelo, E. L., Emdin, M., Picano, E., Raciti, M., Macerata, A.,
Michelassi, C., Kraft, G., Riva, A., L’Abbate, A. (1992). Can Hypnosis
Modify the Sympathetic-parasympathetic Balance at Heart Level?Journal of Ambulatory Monitoring, 5 , 191–196.
Santarcangelo, E. L., Paoletti, G., Balocchi, R., Carli, G., Morizzo,
C., Palombo, C., & Varanini, M. (2012). Hypnotizability Modulates the
Cardiovascular Correlates of Subjective Relaxation. International
Journal of Clinical and Experimental Hypnosis , 60 (4), 383–396.https://doi.org/10.1080/00207144.2012.700609
Santarcangelo, E. L., & Scattina, E. (2016). Complementing the Latest
APA Definition of Hypnosis: Sensory-Motor and Vascular Peculiarities
Involved in Hypnotizability. International Journal of Clinical and
Experimental Hypnosis , 64 (3), 318–330.https://doi.org/10.1080/00207144.2016.1171093
Sheehan,P.W. & McConkey, K.M. (1982). The assessment of hypnosis:a
survey of meaasuring instruments. In P-W. Sheehan & K-M- McConkey,Hypnosis and Experience: The exploration of phenomena and process(pp 18-74). Lawrence Erlbaum Associates.
Spina, V., Chisari, C., & Santarcangelo, E. L. (2020). High Motor
Cortex Excitability in Highly Hypnotizable Individuals: A Favourable
Factor for Neuroplasticity? Neuroscience , 430 , 125–130.https://doi.org/10.1016/j.neuroscience.2020.01.042
Tarvainen, M. P., Niskanen, J.-P., Lipponen, J. A., Ranta-aho, P. O., &
Karjalainen, P. A. (2014). Kubios HRV – Heart rate variability analysis
software. Computer Methods and Programs in Biomedicine ,113 (1), 210–220.https://doi.org/10.1016/j.cmpb.2013.07.024
Tellegen, A. (1981). Practicing the two disciplines for relaxation and
enlightenment: Comment on “Role of the feedback signal in
electromyograph biofeedback: The relevance of attention” by Qualls and
Sheehan. Journal of Experimental Psychology: General ,110 (2), 217–226.https://doi.org/10.1037/0096-3445.110.2.217
Tellegen, A., & Atkinson, G. (1974). Openness to absorbing and
self-altering experiences (“absorption”), a trait related to hypnotic
susceptibility. Journal of Abnormal Psychology , 83 (3),
268–277.https://doi.org/10.1037/h0036681
The Math Works, Inc. (2020). MATLAB (Version 2020b) [Computer
software].https://www.mathworks.com/
Weitzenhoffer, A. M., & Hilgard, E. R. (1959). Scala Stanford di
Suscettibilità Ipnotica, forme A e B. Organizzazioni Speciali[Stanford Hypnotic Susceptibility Scale, Form A]. Organizzazioni
Speciali.
Wolf, T. G., Faerber, K. A., Rummel, C., Halsband, U., & Campus, G.
(2022). Functional Changes in Brain Activity Using Hypnosis: A
Systematic Review. Brain Sciences , 12 (1), 108.https://doi.org/10.3390/brainsci12010108
Yargholi, E., & Nasrabadi, A. M. (2015). Chaos–chaos transition of
left hemisphere EEGs during standard tasks of Waterloo-Stanford Group
Scale of hypnotic susceptibility. Journal of Medical Engineering
& Technology , 39 (5), 281–285.https://doi.org/10.3109/03091902.2015.1048317
Zhou, H., Zou, H., Dai, Z., Zhao, S., Hua, L., Xia, Y., Han, Y., Yan,
R., Tang, H., Huang, Y., Du, Y., Wang, X., Yao, Z., & Lu, Q. (2022).
Interoception Dysfunction Contributes to the Negative Emotional Bias in
Major Depressive Disorder. Frontiers in Psychiatry , 13 ,
874859.https://doi.org/10.3389/fpsyt.2022.874859